REMARKS ON BOUNDARIES OF CAT(0) SPACES FROM SHAPE THEORY

知念 直紹 (NAOTSUGU CHINEN) 防衛大学校 (NATIONAL DEFENSE ACADEMY OF JAPAN)

1. Introduction and preliminaries

In this paper, we follow notations and terminologies of [2]. A metric space (X,d) is said to be *proper* if all closed, bounded sets in (X,d) are compact. A metric space (X,d) is said to be a *geodesic space* if for any $x,y\in X$, there exists an isometric embedding $\xi:[0,d(x,y)]\to X$ such that $\xi(0)=x$ and $\xi(d(x,y))=y$ (such a ξ is called a *geodesic*). Let (X,d) be a geodesic space and let T be a geodesic triangle in X. A *comparison triangle* for T is a geodesic triangle \overline{T} in the Euclidean plane \mathbb{R}^2 with same edge lengths as T. Choose two points x and y in T. Let \overline{x} and \overline{y} denote the corresponding points in \overline{T} . Then the inequality

$$d(x,y) \le d_{\mathbb{R}^2}(\bar{x},\bar{y})$$

is called the CAT(0)-inequality, where $d_{\mathbb{R}^2}$ is the usual metric on \mathbb{R}^2 . A geodesic space X is called a CAT(0) space if the CAT(0)-inequality holds for all geodesic triangles T and for all choices of two points x and y in T. See for details of CAT(0) spaces in [2, p.158].

Let (X,d) be a proper CAT(0) space. Fix $x_0 \in X$. Set $\overline{B}(x_0,r) = \{x \in X : d(x_0,x) \leq r\}$ and $S(x_0,r) = \{x \in X : d(x_0,x) = r\}$. Denote the geodesic segment from x and x' in X by [x,x']. There exists the projection $p_r: X \to \overline{B}(x_0,r)$ such that $p_r|_{\overline{B}(x_0,r)} = id$ and $p_r(x) = x'$ if $x \notin \overline{B}(x_0,r)$, where $\{x'\} = S(x_0,r) \cap [x_0,x]$. Let $\overline{X} = \varprojlim(\overline{B}(x_0,n),p_n|_{\overline{B}(x_0,n+1)})$ and $\partial X = \varprojlim(S(x_0,n),r_n)$, said to be the boundary of X where $r_n = p_n|_{S(x_0,n+1)} : S(x_0,n+1) \to S(x_0,n)$ for each $n \in \mathbb{N}$. It is clear that $\overline{X} = X \cup \partial X$ is a compactification of X with a reminder ∂X which is AR (see [12, Lemma 1.1]). It is known that the boundary ∂X of X is independent on the choice of $x_0 \in X$. See for details in [2, pp.263-265].

Definition 1.1 ([4]). Let X and Y be ANR proper metric spaces. A homotopy equivalence $f: X \to Y$ is said to be a *simple homotopy equivalence* if there exist an ANR proper metric space Z and proper cell-like maps $\alpha: Z \to X$, $\alpha': Z \to Y$ such that $f \circ \alpha$ is proper homotopic to α' , written $f \circ \alpha \simeq_p \alpha'$.

Let (X_i, d_i) be a proper CAT(0) space for i = 0, 1. First, we show that there exists a simple homotopy equivalence from X_0 to X_1 if and only if ∂X_0 and ∂X_1 are shape equivalent (see Proposition 2.3 below).

Definition 1.2. An action of a group Γ on a space X, written $\Gamma \curvearrowright X$, is a homomorphism from Γ to the group of self-homeomorphism of X.

A group Γ is said to act geometrically on a metric space (X, d), written $\Gamma \curvearrowright X$, if $\Gamma \curvearrowright X$ satisfies the following:

- (1) (isometry) We have $d(x, x') = d(\gamma x, \gamma x')$ for any $x, x' \in X$ and each $\gamma \in \Gamma$, written $\Gamma \underset{iso}{\curvearrowright} X$;
- (2) (cocompact) There exists a compact subset C of X such that $X = \bigcup_{\gamma \in \Gamma} \gamma C$, written $\Gamma \curvearrowright X$;
- (3) (proper) For every $x \in X$ there exists $\epsilon > 0$ such that $\{\gamma \in \Gamma : \overline{B}(x, \epsilon) \cap \gamma \overline{B}(x, \epsilon) \neq \emptyset\}$ is finite, written $\Gamma \underset{pro}{\sim} X$.

Let Γ be a group and let X and Y be spaces with $\Gamma \curvearrowright X$ and $\Gamma \curvearrowright Y$. A map $f: X \to Y$ is said to be Γ -map if $f(\gamma x) = \gamma f(x)$ for each $x \in X$ and each $\gamma \in \Gamma$. Two maps $f_0: X \to Y$ and $f_1: X \to Y$ is said to be Γ -homotopic if there exists a Γ -map $H: X \times [0,1] \to Y$ which is a homotopy from f_0 to f_1 .

