Some notes on countable T_D -spaces

Matthew de Brecht

National Institute of Information and Communications Technology Kyoto, Japan

Abstract

We provide three canonical examples of countable perfect T_D -spaces corresponding to the T_D , T_1 , and T_2 separation axioms. These three spaces are canonical in the sense that any countable T_D -space is either quasi-Polish or else contains one of these spaces as a subspace. These results provide valuable insight as to why a space can fail to be complete.

Keywords: descriptive set theory, non-Hausdorff space, quasi-Polish spaces

1. Introduction

All topological spaces in this paper are assumed to be countably based and satisfy the T_0 separation axiom, but no further assumptions are made unless explicitly stated.

This paper is a continuation of recent work on developing the descriptive set theory of non-metrizable spaces initiated by V. Selivanov (see [8]). It was recently shown in [2] that a very general class of spaces called quasi-Polish spaces allow a smooth extension of the descriptive set theory of Polish spaces (see [4]) to the non-metrizable case. The class of quasi-Polish spaces contains not only the class of Polish spaces, but also many non-metrizable spaces that occur in fields such as theoretical computer science (e.g., ω -continuous domains with the Scott-topology) and algebraic geometry (e.g., the spectrum of countable Noetherian rings with the Zariski topology).

Given that so many important spaces are known to be quasi-Polish, the following natural question arises: Which spaces are *not* quasi-Polish? It was observed in [2] that a metrizable space is quasi-Polish if and only if it is Polish, so we can use results from classical descriptive set theory to obtain a first answer to this question: a countable metrizable space is *not* quasi-Polish if and only if it contains a homeomorphic copy of the rationals as a subspace. The purpose of these notes is to provide a modest extension of this result to cover the case of countable spaces satisfying the T_D separation axiom.

Email address: matthew@nict.go.jp (Matthew de Brecht)

The T_D -axiom is a separation axiom introduced by Aull and Thron [1] which is strictly between the T_1 and T_0 axioms. A subset of a space is *locally-closed* if it is equal to the intersection of an open set with a closed set. A topological space satisfies the T_D separation axiom if and only if every singleton subset is locally closed.

Countable T_D -spaces naturally occur in the field of inductive inference as precisely those spaces that can be identified in the limit relative to some oracle [3]. In these notes, we will show that there are three "canonical" countable perfect T_D -spaces respectively corresponding to the T_D , T_1 , and T_2 separation axioms. This result implies that a countable T_D -space is either quasi-Polish or else contains one of these three counter-examples. Thus, these spaces provide important insight into why a space can fail to be complete. We will also prove some other interesting results concerning countable T_D -spaces. For example, we will show that a countable space is T_D if and only if it has a Δ_2^0 -diagonal, and that if $X \subseteq Y$ is a countable T_D subspace, then X will be at most Δ_3^0 in Y.

2. Borel Hierarchy for non-Hausdorff spaces

It is common for non-Hausdorff spaces to have open sets that are not F_{σ} (i.e., countable unions of closed sets) and closed sets that are not G_{δ} (i.e., countable intersections of open sets). The Sierpsinski space, which has $\{\perp, \top\}$ as an underlying set and the singleton $\{\top\}$ open but not closed, is perhaps the simplest example of this phenomenon. This implies that the classical definition of the Borel hierarchy, which defines level Σ_2^0 as the F_{σ} -sets and Π_2^0 as the G_{δ} -sets, is not appropriate in the general setting. The following modification of the Borel hierarchy due to Victor Selivanov (see [6, 7, 8]) is the appropriate definition for the more general case.

Definition 1. Let (X, τ) be a topological space. For each ordinal α $(1 \le \alpha < \omega_1)$ we define $\Sigma^0_{\alpha}(X, \tau)$ inductively as follows.

- 1. $\Sigma_1^0(X,\tau) = \tau$.
- 2. For $\alpha > 1$, $\Sigma^0_{\alpha}(X, \tau)$ is the set of all subsets A of X which can be expressed in the form

$$A = \bigcup_{i \in \omega} B_i \setminus B'_i,$$

where for each i, B_i and B'_i are in $\Sigma^0_{\beta_i}(X,\tau)$ for some $\beta_i < \alpha$.

