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REMARKS ON BOUNDARIES OF CAT(0) SPACES FROM
SHAPE THEORY

& Ef (NAOTSUGU CHINEN)
BT AR (NATIONAL DEFENSE ACADEMY OF JAPAN)

1. INTRODUCTION AND PRELIMINARIES

In this paper, we follow notations and terminologies of [2]. A metric space
(X, d) is said to be proper if all closed, bounded sets in (X,d) are compact. A
metric space (X, d) is said to be a geodesic space if for any z,y € X, there exists an

~ isometric embedding € : [0,d(z,y)] — X such that £(0) = z and £(d(z,y)) = ¥y
(such a ¢ is called a geodesic). Let (X,d) be a geodesic space and let T be a
geodesic triangle in X. A comparison triangle for T is a geodesic triangle T in
the Euclidean plane R? with same edge lengths as T. Choose two points z and y
in T. Let Z and § denote the corresponding points in 7. Then the inequality

d(:l?, y) S d]R2 (1—:7 'y)

is called the CAT(0)-inequality, where dg> is the usual metric on R%. A geodesic
space X is called a CAT(0) space if the CAT(0)-inequality holds for all geodesic
triangles T' and for all choices of two pomts z and y in T. See for details of
CAT(0) spaces in [2, p.158].

Let (X,d) be a proper CAT(0) space. Fix zo € X. Set B(xzg,r) = {z € X :
d(zo,z) < r}and S(zg,r) = {zr € X : d(zo,z) = r}. Denote the geodesic segment
from z and 2’ in X by [z,2]. There exists the projection p, : X — B(zo,r) such
that pTIB(mo "= =iwdand py(z) =7z'if z ¢ B(xo,r), where {z'} = S(zo,7) N [z0, Z].
Let X = L :co, pn|B(x0 nt1)) and 0X = y_(S(a:o,n),rn), said to be the
boundary of X where rn, = pp|s(zont1) : S(xo,n + 1) = S(zo,n) for each n € N.
It is clear that X = X U 0X is a compactification of X with a reminder X
which is AR (see [12, Lemma 1.1]). It is known that the boundary X of X is
independent on the choice of z5 € X. See for details in [2, pp.263-265].

Definition 1.1 ([4]). Let X and Y be ANR proper metric spaces. A homotopy
equivalence f : X — Y is said to be a simple homotopy equivalence if there exist
an ANR proper metric space Z and proper cell-like mapsa: Z =+ X, o' Z 5 Y
such that f o a is proper homotopic to o/, written f o a ~, o'.

Let (X;,d;) be a proper CAT(0) space for i = 0,1. First, we show that there
exists a simple homotopy equivalence from Xy to X; if and only if 0Xo and 90X,
are shape equivalent (see Proposmon 2.3 below)
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Definition 1.2. An action of a group I" on a space X, written ' ~ X, is a
homomorphism from I'" to the group of self-homeomorphism of X.

A group T is said to act geometrically on a metric space (X, d), written ' ~ X,
geo. :

if I ~ X satisfies the following:

(1) (isometry) We have d(z,z’) = d(yz,vz') for any z,z’ € X and eachy € T,
written I' ~ X;

i50.
(2) (cocompact) There exists a compact subset C' of X such that X =
U—yer‘ ~C, written ' ~ X;
coc.

(3) (proper) For every z € X there exists € > 0 such that {y € T : B(z,€) N
vB(z,€) # 0} is finite, written I’ ~ X.

pro.

Let I' be a group and let X and Y be spaces withI' ~ X and I’ ~ Y. A map
f:X — Y issaid to be I'-map if f(yz) = vf(x) for each x € X and each v € T.
Two maps fo: X = Y and f; : X — Y is said to be I'-homotopic if there exists
aT-map H : X x [0,1] = Y which is a homotopy from f; to f;.

