Remarks on weak covering properties

酒井 政美(Masami Sakai) 神奈川大学(Kanagawa University)

All spaces considered here are regular. We recall some definitions. A space X is said to be Menger [8] (resp., weakly Menger [3]) if for every sequence $\{\mathcal{U}_n : n \in \omega\}$ of open covers of X, there are finite subfamilies $\mathcal{V}_n \subset \mathcal{U}_n \ (n \in \omega)$ such that $\bigcup \{\bigcup \mathcal{V}_n : n \in \omega\} = X \ (\text{resp.}, \bigcup \{\bigcup \mathcal{V}_n : n \in \omega\}$ is dense in X). A space X is said to be weakly Lindelöf if every open cover \mathcal{U} has a countable subfamily \mathcal{V} such that $\bigcup \mathcal{V}$ is dense in X.

The implications of these notions are as follows.

weakly Menger \rightarrow weakly Lindelöf \uparrow \uparrow Menger \rightarrow Lindelöf

Babinkostova, Pansera and Scheepers posed the following question.

Question ([2, Question 32]) Is there a Lindelöf space which is not weakly Menger?

In this note, we show that this question is affirmative.

A space is said to be $K_{\sigma\delta}$ if it is the intersection of countably many σ compact spaces. A $K_{\sigma\delta}$ -space is Lindelöf. A space X is said to satisfy the
countable chain condition (shortly, CCC) if each pairwise disjoint family of
nonempty open subsets of X is countable. The weight (resp., π -weight) of a
space X is denoted by w(X) (resp., $\pi w(X)$). The continuum hypothesis is
denoted by CH, and \mathfrak{c} is the continuum.

Lemma 0.1 ([1, Theorem 5']) Under CH, if a space X is a CCC Baire space with $\pi w(X) \leq \mathfrak{c}$, then X contains a dense hereditarily Lindelöf subspace.

Theorem 0.2 (1) There is a $K_{\sigma\delta}$ CCC Čech-complete space which is not weakly Menger,

(2) under CH, there is a hereditarily Lindelöf space which is not weakly Menger.

Proof. (1). Let X be a Tychonoff CCC space with $w(X) = \mathfrak{c}$ which is not weakly Menger. For example, let $X = \mathcal{F}[\mathbb{P}]$ be the Pixley-Roy hyperspace over the space \mathbb{P} of irrationals. Indeed, Tychonoff CCC, $w(X) = \mathfrak{c}$ and not being weakly Menger follow from [4, Theorem 3.3.(b)], [6, Theorem 2.5.(b)] and [3, Theorem 2A] respectively. Fix a sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of open covers of X such that for any finite subfamilies $\mathcal{V}_n \subset \mathcal{U}_n \ (n \in \mathbb{N}), \bigcup \{\bigcup \mathcal{V}_n : n \in \mathbb{N}\}$ is not dense in X. Let cX be a compactification of X with $w(cX) = \mathfrak{c}$. For each $n \in \mathbb{N}$, we take an open family $\mathcal{G}_n = \{U' : U \in \mathcal{U}_n\}$ in cX satisfying $U' \cap X = U$ for all $U \in \mathcal{U}_n$. Let $G_n = \bigcup \mathcal{G}_n$, and $G = \bigcap \{G_n : n \in \mathbb{N}\}$. For simplicity, we may assume $G_{n+1} \subset G_n$. Obviously G satisfies CCC and $w(G) = \mathfrak{c}$. Moreover, considering the open covers $\mathcal{G}_n | G = \{U' \cap G : U \in \mathcal{U}_n\}$ in G, we can easily see that G is not weakly Menger.

For each finite sequence $s \in \mathbb{N}^{<\omega}$, we can inductively define a nonempty open set W_s in cX satisfying the following conditions: .

- (i) for each $n \in \mathbb{N}$, $\{\overline{W}_s : s \in \mathbb{N}^n\}$ is pairwise disjoint, and $\bigcup\{\overline{W}_s : s \in \mathbb{N}^n\}$ is a dense subspace of G_n ,
- (ii) for each $s \in \mathbb{N}^{<\omega}$ and $n \in \mathbb{N}, \overline{W}_{s^{\frown}n} \subset W_s$.

Finally let $Y = \bigcap \{\bigcup_{s \in \mathbb{N}^n} \overline{W}_s : n \in \mathbb{N}\}$. Obviously Y is a $K_{\sigma\delta}$ -space with $w(Y) \leq \mathfrak{c}$. Since Y is dense and G_{δ} in cX, it is a CCC Čech-complete space. Moreover, since G is not weakly Menger, Y is not weakly Menger.

(2). Apply Lemma 0.1 to the space Y in (1). Then we have a dense hereditarily Lindelöf space Z in Y. Since Y is not weakly Menger, Z is not weakly Menger. \Box

A paracompact Cech-complete space is metrizable if it has a G_{δ} -diagonal [5, 5.1.I]. A Čech-complete CCC space with a point-countable base is second countable [7, Theorem 1.5']. Therefore the space Y in Theorem 0.2 (1) has neither a G_{δ} -diagonal nor a point-countable base.