We define $\Pi^0_{\alpha}(X,\tau) = \{X \setminus A \mid A \in \Sigma^0_{\alpha}(X,\tau)\}$ and $\Delta^0_{\alpha}(X,\tau) = \Sigma^0_{\alpha}(X,\tau) \cap \Pi^0_{\alpha}(X,\tau)$. Finally, we define $\mathbf{B}(X,\tau) = \bigcup_{\alpha < \omega_1} \Sigma^0_{\alpha}(X,\tau)$ to be the Borel subsets of (X,τ) .

When the topology is clear from context, we will usually write $\Sigma^0_{\alpha}(X)$ instead of $\Sigma^0_{\alpha}(X, \tau)$.

The definition above is equivalent to the classical definition of the Borel hierarchy on metrizable spaces, but differs in general. V. Selivanov has investigated this hierarchy in a series of papers, with an emphasis on applications to ω -continuous domains. D. Scott [5] and his student A. Tang [9, 10] have also investigated some aspects of the hierarchy in $\mathcal{P}(\omega)$ (the power set of the natural numbers with the Scott-topology), using the notation \mathcal{B}_{σ} and \mathcal{B}_{δ} to refer to the levels Σ_2^0 and Π_2^0 , respectively.

In [2] it was shown that much of the descriptive set theory of Polish spaces can be extended to a very general class of countably based T_0 -spaces called quasi-Polish spaces. Quasi-Polish spaces are defined as the countably based spaces which admit a Smyth-complete quasi-metric, but many other characterizations are given in [2]. For the purposes of this paper, we can define a space to be quasi-Polish if and only if it is homeomorphic to a Π_2^0 -subset of $\mathcal{P}(\omega)$. Among other results, it was shown that a subspace of a quasi-Polish space is quasi-Polish if and only if it is Π_2^0 , and a metrizable space is quasi-Polish if and only if it is Polish.

For any topological space X we define $\Delta_X = \{\langle x, y \rangle \in X \times X | x = y\}$ to be the *diagonal* of X. The next theorem provides a useful characterization of countably T_D -spaces in terms of the Borel complexity of the diagonal.

Theorem 2. The following are equivalent for a countably based space X with countably many points:

- 1. X satisfies the T_D separation axiom,
- 2. Every singleton subset $\{x\}$ of X is in $\Delta_2^0(X)$,
- 3. Every subset of X is in $\Delta_2^0(X)$,
- 4. The diagonal of X is in $\Delta_2^0(X \times X)$.

Proof: $(1 \Rightarrow 2)$. Easily follows from the definition of the T_D -axiom because locally closed sets are Δ_2^0 .

 $(2 \Rightarrow 3)$. If every singleton subset of X is Δ_2^0 , then the countability of X implies that every subset of X is the countable union of Δ_2^0 -sets. Thus for any $S \subseteq X$ both S and the complement of S are Σ_2^0 , hence S is Δ_2^0 .

 $(3 \Rightarrow 4)$. For each $x \in X$, the singleton $\{x\}$ is in $\Sigma_2^0(X)$ by assumption, hence there are open sets U_x and V_x such that $\{x\} = U_x \setminus V_x$. Then $\Delta_X = \bigcup_{x \in X} [(U_x \setminus V_x) \times (U_x \setminus V_x)]$ is in $\Sigma_2^0(X \times X)$. It was shown in [2] that the diagonal of every countably based T_0 -space is Π_2^0 , therefore Δ_X is in $\Delta_2^0(X \times X)$.

 $(4 \Rightarrow 1)$. Assume that $\Delta_X = \bigcup_{i \in \omega} U_i \setminus V_i$ for U_i, V_i open in $X \times X$. Let x be any element of X. Then there is some $i \in \omega$ such that $\langle x, x \rangle \in U_i \setminus V_i$. Let U be an open neighborhood of x such that $\langle x, x \rangle \in U \times U \subseteq U_i$. Fix any $y \in U$ distinct from x. Clearly, $\langle x, y \rangle \in U \times U \subseteq U_i$, hence $\langle x, y \rangle \in V_i$ because $\langle x, y \rangle \notin \Delta_X$. Let V and W be open subsets of X such that $\langle x, y \rangle \in V \times W \subseteq V_i$. Then $x \notin W$ because otherwise we would have the contradiction $\langle x, x \rangle \in V_i$. Therefore, W is a neighborhood of y that does not contain x, hence y is not in the closure of $\{x\}$. It follows that $\{x\} = U \cap Cl(\{x\})$ is locally closed and that X is a T_D -space.