Gromov [10, Chapter 6] asks whether the visual boundary 08X, of X, is I'-
equivariantly homeomorphic to the visual boundary 6X; of X; whenever a group
I acts geometrically on a CAT(0) space X;. Recall that I acts on 8.X; (see Remark
2.1 below). But, in general, C. B. Croke and B. Kleiner [7] showed that 8X| is
not homeomorphic to 0X;. By use of a polyhedral resolution of boundaries, P.
Ontaneda [12] proved that there exists a proper I'-homotopy equivalence map
f : Xo = X; and 80X, and 0X; are shape equivalent. Then, the map f induces
a shape isomorphism f from 8X, to 0X; and every v € TI' induces a shape
isomorphism v, from 0.X; to 0.X; (see Remark 2.2 below). In particular, Bestvina
posed the following: Are 0X, and 0X; cell-like equivalent? Recall that X, and
0X is said to be cell-like equivalent if there exist a compact metric space Z and
two cell-like maps f; : Z — 0X; (i = 0,1). It is clear that if two compact ANR -
metric spaces are simple homotopy equivalent, they are cell-like equivalent. By
Proposition 2.3 below, we see that f : Xy — X is a simple homotopy equivalence.
In this paper, we state the following result.

Proposition 1.3. Let T be a group and fori = 0,1 let (X;, d;) be a proper CAT(0)
space with ' ~ X;. Then there exists a I'-homotopy equivalence f : Xo = X3

geo.

with a proper I'-homotopy inverse g : X1 — Xy such that f is a simple homotopy
equivalence, f]| X§ X§ — XE is a proper homotopy equivalence with a proper

homotopy inverse glxg : X{ — X§ for each subgroup G of T, and, fyx, = vx,f
for each v € T.

Here, X¢ = {z € X : vz = z for all v € G} for a subgroup G of I".



2. SHAPE EQUIVALENCES

Remark 2.1. Let (X, d) be a proper CAT(0) space. Let I be a group with T ~ X.

Since v : X = X : x — ~x is an isometry for each v € T, there exists the exten—
sion ¥ : X — X of y which is a homeomorphism (see [2, Corollary 8.9]). Thus, we
have a homeomorphism vy = 7|gx : 0X — 0X for each v € T. Fix zy € X. The
map 7 induces a shape morphism Yx = (Y, 6) : (S(z0,1),7) = (S(z0,1), )
such that ¥(Xgm)) C X, for each n € N and ¥(ZT) = limp 00 7x,0(By(m) (T)) for
each T € 0X, where X, = {z € X : d(zo,2) > n}, Yxn = Pn © 7|S(0,6(n))
S(zo,$(n)) = S(zo,n) and B, : X — B(zp,n) is the extension of p, for each
n € N. See [11]. - \

Remark 2.2. Let (X;,d;) be a proper CAT(0) space. Fix z; € X; for i = 0, 1.
By Remark 2.1, we have 0X; = l_i_x_r_l(S(xi,n),ri,n), where rin = Pinls@int1) :
S(zi,n + 1) = S(z;,n) for each n € N. By [1], we have that 6X, and 8X;
are shape equivalent if and only if there exist two functions 1,7’ : N = N,
maps -fn : S(zo,¥™(1)) = S(zo,v'™(1)), and, g, : S(xo, " (1)) = S(zo,4™(1))
satisfying the following homotopy commutative diagram:

3

S(x0, (1)) «Zm S(z0,¥2(1)) e S(mo, (1)) -

a8 \ N

(x1)¢l <_ S x17¢/2( )) <_ S(xluw (1)) <7r_’ T
3
Where T = 7‘0,¢k(1) O-+-0 T'O,zjz’”“l(l)—l &l’ld 7Tk = Tlﬂ/"k(l) 0---0 T1’¢/k+1(1j_1-
Let f : Xo — X; be a proper homotopy equivalence with a proper homo-
topy inverse g : X; — Xp. Then it is easy to construct shape morphisms

(fm ) (S(I():"’/}n( ))>T0,H?N) - ‘(S("EOadjm(l))?rl,nyN) and g = (gn7¢/) :

( (xo,l// (1)),71,n,N) = (S(zo,9¥™(1)), 70, N), induced by f and g, respectively.

which satisfy the above. In particular, if f Xo — X is a proper I'-map,
fyx, = vx,f for each v € T.

