REMARKS ON BOUNDARIES OF CAT(0) SPACES FROM SHAPE THEORY 知念 直紹 (NAOTSUGU CHINEN) 防衛大学校 (NATIONAL DEFENSE ACADEMY OF JAPAN) #### 1. Introduction and preliminaries In this paper, we follow notations and terminologies of [2]. A metric space (X,d) is said to be *proper* if all closed, bounded sets in (X,d) are compact. A metric space (X,d) is said to be a *geodesic space* if for any $x,y\in X$, there exists an isometric embedding $\xi:[0,d(x,y)]\to X$ such that $\xi(0)=x$ and $\xi(d(x,y))=y$ (such a ξ is called a *geodesic*). Let (X,d) be a geodesic space and let T be a geodesic triangle in X. A *comparison triangle* for T is a geodesic triangle \overline{T} in the Euclidean plane \mathbb{R}^2 with same edge lengths as T. Choose two points x and y in T. Let \overline{x} and \overline{y} denote the corresponding points in \overline{T} . Then the inequality $$d(x,y) \le d_{\mathbb{R}^2}(\bar{x},\bar{y})$$ is called the CAT(0)-inequality, where $d_{\mathbb{R}^2}$ is the usual metric on \mathbb{R}^2 . A geodesic space X is called a CAT(0) space if the CAT(0)-inequality holds for all geodesic triangles T and for all choices of two points x and y in T. See for details of CAT(0) spaces in [2, p.158]. Let (X,d) be a proper CAT(0) space. Fix $x_0 \in X$. Set $\overline{B}(x_0,r) = \{x \in X : d(x_0,x) \leq r\}$ and $S(x_0,r) = \{x \in X : d(x_0,x) = r\}$. Denote the geodesic segment from x and x' in X by [x,x']. There exists the projection $p_r: X \to \overline{B}(x_0,r)$ such that $p_r|_{\overline{B}(x_0,r)} = id$ and $p_r(x) = x'$ if $x \notin \overline{B}(x_0,r)$, where $\{x'\} = S(x_0,r) \cap [x_0,x]$. Let $\overline{X} = \varprojlim(\overline{B}(x_0,n),p_n|_{\overline{B}(x_0,n+1)})$ and $\partial X = \varprojlim(S(x_0,n),r_n)$, said to be the boundary of X where $r_n = p_n|_{S(x_0,n+1)} : S(x_0,n+1) \to S(x_0,n)$ for each $n \in \mathbb{N}$. It is clear that $\overline{X} = X \cup \partial X$ is a compactification of X with a reminder ∂X which is AR (see [12, Lemma 1.1]). It is known that the boundary ∂X of X is independent on the choice of $x_0 \in X$. See for details in [2, pp.263-265]. **Definition 1.1** ([4]). Let X and Y be ANR proper metric spaces. A homotopy equivalence $f: X \to Y$ is said to be a *simple homotopy equivalence* if there exist an ANR proper metric space Z and proper cell-like maps $\alpha: Z \to X$, $\alpha': Z \to Y$ such that $f \circ \alpha$ is proper homotopic to α' , written $f \circ \alpha \simeq_p \alpha'$. Let (X_i, d_i) be a proper CAT(0) space for i = 0, 1. First, we show that there exists a simple homotopy equivalence from X_0 to X_1 if and only if ∂X_0 and ∂X_1 are shape equivalent (see Proposition 2.3 below). **Definition 1.2.** An action of a group Γ on a space X, written $\Gamma \curvearrowright X$, is a homomorphism from Γ to the group of self-homeomorphism of X. A group Γ is said to act geometrically on a metric space (X, d), written $\Gamma \curvearrowright X$, if $\Gamma \curvearrowright X$ satisfies the following: - (1) (isometry) We have $d(x, x') = d(\gamma x, \gamma x')$ for any $x, x' \in X$ and each $\gamma \in \Gamma$, written $\Gamma \underset{iso}{\curvearrowright} X$; - (2) (cocompact) There exists a compact subset C of X such that $X = \bigcup_{\gamma \in \Gamma} \gamma C$, written $\Gamma \curvearrowright X$; - (3) (proper) For every $x \in X$ there exists $\epsilon > 0$ such that $\{\gamma \in \Gamma : \overline{B}(x, \epsilon) \cap \gamma \overline{B}(x, \epsilon) \neq \emptyset\}$ is finite, written $\Gamma \underset{pro}{\sim} X$. Let Γ be a group and let X and Y be spaces with $\Gamma \curvearrowright X$ and $\Gamma \curvearrowright Y$. A map $f: X \to Y$ is said to be Γ -map if $f(\gamma x) = \gamma f(x)$ for each $x \in X$ and each $\gamma \in \Gamma$. Two maps $f_0: X \to Y$ and $f_1: X \to Y$ is said to be Γ -homotopic if there exists a Γ -map $H: X \times [0,1] \to Y$ which is a homotopy from f_0 to f_1 . Gromov [10, Chapter 6] asks whether the visual boundary ∂X_0 of X_0 is Γ -equivariantly homeomorphic to the visual boundary ∂X_1 of X_1 whenever a group Γ acts geometrically on a CAT(0) space X_i . Recall that Γ acts on ∂X_i (see Remark 2.1 below). But, in general, C. B. Croke and B. Kleiner [7] showed that ∂X_0 is not homeomorphic to ∂X_1 . By use of a polyhedral resolution of boundaries, P. Ontaneda [12] proved that there exists a proper Γ -homotopy equivalence map $f: X_0 \to X_1$ and ∂X_0 and ∂X_1 are shape equivalent. Then, the map f induces a shape isomorphism f from ∂X_0 to ∂X_1 and every f induces a shape isomorphism f from f induces a shape isomorphism f from f induces a shape isomorphism f from f induces a compact that f induces a shape isomorphism f from is f induces induces in f induces in f induces i **Proposition 1.3.** Let Γ be a group and for i=0,1 let (X_i,d_i) be a proper CAT(0) space with $\Gamma \underset{geo.}{\curvearrowright} X_i$. Then there exists a Γ -homotopy equivalence $f:X_0 \to X_1$ with a proper Γ -homotopy inverse $g:X_1 \to X_0$ such that f is a simple homotopy equivalence, $f|_{X_0^G}:X_0^G \to X_1^G$ is a proper homotopy equivalence with a proper homotopy inverse $g|_{X_1^G}:X_1^G \to X_0^G$ for each subgroup G of Γ , and, $\mathbf{f}\gamma_{X_0} = \gamma_{X_1}\mathbf{f}$ for each $\gamma \in \Gamma$. Here, $X^G = \{x \in X : \gamma x = x \text{ for all } \gamma \in G\}$ for a subgroup G of Γ . ### 2. Shape equivalences Remark 2.1. Let (X,d) be a proper CAT(0) space. Let Γ be a group with $\Gamma \underset{iso.}{\curvearrowright} X$. Since $\gamma: X \to X: x \mapsto \gamma x$ is an isometry for each $\gamma \in \Gamma$, there exists the extension $\overline{\gamma}: \overline{X} \to \overline{X}$ of γ which is a homeomorphism (see [2, Corollary 8.9]). Thus, we have a homeomorphism $\gamma = \overline{\gamma}|_{\partial X}: \partial X \to \partial X$ for each $\gamma \in \Gamma$. Fix $x_0 \in X$. The map γ induces a shape morphism $\gamma_X = (\gamma_{X,n},\phi): (S(x_0,n),r_n) \to (S(x_0,n),r_n)$ such that $\overline{\gamma}(X_{\phi(n)}) \subset X_n$ for each $n \in \mathbb{N}$ and $\gamma(\overline{x}) = \lim_{n \to \infty} \gamma_{X,n}(\overline{p}_{\phi(n)}(\overline{x}))$ for each $\overline{x} \in \partial X$, where $X_n = \{x \in X: d(x_0,x) \geq n\}, \ \gamma_{X,n} = p_n \circ \overline{\gamma}|_{S(x_0,\phi(n))}: S(x_0,\phi(n)) \to S(x_0,n) \text{ and } \overline{p}_n: \overline{X} \to \overline{B}(x_0,n) \text{ is the extension of } p_n \text{ for each } n \in \mathbb{N}.