3. Canonical countable perfect T_D -spaces

A space is *perfect* if and only if every non-empty open subset is infinite. Note that if X is a T_0 -space, then X is perfect if and only if there is no $x \in X$ such that the singleton subset $\{x\}$ is open.

It is well known that the space of rationals is the unique (up to homeomorphism) example of a countable perfect metrizable space (see Exercise 7.12 in [4]). Things become more complicated when considering non-metrizable spaces that only satisfy the T_D -axiom. There are in fact infinitely many non-homeomorphic examples of countable perfect T_D -spaces. However, the following three spaces are the "canonical" examples of countable perfect T_D -spaces.

- The space ω defined as the set of natural numbers with the topology generated by the upper intervals $\uparrow n = \{m \in \omega \mid n \leq m\}$ for each $n \in \omega$. This space is T_D but not T_1 .
- The space ω_{cof} defined as the set of natural numbers with the cofinite topology (i.e., a subset is closed if and only if it is finite or else the whole space). This space is T_1 but not T_2 .
- The space \mathbb{Q} of rational numbers with the topology inherited from the space of real numbers. This space is T_2 .

These three spaces are canonical in the following sense, which is the main result of these notes.

Theorem 3. If X is a non-empty countably based perfect T_D -space with countably many points, then X contains a subspace homeomorphic to either ω , ω_{cof} , or \mathbb{Q} .

Clearly, none of these spaces contain a copy of the others, so this is the best result possible.

A space which does not contain a non-empty perfect subspace is called *scattered*. In [2] it was shown that a countably based T_0 -space is scattered if and only if it is a countable T_D quasi-Polish space. We therefore obtain the following.

Corollary 4. If X is a countably based T_D -space with countably many points, then X is quasi-Polish if and only if X does not contain a subspace homeomorphic to either ω , ω_{cof} , or \mathbb{Q} .

In other words, ω , ω_{cof} and \mathbb{Q} are the only "reasons" a countable T_D -space can fail to be quasi-Polish.

The purpose of this section is to prove Theorem 3. For the rest of this section we fix X to be some non-empty countably based perfect T_D -space with countably many points.

Lemma 5. Either X contains a subspace homeomorphic to ω or else X contains a non-empty perfect T_1 -subspace.

Proof: Let \sqsubseteq be the specialization order on X (i.e., $x \sqsubseteq y$ if and only if x is in the closure of $\{y\}$). Since X is a T_0 -space, the specialization order is a partial order. Define Max(X) to be the subset of X of elements that are maximal with respect to the specialization order. It is immediate that Max(X) is a T_1 -space.

First assume there is some $x_0 \in X$ such that there is no $y \in Max(X)$ with $x_0 \sqsubseteq y$. Then $x_0 \notin Max(X)$, so there is some $x_1 \neq x_0$ with $x_0 \sqsubseteq x_1$. The assumption on x_0 implies $x_1 \notin Max(X)$, so there is $x_2 \neq x_1$ with $x_0 \sqsubseteq x_1 \sqsubseteq x_2$. Continuing in this way, we produce an infinite sequence $\{x_i\}_{i \in \omega}$ of distinct elements of X with $x_i \sqsubseteq x_j$ whenever $i \leq j$. Clearly $\{x_i\}_{i \in \omega}$, viewed as a subspace of X, is homeomorphic to ω .