Let @ be the Hilbert cube, ie., [-1,1]®

Proposition 2.3. Let (X;,d;) be a proper CAT(0) space for 1 = 0,1. The fol-
lowing are equivalent:

(1) There exists a proper homotopy equivalence map f : Xo = Xi;

(2) Xy and 60X, are shape equivalent;

(3) Xo x Q and X, x Q are homeomorphic;

(4) There exists a simple homotopy equivalence map f': Xo — X;.

In particular, every proper homotopy equzvalence map from Xg to X1 is a simple

homotopy equwalence

29
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Proof. Let incl; : X; = X; x {0} = X; x @ be the inclusion and let o; : X; X Q —
X; be the projection.

(1) =>(2): See Remark 2.2. ' _

(3) =>(1): Let h: Xy x @ = X3 x @ be a homeomorphism. Thus, we have
two proper maps f = apohoincl; : Xo = X; and g = ajoh~toincly : X; = X,
such that g o f is proper homotopic to the identity map idx, and f o g is proper
homotopic to the identity map idy;,.

(2) =(3): Let X; = X U 0X; which is AR for i = 0,1. By [4], X; x Q is
homeomorphic to Q. Since 8X; x Q is a Z-set in X; x Q for i = 0,1, by [4,
Theorem 25.2], Xo X @ is homeomorphic to X; x Q.

(1) <=(4): It suffices to show (1) =>(4). Let f be a proper homotopy equiv-
alence. By [6, Theorem 7|, there exists a homeomorphism h : Xy x Q = X1 X Q
which is proper homotopic to f X idg: Xo X @ = X1 X Q. Let a; : X; x Q — X;
be the projection for i = 0,1. By a proper homotopy commutative diagram '

XoxQ —25 X, x0Q
idxyxq@ idx; xQ
xid -
XoxQ 29 x, %

(s} 23}

Xo —f——) Xo
we have f o ag ~, a; o h, thus f is a simple homotopy equivalence. ' O

Example 2.4. For ¢ = 0,1 let Z; be a continuum such that Z, and Z; are shape
equivalent. By [3] or [9], for ¢ = 0,1 there exists a proper CAT(0) space (X;, d;)
such that 0X; is homeomorphic to Z;. By Proposition 2.3, X, and X; are simple
homotopy equivalent.

3. THE EXISTENCE OF PROPER MAP

Let T' be a group and for ¢ = 0,1 let (X;,d;) be a proper CAT(0) space with
I' ~ X;. In [12, Theorem C], it was proved that there exists a proper I-homotopy

geo. i
equivalence f : Xy — X;. But, in this section we give a more direct proof by no

use of of a polyhedral resolution of boundaries.

Lemma 3.1. Let ' be a group, let (X, d) be a proper CAT(0) space with T’ ~ X,

and, let f : X — X be a proper I'-map. Then there exists a proper I'- homotopy
H: X x[0,1] = X from f to the identity map idx. In particular, for every
subgroup G of T, H|xc : X€ x [0,1] = X is a proper homotopy from f|xc :
X% = X€ to the identity map idxc.



Sketch of proof Since I' ~ X and f is a I-map, there exists » > 0 such that

geo.

d(f,idx) < r. For every z € X Let ¢, : [0,d(f(x),z)] — X be a geodesic
connecting from f(z) to z. Define H : X x[0,1] = X by H(z,t) = c,(td(f(z), z))
for each z € X and each ¢ € [0,1]. It is clear that H is a proper homotopy from
f to idx. In particular, if f : X — X is a I'-map, so is H. O

Definition 3.2. [2, p. 179] Let (X, d) be a metric space, let ¥ be a bounded set
of X and let Z be a closed subset of X. The radius of Y at Z, is defined by

rz(Y)=inf{r >0:2€ Z)Y C B(z,r)}.
For simplicity of notation, if X = Z, we write 7(Y) instead of rx(Y).