$ See [11]. Remark 2.2. Let (X_i, d_i) be a proper CAT(0) space. Fix $x_i \in X_i$ for i = 0, 1. By Remark 2.1, we have $\partial X_i = \varprojlim(S(x_i, n), r_{i,n})$, where $r_{i,n} = p_{i,n}|_{S(x_i, n+1)} : S(x_i, n+1) \to S(x_i, n)$ for each $n \in \mathbb{N}$. By [1], we have that ∂X_0 and ∂X_1 are shape equivalent if and only if there exist two functions $\psi, \psi' : \mathbb{N} \to \mathbb{N}$, maps $f_n : S(x_0, \psi^n(1)) \to S(x_0, \psi'^n(1))$, and, $g_n : S(x_0, \psi'^{n+1}(1)) \to S(x_0, \psi^n(1))$ satisfying the following homotopy commutative diagram: $$S(x_0, \psi(1)) \xleftarrow{\pi_1} S(x_0, \psi^2(1)) \xleftarrow{\pi_2} S(x_0, \psi^3(1)) \xleftarrow{\pi_3} \cdots$$ $$f_0 \downarrow \qquad \qquad \downarrow f_1 \qquad \qquad \downarrow f_2 \qquad \qquad \downarrow f_2 \qquad \qquad \cdots$$ $$S(x_1, \psi'(1)) \xleftarrow{\pi'_1} S(x_1, \psi'^2(1)) \xleftarrow{\pi'_2} S(x_1, \psi'^3(1)) \xleftarrow{\pi'_3} \cdots,$$ where $\pi_k = r_{0,\psi^k(1)} \circ \cdots \circ r_{0,\psi^{k+1}(1)-1}$ and $\pi'_k = r_{1,\psi'^k(1)} \circ \cdots \circ r_{1,\psi'^{k+1}(1)-1}$. Let $f: X_0 \to X_1$ be a proper homotopy equivalence with a proper homotopy inverse $g: X_1 \to X_0$. Then it is easy to construct shape morphisms $\mathbf{f} = (f_n, \psi): (S(x_0, \psi^n(1)), r_{0,n}, \mathbb{N}) \to (S(x_0, \psi'^n(1)), r_{1,n}, \mathbb{N})$ and $\mathbf{g} = (g_n, \psi'): (S(x_0, \psi'^n(1)), r_{1,n}, \mathbb{N}) \to (S(x_0, \psi^n(1)), r_{0,n}, \mathbb{N})$, induced by f and g, respectively which satisfy the above. In particular, if $f: X_0 \to X_1$ is a proper Γ -map, $\mathbf{f} \gamma_{X_0} = \gamma_{X_1} \mathbf{f}$ for each $\gamma \in \Gamma$. Let Q be the Hilbert cube, i.e., $[-1,1]^{\infty}$. **Proposition 2.3.** Let (X_i, d_i) be a proper CAT(0) space for i = 0, 1. The following are equivalent: - (1) There exists a proper homotopy equivalence map $f: X_0 \to X_1$; - (2) ∂X_0 and ∂X_1 are shape equivalent; - (3) $X_0 \times Q$ and $X_1 \times Q$ are homeomorphic; - (4) There exists a simple homotopy equivalence map $f': X_0 \to X_1$. In particular, every proper homotopy equivalence map from X_0 to X_1 is a simple homotopy equivalence. *Proof.* Let $incl_i: X_i = X_i \times \{0\} \hookrightarrow X_i \times Q$ be the inclusion and let $\alpha_i: X_i \times Q \to X_i$ be the projection. - $(1) \Longrightarrow (2)$: See Remark 2.2. - (3) \Longrightarrow (1): Let $h: X_0 \times Q \to X_1 \times Q$ be a homeomorphism. Thus, we have two proper maps $f = \alpha_2 \circ h \circ incl_1: X_0 \to X_1$ and $g = \alpha_1 \circ h^{-1} \circ incl_2: X_1 \to X_0$ such that $g \circ f$ is proper homotopic to the identity map id_{X_0} and $f \circ g$ is proper homotopic to the identity map id_{X_1} . - (2) \Longrightarrow (3): Let $\overline{X_i} = X \cup \partial X_i$ which is AR for i = 0, 1. By [4], $\overline{X_i} \times Q$ is homeomorphic to Q. Since $\partial X_i \times Q$ is a Z-set in $\overline{X_i} \times Q$ for i = 0, 1, by [4, Theorem 25.2], $X_0 \times Q$ is homeomorphic to $X_1 \times Q$. - (1) \iff (4): It suffices to show (1) \implies (4). Let f be a proper homotopy equivalence. By [6, Theorem 7], there exists a homeomorphism $h: X_0 \times Q \to X_1 \times Q$ which is proper homotopic to $f \times \mathrm{id}_Q: X_0 \times Q \to X_1 \times Q$. Let $\alpha_i: X_i \times Q \to X_i$ be the projection for i = 0, 1. By a proper homotopy commutative diagram $$X_{0} \times Q \xrightarrow{h} X_{1} \times Q$$ $$\downarrow_{\mathrm{id}_{X_{0} \times Q}} \qquad \qquad \downarrow_{\mathrm{id}_{X_{1} \times Q}}$$ $$X_{0} \times Q \xrightarrow{f \times \mathrm{id}_{Q}} X_{1} \times Q$$ $$\downarrow_{\alpha_{0}} \qquad \qquad \downarrow_{\alpha_{1}}$$ $$X_{0} \xrightarrow{f} X_{0}$$ we have $f \circ \alpha_0 \simeq_p \alpha_1 \circ h$, thus f is a simple homotopy equivalence. **Example 2.4.