So if X does not contain a copy of ω , then every element of X is below some element of Max(X) with respect to the specialization order. This implies, in particular, that Max(X) is non-empty. We show that Max(X) is perfect as a subspace of X. Assume for a contradiction that there is $x \in Max(X)$ and open $V \subseteq X$ such that $\{x\} = V \cap Max(X)$. Since X is a T_D -space, there is open $U \subseteq X$ such that $\{x\} = U \cap Cl(\{x\})$, where $Cl(\cdot)$ is the closure operator on X. Then $W = U \cap V$ is an open subset of X containing x. Fix any $y \in W$. By assumption, there is some $y' \in Max(X)$ such that $y \sqsubseteq y'$. Since W is open, the definition of \sqsubseteq implies that $y' \in W$. Since $\{x\} = W \cap Max(X)$, it follows that y' = x hence $y \sqsubseteq x$. Therefore, $y \in Cl(\{x\})$ which implies x = y because $\{x\} = W \cap Cl(\{x\})$. Since $y \in W$ was arbitrary, $\{x\} = W$ is an open subset of X, which contradicts X being a perfect space. Therefore, Max(X) is a nonempty perfect T_1 -subspace of X.

As a result of the above lemma, it only remains to consider the case where X is a T_1 -space.

For any topological space Y, open $U \subseteq Y$, and $y \in Y$, we write $y \triangleleft U$ if $y \in U$ and for every open V containing y and non-empty open $W \subseteq U$, the intersection $V \cap W$ is non-empty. In other words, $y \triangleleft U$ if and only if every neighborhood of y is dense in the subspace U. Note that if $y \triangleleft U$ and $V \subseteq U$ is open and contains y, then $y \triangleleft V$. We define D(Y) to be the set of all $y \in Y$ such that there is open $U \subseteq Y$ with $y \triangleleft U$.

Fix a countable basis $\{B_i\}_{i\in\omega}$ of open subsets of X. For $x \in X$ and $n \in \omega$, we define $B(x,n) = \bigcap \{B_i \mid x \in B_i \text{ and } i \leq n\}$. Here we use the convention that the empty intersection equals X, so B(x,n) = X if there is no $i \leq n$ with $x \in B_i$. Note that for any open U containing x, there is $n \in \omega$ with $x \in B(x,n) \subseteq U$.

Lemma 6. If X is a T_1 -space and D(X) has non-empty interior, then X contains a subset homeomorphic to ω_{cof} .

Proof: Choose any x_0 in the interior of D(X) and let U_0 be an open subset of X with $x_0 \triangleleft U_0 \subseteq D(X)$. Then U_0 is infinite because X is perfect, so we can choose $x_1 \in U_0$ distinct from x_0 and find open $U_1 \subseteq U_0$ with $x_1 \triangleleft U_1$.

Let $n \geq 1$ and assume we have defined a sequence $x_0, \ldots, x_n \in X$ and open sets $U_0 \supseteq \cdots \supseteq U_n$ with $x_i \triangleleft U_i \subseteq D(X)$. We choose $x_{n+1} \in X$ and open $U_{n+1} \subseteq U_n$ with $x_{n+1} \triangleleft U_{n+1}$ as follows. Define $V_i^n = U_i \cap B(x_i, n)$ for $0 \leq i \leq n$, and let $V^n = V_0^n \cap \ldots \cap V_n^n$. Since $x_{n-1} \in V_{n-1}^n$ and $V_n^n \subseteq U_{n-1}$ is nonempty, $x_{n-1} \triangleleft U_{n-1}$ implies $V_{n-1}^n \cap V_n^n$ is non-empty. Continuing this argument inductively shows that V^n is a non-empty open set. Thus V^n is infinite, so there is $x_{n+1} \in V^n$ distinct from x_i for $0 \leq i \leq n$. Since $V^n \subseteq U_n \subseteq D(X)$, there is open $U_{n+1} \subseteq U_n$ with $x_{n+1} \triangleleft U_{n+1} \subseteq D(X)$.

Let $S = \{x_i \in X \mid i \in \omega\}$ be the subset of X of the elements enumerated in the above construction. We claim that S is homeomorphic to ω_{cof} . S is infinite by construction, and the assumption that X is a T_1 -space implies that the subspace topology on S contains the cofinite topology. Therefore, it suffices to show that every non-empty open subset of S is cofinite. Let $U \subseteq S$ be nonempty open, so there is some $i \in \omega$ with $x_i \in U$. Let $m \ge i$ be large enough that $S \cap B(x_i, m) \subseteq U$. By the construction of S, $x_n \in V^n \subseteq B(x_i, n) \subseteq B(x_i, m)$ for all $n \ge m$. It follows that $x_n \in U$ for all $n \ge m$, hence U is a cofinite subset of S. Therefore, $S \subseteq X$ is homeomorphic to ω_{cof} .