Gromov [10, Chapter 6] asks whether the visual boundary ∂X_0 of X_0 is Γ -equivariantly homeomorphic to the visual boundary ∂X_1 of X_1 whenever a group Γ acts geometrically on a CAT(0) space X_i . Recall that Γ acts on ∂X_i (see Remark 2.1 below). But, in general, C. B. Croke and B. Kleiner [7] showed that ∂X_0 is not homeomorphic to ∂X_1 . By use of a polyhedral resolution of boundaries, P. Ontaneda [12] proved that there exists a proper Γ -homotopy equivalence map $f: X_0 \to X_1$ and ∂X_0 and ∂X_1 are shape equivalent. Then, the map f induces a shape isomorphism f from ∂X_0 to ∂X_1 and every f induces a shape isomorphism f from f induces a shape isomorphism f from f induces a shape isomorphism f from f induces a compact that f induces a shape isomorphism f from f induces a shape isomorphism f induces is f induces induces in f induces in f induces i

Proposition 1.3. Let Γ be a group and for i=0,1 let (X_i,d_i) be a proper CAT(0) space with $\Gamma \underset{geo.}{\curvearrowright} X_i$. Then there exists a Γ -homotopy equivalence $f:X_0 \to X_1$ with a proper Γ -homotopy inverse $g:X_1 \to X_0$ such that f is a simple homotopy equivalence, $f|_{X_0^G}:X_0^G \to X_1^G$ is a proper homotopy equivalence with a proper homotopy inverse $g|_{X_1^G}:X_1^G \to X_0^G$ for each subgroup G of Γ , and, $\mathbf{f}\gamma_{X_0} = \gamma_{X_1}\mathbf{f}$ for each $\gamma \in \Gamma$.

Here, $X^G = \{x \in X : \gamma x = x \text{ for all } \gamma \in G\}$ for a subgroup G of Γ .

2. Shape equivalences

Remark 2.1. Let (X,d) be a proper CAT(0) space. Let Γ be a group with $\Gamma \underset{iso.}{\curvearrowright} X$. Since $\gamma: X \to X: x \mapsto \gamma x$ is an isometry for each $\gamma \in \Gamma$, there exists the extension $\overline{\gamma}: \overline{X} \to \overline{X}$ of γ which is a homeomorphism (see [2, Corollary 8.9]). Thus, we have a homeomorphism $\gamma = \overline{\gamma}|_{\partial X}: \partial X \to \partial X$ for each $\gamma \in \Gamma$. Fix $x_0 \in X$. The map γ induces a shape morphism $\gamma_X = (\gamma_{X,n},\phi): (S(x_0,n),r_n) \to (S(x_0,n),r_n)$ such that $\overline{\gamma}(X_{\phi(n)}) \subset X_n$ for each $n \in \mathbb{N}$ and $\gamma(\overline{x}) = \lim_{n \to \infty} \gamma_{X,n}(\overline{p}_{\phi(n)}(\overline{x}))$ for each $\overline{x} \in \partial X$, where $X_n = \{x \in X: d(x_0,x) \geq n\}, \ \gamma_{X,n} = p_n \circ \overline{\gamma}|_{S(x_0,\phi(n))}: S(x_0,\phi(n)) \to S(x_0,n) \text{ and } \overline{p}_n: \overline{X} \to \overline{B}(x_0,n) \text{ is the extension of } p_n \text{ for each } n \in \mathbb{N}.$ See [11].

Remark 2.2. Let (X_i, d_i) be a proper CAT(0) space. Fix $x_i \in X_i$ for i = 0, 1. By Remark 2.1, we have $\partial X_i = \varprojlim(S(x_i, n), r_{i,n})$, where $r_{i,n} = p_{i,n}|_{S(x_i, n+1)} : S(x_i, n+1) \to S(x_i, n)$ for each $n \in \mathbb{N}$. By [1], we have that ∂X_0 and ∂X_1 are shape equivalent if and only if there exist two functions $\psi, \psi' : \mathbb{N} \to \mathbb{N}$, maps $f_n : S(x_0, \psi^n(1)) \to S(x_0, \psi'^n(1))$, and, $g_n : S(x_0, \psi'^{n+1}(1)) \to S(x_0, \psi^n(1))$ satisfying the following homotopy commutative diagram:

$$S(x_0, \psi(1)) \xleftarrow{\pi_1} S(x_0, \psi^2(1)) \xleftarrow{\pi_2} S(x_0, \psi^3(1)) \xleftarrow{\pi_3} \cdots$$

$$f_0 \downarrow \qquad \qquad \downarrow f_1 \qquad \qquad \downarrow f_2 \qquad \qquad \downarrow f_2 \qquad \qquad \cdots$$