** For i = 0, 1 let Z_i be a continuum such that Z_0 and Z_1 are shape equivalent. By [3] or [9], for i = 0, 1 there exists a proper CAT(0) space (X_i, d_i) such that ∂X_i is homeomorphic to Z_i . By Proposition 2.3, X_0 and X_1 are simple homotopy equivalent. #### 3. The existence of proper map Let Γ be a group and for i = 0, 1 let (X_i, d_i) be a proper CAT(0) space with $\Gamma \underset{geo.}{\curvearrowright} X_i$. In [12, Theorem C], it was proved that there exists a proper Γ -homotopy equivalence $f: X_0 \to X_1$. But, in this section we give a more direct proof by no use of a polyhedral resolution of boundaries. **Lemma 3.1.** Let Γ be a group, let (X,d) be a proper CAT(0) space with $\Gamma \underset{geo.}{\frown} X$, and, let $f: X \to X$ be a proper Γ -map. Then there exists a proper Γ -homotopy $H: X \times [0,1] \to X$ from f to the identity map id_X . In particular, for every subgroup G of Γ , $H|_{X^G}: X^G \times [0,1] \to X^G$ is a proper homotopy from $f|_{X^G}: X^G \to X^G$ to the identity map id_{X^G} . Sketch of proof. Since $\Gamma \curvearrowright X$ and f is a Γ -map, there exists r > 0 such that $d(f, \mathrm{id}_X) < r$. For every $x \in X$ Let $c_x : [0, d(f(x), x)] \to X$ be a geodesic connecting from f(x) to x. Define $H: X \times [0, 1] \to X$ by $H(x, t) = c_x(td(f(x), x))$ for each $x \in X$ and each $t \in [0, 1]$. It is clear that H is a proper homotopy from f to id_X . In particular, if $f: X \to X$ is a Γ -map, so is H. **Definition 3.2.** [2, p. 179] Let (X, d) be a metric space, let Y be a bounded set of X and let Z be a closed subset of X. The radius of Y at Z, is defined by $$r_Z(Y) = \inf\{r > 0 : x \in Z, Y \subset \overline{B}(x, r)\}.$$ For simplicity of notation, if X = Z, we write r(Y) instead of $r_X(Y)$. **Proposition 3.3.** [2, Proposition II 2.7] Let (X, d) be a complete CAT(0) space, let Y be a bounded set of X and let Z be a closed convex subset of X. Then there exists a unique point $c_Z(Y) \in Z$, called the centre of Y at Z, such that $Y \subset \overline{B}(c_Z(Y), r_Z(Y))$. Sketch of proof. There exist a sequence $\{z_n\}_{n\in\mathbb{N}}$ of Z and $\{r_n\}_{n\in\mathbb{N}}$ of \mathbb{R}_+ such that $r_Z(Y)=\lim_{n\to\infty}r_n$ and $Y\subset\overline{B}(z_n,r_n)$ for all $n\in\mathbb{N}$. We can show that for every $\epsilon>0$ there exist R,R'>0 with $R>r_Z(Y)>R'>0$ such that diam $[z_n,z_{n'}]<2\epsilon$ for any $n,n'\in\mathbb{N}$ with $r_n,r_{n'}< R$. This shows that $\{z_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence, so $c_Z(Y)=\lim_{n\to\infty}z_n$, and establishes the uniqueness of $c_Z(Y)$. **Lemma 3.4.** Let Γ be a group and let (X,d) be a complete CAT(0) space with $\Gamma \underset{iso.}{\curvearrowright} X$. Then $X^G = \{x \in X : \gamma x = x \text{ for all } \gamma \in G\}$ is a convex set for each subgroup G of Γ . In particular, X^G is a nonempty convex set for each finite subgroup G of Γ . Sketch of proof. Fix $x, x' \in X^G$. Let $\xi : [0, d(x, x')] \to X$ be a geodesic from x to x'. Since $\xi(2^{-1}d(x, x')) \in X^G$, we have $\{\xi(2^{-n}kd(x, x')) : n, k \in \mathbb{N}, 0 \le k \le 2^n\} \subset X^G$, thus, $\xi([0, d(x, x')]) \subset X^G$. Let G be a finite subgroup of Γ and fix $x_0 \in X$. By Proposition 3.4, $c(Gx_0) \in X^G$, thus it is nonempty. **Definition 3.5.