Proposition 3.3. [2, Proposition II 2.7] Let (X,d) be a complete CAT(0) space,
let Y be a bounded set of X and let Z be a closed convex subset of X. Then
there exists a unique point cz(Y) € Z, called the centre of Y at Z, such that

Y C _B-(Cz(Y), Tz(Y))

- Sketch of proof. There exist a sequence {2, }nen of Z and {r,, }nen of R, such that
rz(Y) = limpy00 7 and Y C B(2,,7,) for all n € N. We can show that for every
€ > 0 there exist R, R’ > 0 with R > rz(Y’) > R’ > 0 such that diam [z, 2] < 2¢
for any n,n’ € N with r,, 7, < R. This shows that {z, }nen is a Cauchy sequence,
so cz(Y) = limp_, 2, and establishes the uniqueness of cz(Y). O

Lemma 3.4. Let ' be a group and let (X,d) be a complete CAT(0) space with
I' ~ X. Then X6 = {z € X : yz = z for all ¥ € G} is a convex set for

i80.
each subgroup G of F In particular, X is a nonempty convex set for each finite

subgroup G of I.
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Sketch of proof. Fix z,z' € XG Let £ : [0,d(z,z')] = X be a geodesic from z

to «’. Since £(27'd(z,z’)) € X©, we have {¢(2 "kd(z,2")) : n,k € N,0 < k <
2"} € X9, thus, £([0,d(z,z)]) € X©. Let G be a finite subgroup of I' and fix
o € X. By Proposmon 3.4, c(Gxy) € X, thus it is nonempty. O

Definition 3.5. Let I' be a group and let K = |X| be a simplicial complex with
'K SetI*={yeTl:yz=z}forze€ Kand T4 =, T¥for ACK.
I' ~ K is simplicial if it is satisfied the following;
(1) v: K — K is a simplicial map for each v € T;
2)T?={yeTl:vy0 =0} for each 0 € X.

The proof of the following result is based on the proof of [8, p.286, Theorem
A2
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Lemma 3.6. Let T be a group, let (X, d) be a proper CAT(0) space withT' ~ X,

geo. -

and, let K be a locally finite simplicial complex withT' ~ K such thatI' ~n X

coc.,pro.
is simplicial. Then, for every I'-invariant subcomplez L of K and every proper

I-map f: L = X, there exists a proper I'-map f : K — X such that fle=1Ff.

Proof. Let X be a subdivision of K and let X be the n-skeleton of K. We show
by induction on n that for every proper I'-map f, : L U|X™| — X, there exists
a proper I'-map fn41 : LU |KX™Y| = X such that fasiloxe) = fa-

By assumption, there exists a finite subset Sy of |[X(®| \ L such that 'Sy =
|X©@|\ L, and, Tv N Sy = {v} for each v € Sp. Since T o K, I"={yerl:

yv = v} is a finite subgroup of I for each v € Sp. By Lemma 3.5, X" = {z €
X :yz=zforallyeI"}is nonempty for each v € Sy. Choose ¥ € XT*. Let us
define fy : LU |X©| = X by fo|r = f and f(yv) = 70 for each each v € S and
each y € I. Let v,7 € I' and v,v’ € Sp with yv = v'v/. We show that yv = ~'U.
Since T'v N Sy = {v} for each v € Sy, we have v = v/, thus, y~!4' € I'”. Hence,
v~ 147 = ¥, and finally that v = v'. Therefore, f, is well-defined and a I'-map.
We show that f, is a proper map, i.e., f;'(Z) is compact for each compact set
ZCX.LetTz(v) = {y €T :vfo(v) € Z} for each v € S;. Since I‘prrz X, T'z(v)

is finite. Since f;1(Z) C f~HZ)UlU{yv: v € So,v € Tz(v)}, f5*(Z) is compact.