$$S(x_1, \psi'(1)) \xleftarrow{\pi'_1} S(x_1, \psi'^2(1)) \xleftarrow{\pi'_2} S(x_1, \psi'^3(1)) \xleftarrow{\pi'_3} \cdots,$$

where $\pi_k = r_{0,\psi^k(1)} \circ \cdots \circ r_{0,\psi^{k+1}(1)-1}$ and $\pi'_k = r_{1,\psi'^k(1)} \circ \cdots \circ r_{1,\psi'^{k+1}(1)-1}$. Let $f: X_0 \to X_1$ be a proper homotopy equivalence with a proper homotopy inverse $g: X_1 \to X_0$. Then it is easy to construct shape morphisms $\mathbf{f} = (f_n, \psi): (S(x_0, \psi^n(1)), r_{0,n}, \mathbb{N}) \to (S(x_0, \psi'^n(1)), r_{1,n}, \mathbb{N})$ and $\mathbf{g} = (g_n, \psi'): (S(x_0, \psi'^n(1)), r_{1,n}, \mathbb{N}) \to (S(x_0, \psi^n(1)), r_{0,n}, \mathbb{N})$, induced by f and g, respectively which satisfy the above. In particular, if $f: X_0 \to X_1$ is a proper Γ -map, $\mathbf{f} \gamma_{X_0} = \gamma_{X_1} \mathbf{f}$ for each $\gamma \in \Gamma$.

Let Q be the Hilbert cube, i.e., $[-1,1]^{\infty}$.

Proposition 2.3. Let (X_i, d_i) be a proper CAT(0) space for i = 0, 1. The following are equivalent:

- (1) There exists a proper homotopy equivalence map $f: X_0 \to X_1$;
- (2) ∂X_0 and ∂X_1 are shape equivalent;
- (3) $X_0 \times Q$ and $X_1 \times Q$ are homeomorphic;
- (4) There exists a simple homotopy equivalence map $f': X_0 \to X_1$.

In particular, every proper homotopy equivalence map from X_0 to X_1 is a simple homotopy equivalence.

Proof. Let $incl_i: X_i = X_i \times \{0\} \hookrightarrow X_i \times Q$ be the inclusion and let $\alpha_i: X_i \times Q \to X_i$ be the projection.

- $(1) \Longrightarrow (2)$: See Remark 2.2.
- (3) \Longrightarrow (1): Let $h: X_0 \times Q \to X_1 \times Q$ be a homeomorphism. Thus, we have two proper maps $f = \alpha_2 \circ h \circ incl_1: X_0 \to X_1$ and $g = \alpha_1 \circ h^{-1} \circ incl_2: X_1 \to X_0$ such that $g \circ f$ is proper homotopic to the identity map id_{X_0} and $f \circ g$ is proper homotopic to the identity map id_{X_1} .
- (2) \Longrightarrow (3): Let $\overline{X_i} = X \cup \partial X_i$ which is AR for i = 0, 1. By [4], $\overline{X_i} \times Q$ is homeomorphic to Q. Since $\partial X_i \times Q$ is a Z-set in $\overline{X_i} \times Q$ for i = 0, 1, by [4, Theorem 25.2], $X_0 \times Q$ is homeomorphic to $X_1 \times Q$.
- (1) \iff (4): It suffices to show (1) \implies (4). Let f be a proper homotopy equivalence. By [6, Theorem 7], there exists a homeomorphism $h: X_0 \times Q \to X_1 \times Q$ which is proper homotopic to $f \times \mathrm{id}_Q: X_0 \times Q \to X_1 \times Q$. Let $\alpha_i: X_i \times Q \to X_i$ be the projection for i = 0, 1. By a proper homotopy commutative diagram

$$X_{0} \times Q \xrightarrow{h} X_{1} \times Q$$

$$\downarrow_{\mathrm{id}_{X_{0} \times Q}} \qquad \qquad \downarrow_{\mathrm{id}_{X_{1} \times Q}}$$

$$X_{0} \times Q \xrightarrow{f \times \mathrm{id}_{Q}} X_{1} \times Q$$

$$\downarrow_{\alpha_{0}} \qquad \qquad \downarrow_{\alpha_{1}}$$

$$X_{0} \xrightarrow{f} X_{0}$$

we have $f \circ \alpha_0 \simeq_p \alpha_1 \circ h$, thus f is a simple homotopy equivalence.

Example 2.4. For i = 0, 1 let Z_i be a continuum such that Z_0 and Z_1 are shape equivalent. By [3] or [9], for i = 0, 1 there exists a proper CAT(0) space (X_i, d_i) such that ∂X_i is homeomorphic to Z_i . By Proposition 2.3, X_0 and X_1 are simple homotopy equivalent.