For a space X and a subspace $A \subset X$, we denote by X_A the space obtained by isolating all points of $X \setminus A$. If X is regular, so is X_A .

Theorem 0.3 There is a Lindelöf space with both a G_{δ} -diagonal and a pointcountable base which is not weakly Menger.

Proof. Let \mathbb{C} be the Cantor set. Let $\{B_0, B_1\}$ be a Bernstein partition of \mathbb{C} [5, 5.4.(a)], in other words $\mathbb{C} = B_0 \cup B_1, B_0 \cap B_1 = \emptyset$ and for every uncountable compact set $K \subset \mathbb{C}, K \cap B_i \neq \emptyset$ (i = 0, 1). Note that both B_0 and B_1 are uncountable and dense in \mathbb{C} , and for every open set $U \subset \mathbb{C}$ containing B_i $(i = 0, 1), \mathbb{C} \setminus U$ is countable. Let D be a countable dense subset in \mathbb{C} which is contained in B_0 . Since the set $\mathbb{C} \setminus D$ is a dense and co-dense G_{δ} -subset of \mathbb{C} , it is homeomorphic to the irrationals \mathbb{P} [5, 6.2.A.(a)]. It is well known that \mathbb{P} is not Menger, so there is a sequence $\{\mathcal{U}_n : n \in \omega\}$ of open covers of $\mathbb{C} \setminus D$ such that for any finite subfamilies $\mathcal{V}_n \subset \mathcal{U}_n$ $(n \in \omega), \bigcup \{\mathcal{V}_n : n \in \omega\}$ is not a cover of $\mathbb{C} \setminus D$.

For this sequence $\{\mathcal{U}_n : n \in \omega\}$, we observe that for any finite subfamilies $\mathcal{V}_n \subset \mathcal{U}_n \ (n \in \omega), \bigcup \{\mathcal{V}_n : n \in \omega\}$ does not cover $B_0 \setminus D$. Assume that there are finite subfamilies $\mathcal{V}_n \subset \mathcal{U}_n \ (n \in \omega)$ such that $\bigcup \{\mathcal{V}_n : n \in \omega\}$ covers $B_0 \setminus D$. For each $V \in \bigcup \{\mathcal{V}_n : n \in \omega\}$, take an open set V' in \mathbb{C} with $V' \cap (\mathbb{C} \setminus D) = V$. Let $K = \mathbb{C} \setminus \bigcup \{V' : V \in \bigcup_{n \in \omega} \mathcal{V}_n\}$. Then $K \subset D \cup B_1$. If K is uncountable, then $K \setminus D$ is an uncountable complete separable metric space. Therefore, by the Cantor-Bendixson theorem and [5, 4.5.5], $K \setminus D$ contains a subset which is homeomorphic to \mathbb{C} . This is a contradiction, because of $K \setminus D \subset B_1$. Thus K is countable. Let $K \cap B_1 = \{b_n : n \in \omega\}$, and take some $U_n \in \mathcal{U}_n$ with $b_n \in U_n$. Then $\mathcal{V}'_n = \mathcal{V}_n \cup \{U_n\}$ is a finite subfamily of \mathcal{U}_n and $\bigcup \{\mathcal{V}'_n : n \in \omega\}$ covers $\mathbb{C} \setminus D$. This is a contradiction.

Let $X = \mathbb{C}_{B_1}$. Obviously X is a Lindelöf space with a G_{δ} -diagonal and a point-countable base. We see that the space X is not weakly Menger. For each $n \in \omega$, let $\mathcal{W}_n = \{U \cup D : U \in \mathcal{U}_n\}$. Then \mathcal{W}_n is an open cover of X. By the observation in the preceding paragraph, for any finite subfamilies $\mathcal{W}'_n \subset \mathcal{W}_n$ $(n \in \omega)$, there is a point $r \in (B_0 \setminus D) \setminus \bigcup \{\bigcup \mathcal{W}'_n : n \in \omega\}$. Since the point r is isolated in $X, \bigcup \{\bigcup \mathcal{W}'_n : n \in \omega\}$ is not dense in X. \Box

References

- G.P. Amirdžanov, B.È. Šapirovskiĭ, Everywhere-dense subsets of topological spaces, Soviet Math. Dokl. 15(1974), 87–92.
- [2] L. Babinkostova, B.A. Pansera, M. Scheepers, Weak covering properties and infinite games, Topology Appl. 159(2012), 3644-3657.
- [3] P. Daniels, Pixley-Roy spaces over subsets of the reals, Topology Appl. 29(1988), 93–106.
- [4] E.K. van Douwen, The Pixley-Roy topology on spaces of subsets, Set Theoretic Topology, Academic Press, 1977, pp. 111–134.
- [5] R. Engelking, General Topology, Helderman Verlag Berlin, 1989.
- [6] D.J. Lutzer, Pixley-Roy topology, Topology Proc. 3(1978), 139–158.
- [7] B.È. Šapirovskiĭ, The separability and metrizability of spaces with the Suslin condition, Soviet Math. Dokl. **13**(1972), 1633–1638.
- [8] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. **69**(1996), 31-62.