** Let Γ be a group and let $K = |\mathcal{K}|$ be a simplicial complex with $\Gamma \curvearrowright K$. Set $\Gamma^x = \{ \gamma \in \Gamma : \gamma x = x \}$ for $x \in K$ and $\Gamma^A = \bigcap_{y \in A} \Gamma^y$ for $A \subset K$. $\Gamma \curvearrowright K$ is *simplicial* if it is satisfied the following; - (1) $\gamma: K \to K$ is a simplicial map for each $\gamma \in \Gamma$; - (2) $\Gamma^{\sigma} = \{ \gamma \in \Gamma : \gamma \sigma = \sigma \}$ for each $\sigma \in \mathcal{K}$. The proof of the following result is based on the proof of [8, p.286, Theorem A.2]. **Lemma 3.6.** Let Γ be a group, let (X,d) be a proper CAT(0) space with $\Gamma \underset{geo.}{\curvearrowright} X$, and, let K be a locally finite simplicial complex with $\Gamma \underset{coc.,pro.}{\curvearrowright} K$ such that $\Gamma \curvearrowright X$ is simplicial. Then, for every Γ -invariant subcomplex L of K and every proper Γ -map $f: L \to X$, there exists a proper Γ -map $\widetilde{f}: K \to X$ such that $\widetilde{f}|_{L} = f$. *Proof.* Let \mathcal{K} be a subdivision of K and let $\mathcal{K}^{(n)}$ be the n-skeleton of \mathcal{K} . We show by induction on n that for every proper Γ -map $f_n: L \cup |\mathcal{K}^{(n)}| \to X$, there exists a proper Γ -map $f_{n+1}: L \cup |\mathcal{K}^{(n+1)}| \to X$ such that $f_{n+1}|_{L \cup |\mathcal{K}^{(n)}|} = f_n$. By assumption, there exists a finite subset S_0 of $|\mathcal{K}^{(0)}| \setminus L$ such that $\Gamma S_0 =$ $\gamma v = v$ is a finite subgroup of Γ for each $v \in S_0$. By Lemma 3.5, $X^{\Gamma^v} = \{x \in S_0 : x x$ $X: \gamma x = x$ for all $\gamma \in \Gamma^v$ is nonempty for each $v \in S_0$. Choose $\widetilde{v} \in X^{\Gamma^v}$. Let us define $f_0: L \cup |\mathcal{K}^{(0)}| \to X$ by $f_0|_L = f$ and $f(\gamma v) = \gamma \widetilde{v}$ for each each $v \in S_0$ and each $\gamma \in \Gamma$. Let $\gamma, \gamma' \in \Gamma$ and $v, v' \in S_0$ with $\gamma v = \gamma' v'$. We show that $\gamma \tilde{v} = \gamma' \tilde{v'}$. Since $\Gamma v \cap S_0 = \{v\}$ for each $v \in S_0$, we have v = v', thus, $\gamma^{-1}\gamma' \in \Gamma^v$. Hence, $\gamma^{-1}\gamma'\widetilde{v}=\widetilde{v}$, and finally that $\gamma\widetilde{v}=\gamma'\widetilde{v'}$. Therefore, f_0 is well-defined and a Γ -map. We show that f_0 is a proper map, i.e., $f_0^{-1}(Z)$ is compact for each compact set $Z \subset X$. Let $\Gamma_Z(v) = \{ \gamma \in \Gamma : \gamma f_0(v) \in Z \}$ for each $v \in S_0$. Since $\Gamma \curvearrowright_{pro} X$, $\Gamma_Z(v)$ is finite. Since $f_0^{-1}(Z) \subset f^{-1}(Z) \cup \bigcup \{\gamma v : v \in S_0, \gamma \in \Gamma_Z(v)\}, f_0^{-1}(Z)$ is compact. Let $f_n: L \cup |\mathcal{K}^{(n)}| \to X$ be a proper Γ -map for $n \geq 0$. By assumption, there exists a finite subset S_{n+1} of $\mathcal{K}^{(n+1)} \setminus \mathcal{K}^{(n)}$ such that $\Gamma(\bigcup_{\sigma \in S_{n+1}} \operatorname{int} \sigma) =$ $|\mathcal{K}^{(n+1)}| \setminus (L \cup |\mathcal{K}^{(n)}|)$, and, $\Gamma(\operatorname{int}\sigma) \cap \bigcup_{\sigma \in S_{n+1}} \sigma = \operatorname{int}\sigma$ for each $\sigma \in S_{n+1}$, where $\partial \sigma = \bigcup \{\tau : \tau \text{ is a proper face of } \sigma\}$ and $\operatorname{int} \sigma = \sigma \setminus \partial \sigma$. Let $\sigma \in S_{n+1}$. Recall $\Gamma^{\sigma} = \{ \gamma \in \Gamma : \gamma z = z \text{ for each } z \in \sigma \}$. Since Γ^{z} is finite and $\Gamma^{\sigma} \subset \Gamma^{z}$ for each $z \in \sigma$, Γ^{σ} is a finite subgroup of Γ . It is clear that $f(\partial \sigma) \subset X^{\Gamma^{\sigma}} = \{x \in \sigma\}$ $X: \gamma x = x$ for all $\gamma \in \Gamma^{\sigma}$. By Proposition 3.4, we have the centre $c(f(\partial \sigma))$ of $f(\partial \sigma)$ in X. Since $\Gamma \subset X$, by Proposition 3.4, we see that $c(f(\partial \sigma)) \in X^{\Gamma^{\sigma}}$. Set $c(f(\partial \sigma)) * f(\partial \sigma) = \bigcup \{ [c(f(\partial \sigma)), x] : x \in f(\partial \sigma) \}.