3. The existence of proper map

Let Γ be a group and for i = 0, 1 let (X_i, d_i) be a proper CAT(0) space with $\Gamma \underset{geo.}{\curvearrowright} X_i$. In [12, Theorem C], it was proved that there exists a proper Γ -homotopy equivalence $f: X_0 \to X_1$. But, in this section we give a more direct proof by no use of a polyhedral resolution of boundaries.

Lemma 3.1. Let Γ be a group, let (X,d) be a proper CAT(0) space with $\Gamma \underset{geo.}{\frown} X$, and, let $f: X \to X$ be a proper Γ -map. Then there exists a proper Γ -homotopy $H: X \times [0,1] \to X$ from f to the identity map id_X . In particular, for every subgroup G of Γ , $H|_{X^G}: X^G \times [0,1] \to X^G$ is a proper homotopy from $f|_{X^G}: X^G \to X^G$ to the identity map id_{X^G} .

Sketch of proof. Since $\Gamma \curvearrowright X$ and f is a Γ -map, there exists r > 0 such that $d(f, \mathrm{id}_X) < r$. For every $x \in X$ Let $c_x : [0, d(f(x), x)] \to X$ be a geodesic connecting from f(x) to x. Define $H: X \times [0, 1] \to X$ by $H(x, t) = c_x(td(f(x), x))$ for each $x \in X$ and each $t \in [0, 1]$. It is clear that H is a proper homotopy from f to id_X . In particular, if $f: X \to X$ is a Γ -map, so is H.

Definition 3.2. [2, p. 179] Let (X, d) be a metric space, let Y be a bounded set of X and let Z be a closed subset of X. The radius of Y at Z, is defined by

$$r_Z(Y) = \inf\{r > 0 : x \in Z, Y \subset \overline{B}(x, r)\}.$$

For simplicity of notation, if X = Z, we write r(Y) instead of $r_X(Y)$.

Proposition 3.3. [2, Proposition II 2.7] Let (X, d) be a complete CAT(0) space, let Y be a bounded set of X and let Z be a closed convex subset of X. Then there exists a unique point $c_Z(Y) \in Z$, called the centre of Y at Z, such that $Y \subset \overline{B}(c_Z(Y), r_Z(Y))$.

Sketch of proof. There exist a sequence $\{z_n\}_{n\in\mathbb{N}}$ of Z and $\{r_n\}_{n\in\mathbb{N}}$ of \mathbb{R}_+ such that $r_Z(Y)=\lim_{n\to\infty}r_n$ and $Y\subset\overline{B}(z_n,r_n)$ for all $n\in\mathbb{N}$. We can show that for every $\epsilon>0$ there exist R,R'>0 with $R>r_Z(Y)>R'>0$ such that diam $[z_n,z_{n'}]<2\epsilon$ for any $n,n'\in\mathbb{N}$ with $r_n,r_{n'}< R$. This shows that $\{z_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence, so $c_Z(Y)=\lim_{n\to\infty}z_n$, and establishes the uniqueness of $c_Z(Y)$.

Lemma 3.4. Let Γ be a group and let (X,d) be a complete CAT(0) space with $\Gamma \underset{iso.}{\curvearrowright} X$. Then $X^G = \{x \in X : \gamma x = x \text{ for all } \gamma \in G\}$ is a convex set for each subgroup G of Γ . In particular, X^G is a nonempty convex set for each finite subgroup G of Γ .

Sketch of proof. Fix $x, x' \in X^G$. Let $\xi : [0, d(x, x')] \to X$ be a geodesic from x to x'. Since $\xi(2^{-1}d(x, x')) \in X^G$, we have $\{\xi(2^{-n}kd(x, x')) : n, k \in \mathbb{N}, 0 \le k \le 2^n\} \subset X^G$, thus, $\xi([0, d(x, x')]) \subset X^G$. Let G be a finite subgroup of Γ and fix $x_0 \in X$. By Proposition 3.4, $c(Gx_0) \in X^G$, thus it is nonempty.

Definition 3.5. Let Γ be a group and let $K = |\mathcal{K}|$ be a simplicial complex with $\Gamma \curvearrowright K$. Set $\Gamma^x = \{ \gamma \in \Gamma : \gamma x = x \}$ for $x \in K$ and $\Gamma^A = \bigcap_{y \in A} \Gamma^y$ for $A \subset K$. $\Gamma \curvearrowright K$ is *simplicial* if it is satisfied the following;

- (1) $\gamma: K \to K$ is a simplicial map for each $\gamma \in \Gamma$;
- (2) $\Gamma^{\sigma} = \{ \gamma \in \Gamma : \gamma \sigma = \sigma \}$ for each $\sigma \in \mathcal{K}$.

The proof of the following result is based on the proof of [8, p.286, Theorem A.2].