The final case to consider is when X is a T_1 -space and $X \setminus D(X)$ is dense in X.

Lemma 7. If X is a T_1 -space and $X \setminus D(X)$ is dense in X, then X contains a subspace homeomorphic to \mathbb{Q} .

Proof: Note that if $x \in X \setminus D(X)$ and U is any open set containing x, then there exists non-empty open sets $V, W \subseteq U$ with $x \in V$ and $V \cap W = \emptyset$.

In the following, we denote the length of a sequence $\sigma \in 2^{<\omega}$ by $|\sigma|$. We associate each $\sigma \in 2^{<\omega}$ with an element $x_{\sigma} \in X \setminus D(X)$ and open set $U_{\sigma} \subseteq X$ containing x_{σ} as follows. For the empty sequence ε choose any $x_{\varepsilon} \in X \setminus D(X)$ and let $U_{\varepsilon} = X$.

Next let $\sigma \in 2^{<\omega}$ be given and assume $x_{\sigma} \in X \setminus D(X)$ and U_{σ} have been defined. Let $U, V \subseteq B(x_{\sigma}, |\sigma|) \cap U_{\sigma}$ be non-empty open sets such that $x_{\sigma} \in U$ and $U \cap V = \emptyset$. Since V is non-empty and $X \setminus D(X)$ is dense, there exists some $y \in V \setminus D(X)$. Let $x_{\sigma \diamond 0} = x_{\sigma}$, $U_{\sigma \diamond 0} = U$, $x_{\sigma \diamond 1} = y$, and $U_{\sigma \diamond 0} = V$.

Let $S = \{x_{\sigma} \mid \sigma \in 2^{<\omega}\}$. A simple inductive argument shows that $U_{\sigma} \cap S$ is clopen in S for each $\sigma \in 2^{<\omega}$. We show that S is a perfect zero-dimensional T_2 -space. Fix any $\sigma \in 2^{<\omega}$ and open $U \subseteq S$ containing x_{σ} . Let $n \in \omega$ be large enough that $B(x_{\sigma}, n) \cap S \subseteq U$. We can append a finite number of 0's to the end of σ to obtain a sequence σ' with $|\sigma'| \ge n$ and $x_{\sigma'} = x_{\sigma}$. Then $x_{\sigma' \diamond 1} \ne x_{\sigma}$ and $x_{\sigma' \diamond 1} \in B(x_{\sigma}, n) \cap S \subseteq U$. It follows that $\{x_{\sigma}\}$ is not open in S, so S is a perfect space. Furthermore, $U_{\sigma' \diamond 0} \cap S$ is a clopen set containing x_{σ} and contained in U, which implies that S is a zero-dimensional T_2 -space.

It follows that S is a non-empty countable perfect metrizable space, hence S is homeomorphic to \mathbb{Q} .

Theorem 3 now follows from the previous three lemmas.

4. Countable Δ_3^0 -spaces

If Y is a countably based T_0 -space, then it is immediate that every countable $X \subseteq Y$ is in $\Sigma_3^0(Y)$. We will show in this section that there exist countable

subsets of quasi-Polish spaces which are strictly Σ_3^0 (i.e., Σ_3^0 but not Π_3^0), so this is the best upper bound in general. However, in the special case that $X \subseteq Y$ is both countable and satisfies the T_D -axiom, then X is guaranteed to be in $\Delta_3^0(Y)$.

Theorem 8. Assume Y is a countably based T_0 -space and $X \subseteq Y$ is countable. If for every non-empty $A \in \Pi_2^0(X)$ there is a finite non-empty $F \in \Delta_2^0(A)$, then $X \in \Delta_3^0(Y)$.