$ Let $c(\sigma)$ be the barycenter of σ and let $f_{n+1,\sigma}: \sigma = c(\sigma) * \partial \sigma \to c(f(\partial \sigma)) * f(\partial \sigma) \subset X$ be the cone on $f_n|_{\partial \sigma}$. By Lemma 3.5, $X^{\Gamma^{\sigma}}$ is a convex subset of X, so $f_{n+1,\sigma}(\sigma) \subset X^{\Gamma^{\sigma}}$. Define a map $f_{n+1}: L \cup |\mathcal{K}^{(n+1)}| \to X$ satisfying $f_{n+1}|_{L \cup |\mathcal{K}^{(n)}|} = f_n$ by $f_{n+1}(\gamma z) = \gamma f_{n+1,\sigma}(z)$ for each $\sigma \in S_{n+1}$, each $z \in \text{int}\sigma$, and, each $\gamma \in \Gamma$. Let $\gamma, \gamma' \in \Gamma$, $\sigma, \sigma' \in S_{n+1}$, and, $z \in \text{int}\sigma, z' \in \text{int}\sigma'$ with $\gamma z = \gamma' z'$. We show that $f_{n+1}(\gamma z) = f_{n+1}(\gamma' z')$. By the definition of S_{n+1} , we see $\sigma = \sigma'$. Since $\Gamma \curvearrowright X$ is simplicial, we have $\gamma^{-1}\gamma' \in \Gamma^{\sigma}$, hence, z=z'. Since $f_{n+1,\sigma}(\sigma)\subset X^{\Gamma^{\sigma}}$, we have $\gamma^{-1}\gamma'f_{n+1,\sigma}(z)=f_{n+1,\sigma}(z)$, hence, $f_{n+1}(\gamma z) = f_{n+1}(\gamma' z')$. Therefore, f_{n+1} is well-defined and a Γ -map. We show that f_{n+1} is a proper map, i.e., $f_{n+1}^{-1}(Z)$ is compact for each compact set $Z \subset X$. Let $\Gamma_Z(\sigma) = \{ \gamma \in \Gamma : \gamma f_0(\sigma) \in Z \}$ for each $\sigma \in S_{n+1}$. Since $\Gamma \underset{pro}{\curvearrowright} X$, $\Gamma_Z(\sigma)$ is finite. Since $f_{n+1}^{-1}(Z) \subset f^{-1}(Z) \cup \bigcup \{ \gamma v : \sigma \in S_{n+1}, \gamma \in \Gamma_Z(\sigma) \}, f_{n+1}^{-1}(Z)$ is compact. \square We show the following lemma, and it directly follows from [12, Proposition A], but we give a more direct proof based on the proof of it. **Lemma 3.7.** Let Γ be a group and for i=0,1 let (X_i,d_i) be a proper CAT(0) space with $\Gamma \underset{geo.}{\curvearrowright} X_i$. Then there exists a proper Γ -map $f: X_0 \to X_1$ *Proof.* By $\Gamma \curvearrowright_{coc} X_0$, there exist a compact set C of X_0 such that $\Gamma C = X_0$. By [2, Proposition I.8.5(1)], for every $x \in C$ there exists $\epsilon_x > 0$ such that every $\gamma \in \Gamma$, $$\gamma x = x \text{ or } \overline{B}(x, \epsilon_x) \cap \gamma \overline{B}(x, \epsilon_x) = \emptyset.$$ (1) Thus, there exist a finite subset $X_0' = \{x_0, \ldots, x_l\}$ of C such that $\Gamma \mathcal{V}$ is a locally finite open cover of X_0 and $U \not\subset \bigcup \{U' \in \Gamma \mathcal{V} : U \neq U'\}$ for each $U \in \Gamma \mathcal{V}$, where $\mathcal{V} = \{B(x_i, \epsilon_{x_i}) : i = 0, \ldots, l\}$. Let \mathcal{L} be the nerve of $\Gamma \mathcal{V}$, i.e., $\mathcal{L}^{(0)} = \mathcal{U}$, and, $\langle U_0, \ldots, U_k \rangle \in \mathcal{L}$ if and only if $U_0 \cap \cdots \cap U_k \neq \emptyset$. Set $L = |\mathcal{L}|$. For every $\gamma \in \Gamma$, define a simplicial map $\gamma : L \to L$ by $\gamma(\langle U_0, \ldots, U_k \rangle) = \langle \gamma U_0, \ldots, \gamma U_k \rangle$ for each $\langle U_0, \ldots, U_k \rangle \in \mathcal{L}$. Since $U = \gamma U$ whenever $U \cap \gamma U \neq \emptyset$, we have $\Gamma \curvearrowright