Let f, : LU|X™| — X be a proper Imap for n > 0. By assumption,
there exists a finite subset Sn41 of K™D \ K™ such that I'U,es,,, into) =
|K™+D|\ (LU |X™)]), and, T'(into) N Uses,.,, @ = into for each o € Sp41, where
O = |J{r : 7 is a proper face of 6} and intoc = o \ 0o. Let 0 € Spy1. Recall
I ={y €T : vz = zforeach z € o}. Since I'* is finite and '’ C I'* for
each z € o, IV is a finite subgroup of I. It is clear that f(dc) c X" = {z €
X : vz = z for all v € ['}. By Proposition 3.4, we have the centre c(f(00)) of
f(80) in X. Since I' ~ X, by Proposition 3.4, we see that c(f(8c)) € X* . Set

180.

- ¢(f(80)) * f(8c) = U{[c(f(d0)),z] : x € f(Do)}. Let c(o) be the barycenter of
o and let foy1, : 0 = c(o) * o — ¢(f(D0)) * f(Oo) C X be the cone on fy|ss-
By Lemma 3.5, X'’ is a convex subset of X, 50 fny10(0) C XT°. Define a map
fay1: LU lx(nﬂ)' — X satisfying fn+1|Lu|CK(n)i = fn by far1(72) = Vfat1,6(2) for
each ¢ € S,;1, each z € into, and, each v € I'. Let 7,7 € T, 0,0’ € Sp41, and,
z € into, 2 € into’ with vz = v'2’. We show that f,.1(v2) = far1(7'Z'). By the
definition of S,.1, we see 0 = o’. Since I' ~ X is simplicial, we have vy~ € T,
hence, z = 2. Since fn11,(c0) C X™, we have v fn11,5(2) = frt1,0(2), hence,
fni1(72) = fos1('2’). Therefore, f,11 is well-defined and a I'-map.

We show that f,; is a proper map, i.e., f;;(Z) is compact for each compact
set ZC X. Let T'z(c) = {y €T : vfo(o) € Z} for each 0 € Sp41. Since I' ~ X,

pro.
I'z(o) is finite. Since fn‘_&l(Z) c fY2)uJ{yw:0 € Snn1,y€T'z(0)}, f;}l(Z)
is compact. O



We show the following lemma, and it directly follows from [12, Proposmon Al
but we give a more direct proof based on the proof of it.

Lemma 3.7. Let T' be a group and for : = 0,1 let (X;,d;) be a proper CAT(O)

space with I' ~ X;. Then there ezists a proper T'-map f : Xo — X

geo.

Proof. By I' ~ Xy, there exist a compact set C of X, such that I'C = X,. By [2,

coc.

- Proposition 1.8.5(1)], for every z € C there exists ¢, > 0 such that every v € L,
vz =z or B(z, ) NyB(z,€;) = 0. (1)

Thus, there exist a finite subset X} = {:1:0, .., x1} of C such that I'V is a locally
finite open cover of Xo and U ¢ |J{U’ € I'V : U # U’} for each U € 'V, where
V= {B(zi,¢;,):1=0,...,l}. . ‘

Let £ be the nerve of I'V, ie., £L©® = U, and, (Uo,...,Ux) € L if and only
fUpN---NUg # 0. Set L = |L|. For every v € T, define a simplicial map
v : L= L by y((Uy,...,Ur) = (vUs,...,vUy) for each (Uy,...,Us) € L. Since
U = yU whenever U NyU # 0, we have '~ L. _

Let v € T and (Uy,...,Us) € £ such that y((Up,...,Ux)) = (Uy,...,Us),

, {Uo, .-, Ug} = {7y, . ..,'yUk} Since N 0U N, Ui # 0, we have
U ﬂ vU; 76 (?) hence, U; = AU, for each i = 0,...,k. Therefore, ' ~ L is

simplicial.
We show that ' ~ L. Let T = {(V,,...,V4) € £ : V; € V for each

coc.