Lemma 3.6. Let Γ be a group, let (X,d) be a proper CAT(0) space with $\Gamma \underset{geo.}{\curvearrowright} X$, and, let K be a locally finite simplicial complex with $\Gamma \underset{coc.,pro.}{\curvearrowright} K$ such that $\Gamma \curvearrowright X$ is simplicial. Then, for every Γ -invariant subcomplex L of K and every proper Γ -map $f: L \to X$, there exists a proper Γ -map $\widetilde{f}: K \to X$ such that $\widetilde{f}|_{L} = f$.

Proof. Let \mathcal{K} be a subdivision of K and let $\mathcal{K}^{(n)}$ be the n-skeleton of \mathcal{K} . We show by induction on n that for every proper Γ -map $f_n: L \cup |\mathcal{K}^{(n)}| \to X$, there exists a proper Γ -map $f_{n+1}: L \cup |\mathcal{K}^{(n+1)}| \to X$ such that $f_{n+1}|_{L \cup |\mathcal{K}^{(n)}|} = f_n$.

By assumption, there exists a finite subset S_0 of $|\mathcal{K}^{(0)}| \setminus L$ such that $\Gamma S_0 =$ $\gamma v = v$ is a finite subgroup of Γ for each $v \in S_0$. By Lemma 3.5, $X^{\Gamma^v} = \{x \in S_0 : x \in S_0 : x$ $X: \gamma x = x$ for all $\gamma \in \Gamma^v$ is nonempty for each $v \in S_0$. Choose $\widetilde{v} \in X^{\Gamma^v}$. Let us define $f_0: L \cup |\mathcal{K}^{(0)}| \to X$ by $f_0|_L = f$ and $f(\gamma v) = \gamma \widetilde{v}$ for each each $v \in S_0$ and each $\gamma \in \Gamma$. Let $\gamma, \gamma' \in \Gamma$ and $v, v' \in S_0$ with $\gamma v = \gamma' v'$. We show that $\gamma \tilde{v} = \gamma' \tilde{v'}$. Since $\Gamma v \cap S_0 = \{v\}$ for each $v \in S_0$, we have v = v', thus, $\gamma^{-1}\gamma' \in \Gamma^v$. Hence, $\gamma^{-1}\gamma'\widetilde{v}=\widetilde{v}$, and finally that $\gamma\widetilde{v}=\gamma'\widetilde{v'}$. Therefore, f_0 is well-defined and a Γ -map. We show that f_0 is a proper map, i.e., $f_0^{-1}(Z)$ is compact for each compact set $Z \subset X$. Let $\Gamma_Z(v) = \{ \gamma \in \Gamma : \gamma f_0(v) \in Z \}$ for each $v \in S_0$. Since $\Gamma \curvearrowright_{pro} X$, $\Gamma_Z(v)$ is finite. Since $f_0^{-1}(Z) \subset f^{-1}(Z) \cup \bigcup \{\gamma v : v \in S_0, \gamma \in \Gamma_Z(v)\}, f_0^{-1}(Z)$ is compact. Let $f_n: L \cup |\mathcal{K}^{(n)}| \to X$ be a proper Γ -map for $n \geq 0$. By assumption, there exists a finite subset S_{n+1} of $\mathcal{K}^{(n+1)} \setminus \mathcal{K}^{(n)}$ such that $\Gamma(\bigcup_{\sigma \in S_{n+1}} \operatorname{int} \sigma) =$ $|\mathcal{K}^{(n+1)}| \setminus (L \cup |\mathcal{K}^{(n)}|)$, and, $\Gamma(\operatorname{int}\sigma) \cap \bigcup_{\sigma \in S_{n+1}} \sigma = \operatorname{int}\sigma$ for each $\sigma \in S_{n+1}$, where $\partial \sigma = \bigcup \{\tau : \tau \text{ is a proper face of } \sigma\}$ and $\operatorname{int} \sigma = \sigma \setminus \partial \sigma$. Let $\sigma \in S_{n+1}$. Recall $\Gamma^{\sigma} = \{ \gamma \in \Gamma : \gamma z = z \text{ for each } z \in \sigma \}$. Since Γ^{z} is finite and $\Gamma^{\sigma} \subset \Gamma^{z}$ for each $z \in \sigma$, Γ^{σ} is a finite subgroup of Γ . It is clear that $f(\partial \sigma) \subset X^{\Gamma^{\sigma}} = \{x \in \sigma\}$ $X: \gamma x = x$ for all $\gamma \in \Gamma^{\sigma}$. By Proposition 3.4, we have the centre $c(f(\partial \sigma))$ of $f(\partial \sigma)$ in X. Since $\Gamma \subset X$, by Proposition 3.4, we see that $c(f(\partial \sigma)) \in X^{\Gamma^{\sigma}}$. Set $c(f(\partial \sigma)) * f(\partial \sigma) = \bigcup \{ [c(f(\partial \sigma)), x] : x \in f(\partial \sigma) \}.$ Let $c(\sigma)$ be the barycenter of σ and let $f_{n+1,\sigma}: \sigma = c(\sigma) * \partial \sigma \to c(f(\partial \sigma)) * f(\partial \sigma) \subset X$ be the cone on $f_n|_{\partial \sigma}$. By Lemma 3.5, $X^{\Gamma^{\sigma}}$ is a convex subset of X, so $f_{n+1,\sigma}(\sigma) \subset X^{\Gamma^{\sigma}}$. Define a map $f_{n+1}: L \cup |\mathcal{K}^{(n+1)}| \to X$ satisfying $f_{n+1}|_{L \cup |\mathcal{K}^{(n)}|} = f_n$ by $f_{n+1}(\gamma z) = \gamma f_{n+1,\sigma}(z)$ for each $\sigma \in S_{n+1}$, each $z \in \text{int}\sigma$, and, each $\gamma \in \Gamma$. Let $\gamma, \gamma' \in \Gamma$, $\sigma, \sigma' \in S_{n+1}$, and, $z \in \text{int}\sigma, z' \in \text{int}\sigma'$ with $\gamma z = \gamma' z'$. We show that $f_{n+1}(\gamma z) = f_{n+1}(\gamma' z')$. By the definition of S_{n+1} , we see $\sigma = \sigma'$. Since $\Gamma \curvearrowright X$ is simplicial, we have $\gamma^{-1}\gamma' \in \Gamma^{\sigma}$, hence, z=z'. Since $f_{n+1,\sigma}(\sigma)\subset X^{\Gamma^{\sigma}}$, we have $\gamma^{-1}\gamma'f_{n+1,\sigma}(z)=f_{n+1,\sigma}(z)$, hence, $f_{n+1}(\gamma z) = f_{n+1}(\gamma' z')$. Therefore, f_{n+1} is well-defined and a Γ -map.