L$. Let $\gamma \in \Gamma$ and $\langle U_0, \dots, U_k \rangle \in \mathcal{L}$ such that $\gamma(\langle U_0, \dots, U_k \rangle) = \langle U_0, \dots, U_k \rangle$, i.e., $\{U_0, \dots, U_k\} = \{\gamma U_0, \dots, \gamma U_k\}$. Since $\bigcap_{i=0}^k U_i = \bigcap_{i=0}^k \gamma U_i \neq \emptyset$, we have $U_i \cap \gamma U_i \neq \emptyset$, hence, $U_i = \gamma U_i$ for each $i = 0, \dots, k$. Therefore, $\Gamma \curvearrowright L$ is simplicial. We show that $\Gamma \curvearrowright_{coc} L$. Let $\mathfrak{T} = \{\langle V_0, \dots, V_k \rangle \in \mathcal{L} : V_i \in \mathcal{V} \text{ for each } i\}$ such that $|\mathfrak{T}|$ is a finite subcomplex of L. It suffices to show that $L = \Gamma |St(\mathfrak{T},\mathcal{L})|$, where $St(\mathfrak{T},\mathcal{L}) = \{\sigma \in \mathcal{L} : \sigma \cap |\mathfrak{T}| \neq \emptyset\}$ is the close star of \mathfrak{T} in \mathcal{L} . Let $\langle \gamma_0 V_0, \dots, \gamma_k V_k \rangle \in \mathcal{L}$ such that $\gamma_i \in \Gamma$ and $V_i \in \mathcal{V}$ for each $i = 0, \dots, k$. Since $\gamma_0 V_0 \cap \dots \cap \gamma_k V_k \neq \emptyset$, we have $V_0 \cap \gamma_0^{-1} \gamma_1 V_1 \cap \dots \cap \gamma_0^{-1} \gamma_k V_k \neq \emptyset$. Since $V_0 \in \mathfrak{T}^{(0)}$, we have $\langle V_0, \gamma_0^{-1} \gamma_1 V_1, \dots, \gamma_0^{-1} \gamma_k V_k \rangle \in St(\mathfrak{T}, \mathcal{L})$. Since $\langle \gamma_0 V_0, \dots, \gamma_k V_k \rangle = \gamma_0 \langle V_0, \gamma_0^{-1} \gamma_1 V_1, \dots, \gamma_0^{-1} \gamma_k V_k \rangle \in \gamma_0 St(\mathfrak{T}, \mathcal{L})$, we have $|\langle \gamma_0 V_0, \dots, \gamma_k V_k \rangle| \in \Gamma |St(\mathcal{L}, \mathfrak{K})|$, thus, $L = \Gamma |St(\mathfrak{T}, \mathcal{L})|$. By the above, we see that $\dim L = \dim |St(\mathfrak{T}, \mathcal{L})| < \infty$. We show that $\Gamma \curvearrowright L$. Since $\mathcal{L}^{(0)} = \Gamma \mathcal{T}^{(0)}$, it suffices to show that for any $V \in \mathcal{V}$, $\{\gamma \in \Gamma : |St(V,\mathcal{L})| \cap \gamma |St(V,\mathcal{L})| \neq \emptyset\}$ is finite. This follows that $\{\gamma \in \Gamma : V \cap \gamma V' \neq \emptyset\}$ is finite for each $V' \in \mathcal{V}$ with $\gamma' \in \Gamma$ and $V \cap \gamma' V' \neq \emptyset$. We construct the canonical map $f_0: X_0 \to L$. Let $x \in X_0$. Set $\{U \in \Gamma \mathcal{V} : x \in U\} = \{U_0, \dots, U_k\}$. Define $$\lambda_i(x) = \frac{d(x, X_0 \setminus U_i)}{\sum_{j=0}^k d(x, X_0 \setminus U_j)} \text{ and } f_0(x) = \sum_{i=0}^k \lambda_i(x) U_i \in \langle U_0, \dots, U_k \rangle.$$ Since $f_0^{-1}(\langle U_0, \dots, U_k \rangle) \subset U_0 \cup \dots \cup U_k$, we see that f_0 is a proper map. Since $\gamma: X_0 \to X_0$ is an isometry, for every $\gamma \in \Gamma$ we have $$\lambda_i(\gamma x) = \frac{d(\gamma x, X_0 \setminus \gamma U_i)}{\sum_{j=0}^k d(\gamma x, X_0 \setminus \gamma U_j)} = \frac{d(x, X_0 \setminus U_i)}{\sum_{j=0}^k d(x, X_0 \setminus U_j)} = \lambda_i(x),$$ thus, since $\gamma: L \to L$ is a simplicial map, $$f_0(\gamma x) = \sum_{i=0}^k \lambda_i(\gamma x) \gamma U_i = \sum_{i=0}^k \lambda_i(x) \gamma U_i = \gamma \left(\sum_{i=0}^k \lambda_i(x) U_i \right) = \gamma f_0(x),$$ thus, f_0 is a Γ -map. By Lemma 3.7, there exists a proper Γ -map $f_1: L \to X_1$, therefore, we have a a proper Γ -map $f = f_1 \circ f_0: X_0 \to X_1$, which completes the proof. Let L be as in the proof of Lemma 3.8. We can think of L as a piecewise