i} such that |T| is a finite subcomplex of L. It suffices to show that L =
L|St(T,L)|, where St(T,L) = {o € £L : o N|T| # B} is the close star of
T in L Let (vVb,. ..,'ka}c) € L such that v; € T and V; 6 V for each
i = k. Since Vo N --- N vV # 0, we haveVoﬂ*yO mvin.---n
Yo %Vk 75 . Since V; € ‘J'(O), we have (Vo, 7% 'mVa,-- ., " Vi) € St(T, L).
Since (7%Vo,- -, %Va) = 10(Vo, % "mVa, -, %5 Vi) € 1SHT,L), we have
{70V, ..., mVk)| € T)St(L,K)|, thus, L = T|St(T,L)|. By the above, we see
that dim L = dim |S#(T, £)| < oc.

We show that ' ~ L. Since £©® = I".T(O) it suffices to show that for any

pro.

VeV {yerTl: ]St(V,L)l N v|St(V,L)| # 0} is finite. This follows that
{y €T : V N~HV'+# B} is finite for each V' € V with ¥/ € " and V N~'V’ £ §.

We construct the canonical map fy: Xo = L. Let z € X. Set {U €TV :z €
U} ={Uy,...,Us}. Define

d([L‘, XO \ Uz)
Z?:O d(.’L‘, XO \ UJ)
Since f3'((Us,...,Ux)) C Uy U---U Uy, we see that fo is a proper map. Since
v : Xo = Xp is an isometry, for every v € I' we have

Ai(7z) = = =
>0z, Xo \U;) Y o d(z, X0\ Uj)

Xi(z) =

and fo(z Z/\ )U; € (U, ..., Up).

= /\i(x),

33
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thus, since v : L — L is a simplicial map,

k k k
fa(yz) = Z )\i(’)’z)W’Ui = Z Ai(x)YUs = v (Z )‘i(x)Ui> = vfo(z),

i=0 1=0

thus, fo is a [-map. ;
By Lemma 3.7, there exists a proper I-map f; : L — X, therefore, we have a
a proper -map f = f; o fo : Xo = X1, which completes the proof. O

Let L be as in the proof of Lemma 3.8. We can think of L as a piecewise
Euclidean complex, a locally finite simplicial complex with the intrinsic pseudo-
metric p (see [2, pp.98-99]) such that a length of every 1-simplex in £ is one. Since
Shape(L) is finite (see [2, p.98]), (L, p) is a complete geodesic space ([2, Theorem
I.7.19, p.105]). In particular, by the construction of (L, p), v : (L,p) = (L, p) is
an isometry for each v € T, i.e., ' ~ L.

The proof of Proposition 1.3. By Lemma 3.8, for ¢ = 0,1 there exist proper I'-
maps f : Xo — X; and g : X; = Xo. By Remark 2.2, Proposition 2.3 and
Lemma 3.1, f and g satisfy the conditions in Proposition 1.3, which completes
the proof. O

4. QUESTIONS

Question 4.1. Let T be a group, let (X;i,d) be a proper CAT(0) space with ' ~
‘ geo

X;, and let f : Xo — X1 be a proper-I'-map. Does there exist an ANR propev;
metric space Z withT' ~ Z and proper cell-like T-maps a : Z = Xy, o/ : Z — X3

geo.
such that f o a is proper I'-homotopic to o' ?, i.e., is f : Xo — X, a simple I'-
homotopy equivalence? '

Question 4.2. Let ' be a group and let (X,d) be a proper CAT(0) space with
I' ~ X. If there ezists a compact ANR metric space Z which is shape (I'-

geo.

)equivalent to 0X, is 0X ANR?

Question 4.3. Let T be a group and let (X;,d) be a proper CAT(0) space with
I' ~ X; such that 0X; is ANR fori=0,1.

geo. -
(1) Does there exists a T'-homotopy equivalence map from 0Xo and 8X, %
(2) Are 80X, and 0X; simple homotopy equivalent?
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