We show that f_{n+1} is a proper map, i.e., $f_{n+1}^{-1}(Z)$ is compact for each compact set $Z \subset X$. Let $\Gamma_Z(\sigma) = \{ \gamma \in \Gamma : \gamma f_0(\sigma) \in Z \}$ for each $\sigma \in S_{n+1}$. Since $\Gamma \underset{pro}{\curvearrowright} X$, $\Gamma_Z(\sigma)$ is finite. Since $f_{n+1}^{-1}(Z) \subset f^{-1}(Z) \cup \bigcup \{ \gamma v : \sigma \in S_{n+1}, \gamma \in \Gamma_Z(\sigma) \}, f_{n+1}^{-1}(Z)$ is compact. \square

We show the following lemma, and it directly follows from [12, Proposition A], but we give a more direct proof based on the proof of it.

Lemma 3.7. Let Γ be a group and for i=0,1 let (X_i,d_i) be a proper CAT(0) space with $\Gamma \underset{geo.}{\curvearrowright} X_i$. Then there exists a proper Γ -map $f: X_0 \to X_1$

Proof. By $\Gamma \curvearrowright_{coc} X_0$, there exist a compact set C of X_0 such that $\Gamma C = X_0$. By [2, Proposition I.8.5(1)], for every $x \in C$ there exists $\epsilon_x > 0$ such that every $\gamma \in \Gamma$,

$$\gamma x = x \text{ or } \overline{B}(x, \epsilon_x) \cap \gamma \overline{B}(x, \epsilon_x) = \emptyset.$$
 (1)

Thus, there exist a finite subset $X_0' = \{x_0, \ldots, x_l\}$ of C such that $\Gamma \mathcal{V}$ is a locally finite open cover of X_0 and $U \not\subset \bigcup \{U' \in \Gamma \mathcal{V} : U \neq U'\}$ for each $U \in \Gamma \mathcal{V}$, where $\mathcal{V} = \{B(x_i, \epsilon_{x_i}) : i = 0, \ldots, l\}$.

Let \mathcal{L} be the nerve of $\Gamma \mathcal{V}$, i.e., $\mathcal{L}^{(0)} = \mathcal{U}$, and, $\langle U_0, \ldots, U_k \rangle \in \mathcal{L}$ if and only if $U_0 \cap \cdots \cap U_k \neq \emptyset$. Set $L = |\mathcal{L}|$. For every $\gamma \in \Gamma$, define a simplicial map $\gamma : L \to L$ by $\gamma(\langle U_0, \ldots, U_k \rangle) = \langle \gamma U_0, \ldots, \gamma U_k \rangle$ for each $\langle U_0, \ldots, U_k \rangle \in \mathcal{L}$. Since $U = \gamma U$ whenever $U \cap \gamma U \neq \emptyset$, we have $\Gamma \curvearrowright L$.