Euclidean complex, a locally finite simplicial complex with the intrinsic pseudometric ρ (see [2, pp.98-99]) such that a length of every 1-simplex in $\mathcal L$ is one. Since Shape(L) is finite (see [2, p.98]), (L, ρ) is a complete geodesic space ([2, Theorem I .7.19, p.105]). In particular, by the construction of (L, ρ) , $\gamma:(L, \rho) \to (L, \rho)$ is an isometry for each $\gamma \in \Gamma$, i.e., $\Gamma \curvearrowright L$. The proof of Proposition 1.3. By Lemma 3.8, for i = 0, 1 there exist proper Γ -maps $f: X_0 \to X_1$ and $g: X_1 \to X_0$. By Remark 2.2, Proposition 2.3 and Lemma 3.1, f and g satisfy the conditions in Proposition 1.3, which completes the proof. ## 4. Questions Question 4.1. Let Γ be a group, let (X_i, d) be a proper CAT(0) space with $\Gamma \underset{geo.}{\curvearrowright} X_i$, and let $f: X_0 \to X_1$ be a proper Γ -map. Does there exist an ANR proper metric space Z with $\Gamma \underset{geo.}{\curvearrowright} Z$ and proper cell-like Γ -maps $\alpha: Z \to X_0$, $\alpha': Z \to X_1$ such that $f \circ \alpha$ is proper Γ -homotopic to α' ?, i.e., is $f: X_0 \to X_1$ a simple Γ -homotopy equivalence? Question 4.2. Let Γ be a group and let (X,d) be a proper CAT(0) space with $\Gamma \curvearrowright X$. If there exists a compact ANR metric space Z which is shape $(\Gamma$) equivalent to ∂X , is ∂X ANR? Question 4.3. Let Γ be a group and let (X_i, d) be a proper CAT(0) space with $\Gamma \underset{geo.}{\sim} X_i$ such that ∂X_i is ANR for i = 0, 1. - (1) Does there exists a Γ -homotopy equivalence map from ∂X_0 and ∂X_1 ? - (2) Are ∂X_0 and ∂X_1 simple homotopy equivalent? #### REFERENCES - [1] K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), 223-254. - [2] M. R. Bridson and A. Haefliger, *Metric spaces of non-positive curvature*, Springer-Verlag, Berlin, 1999. - [3] S. Buyalo and V. Schroeder, *Elements of asymptotic geometry*, EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich, 2007. - [4] T. A. Chapman, Lectures on Hilbert cube manifolds, Regional Conference Series in Mathematics, No. 28. American Mathematical Society, Providence, R. I., 1976. - [5] T. A. Chapman, Simple homotopy theory for ANR's, General Topology and Appl. 7 (1977), no. 2, 165–174. - [6] T. A. Chapman and L. C. Siebenmann, Finding a boundary for a Hilbert cube manifold, Acta Math. 137 (1976), no. 3-4, 171–208. - [7] C. B. Croke and B. Kleiner, Spaces with nonpositive curvature and their ideal boundaries, Topology 39 (2000), no. 3, 549–556. - [8] F. T. Farrell and L. E. Jones, *Isomorphism conjectures in algebraic K-theory*, J. Amer. Math. Soc. 6 (1993), no. 2, 249–297 - [9] R. Geoghegan and P. Ontaneda, Boundaries of cocompact proper CAT(0) spaces, Topology 46 (2007), no. 2, 129–137 - [10] M. Gromov, Asymptotic invariants for infinite groups, Geometric Group Theory (G.A. Niblo and M.A. Roller, eds.), LMS Lecture Notes, vol. 182, Cambridge University Press, Cambridge, 1993, pp.1–295. - [11] S. Mardešić and J. Segal, Shape theory. The inverse system approach, North-Holland Mathematical Library, 26. North-Holland Publishing Co., Amsterdam-New York, 1982. - [12] P. Ontaneda, Cocompact CAT(0) spaces are almost geodesically complete, Topology 44 (2005), no. 1, 47–62. - [13] C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69. Springer-Verlag, New York-Heidelberg, 1972 DEPARTMENT OF MATHEMATICS, NATIONAL DEFENSE ACADEMY OF JAPAN, YOKOSUKA 239-8686, JAPAN E-mail address: naochin@nda.ac.jp