Proof: Assume $X \subseteq Y$ is countable and for every non-empty $A \in \Pi_2^0(X)$ there is a finite non-empty $F \in \Delta_2^0(A)$. For each ordinal α , we inductively define X^{α} as follows:

- $X^0 = X$,
- $X^{\alpha+1} = X^{\alpha} \setminus \{x \in X^{\alpha} \mid \{x\} \text{ is locally closed in } X^{\alpha}\},\$
- $X^{\alpha} = \bigcap_{\beta < \alpha} X^{\beta}$ when α is a limit ordinal.

Since X is countable there is some ordinal $\alpha < \omega_1$ such that $X^{\alpha} = X^{\alpha+1}$. We define $\ell(X)$ to be the least such ordinal. Using again the fact that X is countable, it is straight forward to show that $X^{\alpha} \in \Pi_2^0(X)$ for each $\alpha < \ell(X)$. Thus our assumption on X implies that if X^{α} is not empty, then there is a finite non-empty $F \in \Delta_2^0(X^{\alpha})$. It follows that $\{x\}$ is locally closed in X^{α} for each $x \in F$, hence $X^{\alpha} \neq X^{\alpha+1}$. Therefore, $X^{\ell(X)} = \emptyset$.

The claim is trivial is X is finite, so fix an infinite enumeration x_0, x_1, \ldots of X without repetitions. Since $X^{\ell(X)} = \emptyset$, for each $i \in \omega$ there is a countable ordinal $\alpha_i < \ell(X)$ such that $x_i \in X^{\alpha_i} \setminus X^{\alpha_i+1}$. Choose an open subset U_i of Y such that $Cl(\{x_i\}) \cap U_i \cap X^{\alpha_i} = \{x_i\}$ (here and in the following, $Cl(\cdot)$ is the closure operator for Y).

For each $i \in \omega$, define

$$A_i = (Cl(\{x_i\}) \cap U_i) \setminus \bigcup \{Cl(x_j) \cap U_j \mid j < i \text{ and } \alpha_j = \alpha_i\}.$$

Then $A_i \in \Delta_2^0(Y)$, $x_i \in A_i$, and $A_i \cap A_j = \emptyset$ whenever $j \neq i$ and $\alpha_j = \alpha_i$.

For each $i \in \omega$, let $\{V_j^i\}_{j \in \omega}$ be a decreasing sequence of open subsets of Y such that $\{x_i\} = Cl(\{x_i\}) \cap \bigcap_{j \in \omega} V_j^i$, and $x_k \notin V_j^i$ whenever $k \leq j$ and $x_i \notin Cl(\{x_k\})$.

Define $W_j = \bigcup_{i \in \omega} A_i \cap V_j^i$. Then $W = \bigcap_{j \in \omega} W_j$ is in $\Pi_3^0(Y)$, and $X \subseteq W$ is clear from the construction.

Next, let $y \in W$ be fixed. The set of ordinals $\{\alpha_i | y \in A_i\}$ is non-empty, so let α be its minimal element. Then the $k \in \omega$ satisfying $\alpha_k = \alpha$ and $y \in A_k$ is uniquely determined.

Assume for a contradiction that there is $j \geq k$ and $i \neq k$ such that $y \in A_i \cap V_j^i$. Then $x_k \in V_j^i$ because V_j^i is an open set containing y and $y \in Cl(\{x_k\})$. Thus, $k \leq j$ together with our definition of V_j^i implies $x_i \in Cl(\{x_k\})$. We also have $x_i \in U_k$ because $y \in U_k$ and $y \in Cl(\{x_i\})$. Since $Cl(\{x_k\}) \cap U_k \cap X^{\alpha_k} =$ $\{x_k\}$, we must have $x_i \notin X^{\alpha_k}$. But then $y \in A_i$ and $\alpha_i < \alpha_k$, contradicting our choice of α .

Since $y \in \bigcap_{j \in \omega} W_j$, it follows that $y \in A_k \cap V_j^k$ for all $j \in \omega$. Our choice of V_j^k implies $y = x_k$. Since $y \in W$ was arbitrary, $W \subseteq X$.

Therefore, $X = W \in \Pi_3^0(Y)$. As every countable subset of a countably based space is a Σ_3^0 -set, it follows that $X \in \Delta_3^0(Y)$.