Let $\gamma \in \Gamma$ and $\langle U_0, \dots, U_k \rangle \in \mathcal{L}$ such that $\gamma(\langle U_0, \dots, U_k \rangle) = \langle U_0, \dots, U_k \rangle$, i.e., $\{U_0, \dots, U_k\} = \{\gamma U_0, \dots, \gamma U_k\}$. Since $\bigcap_{i=0}^k U_i = \bigcap_{i=0}^k \gamma U_i \neq \emptyset$, we have $U_i \cap \gamma U_i \neq \emptyset$, hence, $U_i = \gamma U_i$ for each $i = 0, \dots, k$. Therefore, $\Gamma \curvearrowright L$ is simplicial.

We show that $\Gamma \curvearrowright_{coc} L$. Let $\mathfrak{T} = \{\langle V_0, \dots, V_k \rangle \in \mathcal{L} : V_i \in \mathcal{V} \text{ for each } i\}$ such that $|\mathfrak{T}|$ is a finite subcomplex of L. It suffices to show that $L = \Gamma |St(\mathfrak{T},\mathcal{L})|$, where $St(\mathfrak{T},\mathcal{L}) = \{\sigma \in \mathcal{L} : \sigma \cap |\mathfrak{T}| \neq \emptyset\}$ is the close star of \mathfrak{T} in \mathcal{L} . Let $\langle \gamma_0 V_0, \dots, \gamma_k V_k \rangle \in \mathcal{L}$ such that $\gamma_i \in \Gamma$ and $V_i \in \mathcal{V}$ for each $i = 0, \dots, k$. Since $\gamma_0 V_0 \cap \dots \cap \gamma_k V_k \neq \emptyset$, we have $V_0 \cap \gamma_0^{-1} \gamma_1 V_1 \cap \dots \cap \gamma_0^{-1} \gamma_k V_k \neq \emptyset$. Since $V_0 \in \mathfrak{T}^{(0)}$, we have $\langle V_0, \gamma_0^{-1} \gamma_1 V_1, \dots, \gamma_0^{-1} \gamma_k V_k \rangle \in St(\mathfrak{T}, \mathcal{L})$. Since $\langle \gamma_0 V_0, \dots, \gamma_k V_k \rangle = \gamma_0 \langle V_0, \gamma_0^{-1} \gamma_1 V_1, \dots, \gamma_0^{-1} \gamma_k V_k \rangle \in \gamma_0 St(\mathfrak{T}, \mathcal{L})$, we have $|\langle \gamma_0 V_0, \dots, \gamma_k V_k \rangle| \in \Gamma |St(\mathcal{L}, \mathfrak{K})|$, thus, $L = \Gamma |St(\mathfrak{T}, \mathcal{L})|$. By the above, we see that $\dim L = \dim |St(\mathfrak{T}, \mathcal{L})| < \infty$.

We show that $\Gamma \curvearrowright L$. Since $\mathcal{L}^{(0)} = \Gamma \mathcal{T}^{(0)}$, it suffices to show that for any $V \in \mathcal{V}$, $\{\gamma \in \Gamma : |St(V,\mathcal{L})| \cap \gamma |St(V,\mathcal{L})| \neq \emptyset\}$ is finite. This follows that $\{\gamma \in \Gamma : V \cap \gamma V' \neq \emptyset\}$ is finite for each $V' \in \mathcal{V}$ with $\gamma' \in \Gamma$ and $V \cap \gamma' V' \neq \emptyset$.

We construct the canonical map $f_0: X_0 \to L$. Let $x \in X_0$. Set $\{U \in \Gamma \mathcal{V} : x \in U\} = \{U_0, \dots, U_k\}$. Define

$$\lambda_i(x) = \frac{d(x, X_0 \setminus U_i)}{\sum_{j=0}^k d(x, X_0 \setminus U_j)} \text{ and } f_0(x) = \sum_{i=0}^k \lambda_i(x) U_i \in \langle U_0, \dots, U_k \rangle.$$

Since $f_0^{-1}(\langle U_0, \dots, U_k \rangle) \subset U_0 \cup \dots \cup U_k$, we see that f_0 is a proper map. Since $\gamma: X_0 \to X_0$ is an isometry, for every $\gamma \in \Gamma$ we have

$$\lambda_i(\gamma x) = \frac{d(\gamma x, X_0 \setminus \gamma U_i)}{\sum_{j=0}^k d(\gamma x, X_0 \setminus \gamma U_j)} = \frac{d(x, X_0 \setminus U_i)}{\sum_{j=0}^k d(x, X_0 \setminus U_j)} = \lambda_i(x),$$

thus, since $\gamma: L \to L$ is a simplicial map,

$$f_0(\gamma x) = \sum_{i=0}^k \lambda_i(\gamma x) \gamma U_i = \sum_{i=0}^k \lambda_i(x) \gamma U_i = \gamma \left(\sum_{i=0}^k \lambda_i(x) U_i \right) = \gamma f_0(x),$$

thus, f_0 is a Γ -map.