Corollary 9. If Y is a countably based T_0 -space and $X \subseteq Y$ is a countable T_D -space, then $X \in \Delta^0_3(Y)$.

The use of transfinite ordinals in the proof of Theorem 8 might seem excessive. However, the following example suggests that it is not avoidable.

Let $\omega^{< n}$ be the set of sequences of natural numbers of length less than *n*. Give $\omega^{< n}$ the topology generated by subbasic open sets of the form $B_{\sigma} = \omega^{< n} \setminus \{\sigma' \in \omega^{< n} \mid \sigma \preceq \sigma'\}$, where σ varies over elements of $\omega^{< n}$ and \preceq is the prefix relation. The specialization order on $\omega^{< n}$ is simply \succeq . Then $\{\sigma\}$ is locally closed in $\omega^{< n}$ if and only if the length of σ equals n-1. Therefore, $\ell(\omega^{< n}) = n$. If we take X to be the disjoint union of the sequence of spaces $\{\omega^{< n}\}_{n \in \omega}$, then $\ell(X) = \omega$.

If Y is quasi-Polish, then the converse of Theorem 8 holds as well. The reader should consult [2] for background on the usage of quasi-metrics in the following proof.

Corollary 10. Assume Y is quasi-Polish and $X \subseteq Y$ is countable. Then $X \in \Delta_3^0(Y)$ if and only if for every non-empty $A \in \Pi_2^0(X)$ there is a finite non-empty $F \in \Delta_2^0(A)$.

Proof: For the remaining half of the proof, if $X \in \Delta_3^0(Y)$, then by Theorem 32 of [2] there is a quasi-metric d on X such that the induced metric space (X, \hat{d}) is Polish. Since X is countable, (X, \hat{d}) is scattered, hence for any $A \subseteq X$ there is $x \in A$ such that $\{x\} \in \Sigma_1^0(A, \hat{d})$. It follows that $\{x\}$ is Σ_2^0 in the quasi-metric space (A, d), hence $\{x\} \in \Delta_2^0(A, d)$ because singleton subsets of countably based spaces are Π_2^0 .

A simple example of a countable space without non-empty finite Δ_2^0 subsets is the space \mathbb{Q} of rational numbers with the upper interval topology (i.e., the topology generated by the sets $\uparrow q = \{x \in \mathbb{Q} \mid q \leq x\}$ for $q \in \mathbb{Q}$). Another example is the space $\omega^{<\omega}$ of all finite sequences of natural numbers with the topology generated by open sets of the form $\omega^{<\omega} \setminus \{\sigma' \in \omega^{<\omega} \mid \sigma \leq \sigma'\}$, with σ varying over elements of $\omega^{<\omega}$. It follows from the results above that both of these spaces will be strictly Σ_3^0 whenever they are embedded into a quasi-Polish space.

References

[1] C. E. Aull and W. J. Thron, Separation axioms between T_0 and T_1 , Indag. Math. 24 (1963), 26-37.

- [2] M. de Brecht, Quasi-Polish spaces, Annals of Pure and Applied Logic 164 (2013), no. 3, 356 - 381.
- [3] M. de Brecht and A. Yamamoto, Topological properties of concept spaces (full version), Information and Computation 208 (2010), no. 4, 327 340.
- [4] A. Kechris, *Classical descriptive set theory*, Springer-Verlag, 1995.
- [5] D. S. Scott, *Data types as lattices*, SIAM Journal on Computing 5 (1976), 522–587.
- [6] V. Selivanov, Index sets in the hyperarithmetical hierarchy, Siberian Mathematical Journal 25 (1984), 474–488.
- [7] $_$, Difference hierarchy in ϕ -spaces, Algebra and Logic **43** (2004), 238–248.
- [8] _____, Towards a descriptive set theory for domain-like structures, Theoretical Computer Science **365** (2006), 258–282.
- [9] A. Tang, Chain properties in $P(\omega)$, Theoretical Computer Science 9 (1979), 153–172.
- [10] _____, Wadge reducibility and Hausdorff difference hierarchy in $P(\omega)$, Lecture Notes in Mathematics 871 (1981), 360-371.