By Lemma 3.7, there exists a proper Γ -map $f_1: L \to X_1$, therefore, we have a a proper Γ -map $f = f_1 \circ f_0: X_0 \to X_1$, which completes the proof.

Let L be as in the proof of Lemma 3.8. We can think of L as a piecewise Euclidean complex, a locally finite simplicial complex with the intrinsic pseudometric ρ (see [2, pp.98-99]) such that a length of every 1-simplex in $\mathcal L$ is one. Since Shape(L) is finite (see [2, p.98]), (L, ρ) is a complete geodesic space ([2, Theorem I .7.19, p.105]). In particular, by the construction of (L, ρ) , $\gamma:(L, \rho) \to (L, \rho)$ is an isometry for each $\gamma \in \Gamma$, i.e., $\Gamma \curvearrowright L$.

The proof of Proposition 1.3. By Lemma 3.8, for i = 0, 1 there exist proper Γ -maps $f: X_0 \to X_1$ and $g: X_1 \to X_0$. By Remark 2.2, Proposition 2.3 and Lemma 3.1, f and g satisfy the conditions in Proposition 1.3, which completes the proof.

4. Questions

Question 4.1. Let Γ be a group, let (X_i, d) be a proper CAT(0) space with $\Gamma \underset{geo.}{\curvearrowright} X_i$, and let $f: X_0 \to X_1$ be a proper Γ -map. Does there exist an ANR proper metric space Z with $\Gamma \underset{geo.}{\curvearrowright} Z$ and proper cell-like Γ -maps $\alpha: Z \to X_0$, $\alpha': Z \to X_1$ such that $f \circ \alpha$ is proper Γ -homotopic to α' ?, i.e., is $f: X_0 \to X_1$ a simple Γ -homotopy equivalence?

Question 4.2. Let Γ be a group and let (X,d) be a proper CAT(0) space with $\Gamma \curvearrowright X$. If there exists a compact ANR metric space Z which is shape $(\Gamma$) equivalent to ∂X , is ∂X ANR?

Question 4.3. Let Γ be a group and let (X_i, d) be a proper CAT(0) space with $\Gamma \underset{geo.}{\sim} X_i$ such that ∂X_i is ANR for i = 0, 1.

- (1) Does there exists a Γ -homotopy equivalence map from ∂X_0 and ∂X_1 ?
- (2) Are ∂X_0 and ∂X_1 simple homotopy equivalent?

REFERENCES

- [1] K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), 223-254.
- [2] M. R. Bridson and A. Haefliger, *Metric spaces of non-positive curvature*, Springer-Verlag, Berlin, 1999.
- [3] S. Buyalo and V. Schroeder, *Elements of asymptotic geometry*, EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich, 2007.
- [4] T. A. Chapman, Lectures on Hilbert cube manifolds, Regional Conference Series in Mathematics, No. 28. American Mathematical Society, Providence, R. I., 1976.
- [5] T. A. Chapman, Simple homotopy theory for ANR's, General Topology and Appl. 7 (1977), no. 2, 165–174.
- [6] T. A. Chapman and L. C. Siebenmann, Finding a boundary for a Hilbert cube manifold, Acta Math. 137 (1976), no. 3-4, 171–208.
- [7] C. B. Croke and B. Kleiner, Spaces with nonpositive curvature and their ideal boundaries, Topology 39 (2000), no. 3, 549–556.
- [8] F. T. Farrell and L. E. Jones, *Isomorphism conjectures in algebraic K-theory*, J. Amer. Math. Soc. 6 (1993), no. 2, 249–297
- [9] R. Geoghegan and P. Ontaneda, Boundaries of cocompact proper CAT(0) spaces, Topology 46 (2007), no. 2, 129–137
- [10] M. Gromov, Asymptotic invariants for infinite groups, Geometric Group Theory (G.A. Niblo and M.A. Roller, eds.), LMS Lecture Notes, vol. 182, Cambridge University Press, Cambridge, 1993, pp.1–295.
- [11] S. Mardešić and J. Segal, Shape theory. The inverse system approach, North-Holland Mathematical Library, 26. North-Holland Publishing Co., Amsterdam-New York, 1982.
- [12] P. Ontaneda, Cocompact CAT(0) spaces are almost geodesically complete, Topology 44 (2005), no. 1, 47–62.
- [13] C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69. Springer-Verlag, New York-Heidelberg, 1972

DEPARTMENT OF MATHEMATICS, NATIONAL DEFENSE ACADEMY OF JAPAN, YOKOSUKA 239-8686, JAPAN

E-mail address: naochin@nda.ac.jp