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We analyze the behavior of estimation errors evaluated by two loss functions, the Hilbert-Schmidt
distance and infidelity, in $one-$qubit state tomograPhy with finite data, and improve these estimation
errors by using an adaPtive design of exPeriment. First, we derive an explicit form of a function re-
producing the behavior of the estimation errors for finite data by introducing two approximations: a
Gaussian approximation of the multinomial distributions of outcomes, and linearizing the boundary.
Second, in order to reduce estimation errors, we consider an estimation scheme adaptively updat-
ing measurements according to previously obtained outcomes and measurement settings. Updates
are determined by the average-variance-oPtimality ( $A$-oPtimality) criterion, known in the classical
theory of experimental design and aPPlied here to quantum state estimation. We compare numeri-
cally two adaptive and two nonadaptive schemes for finite data sets and show that the $A$-optimality
criterion gives more precise estimates than standard quantum tomography.

I. INTRODUCTION A. Evaluation of estimation errors

Quantum tomography has become a standard mea- For evaluating the size of the estimation error, we in-
surement technique in quantum physics. It is especially troduce a distance-like function, called a loss function,
important in the field of quantum information as it is between the estimate and the true operator. One way
used for the confirmation of successful experimental im- to evaluate estimation errors using a loss function is an
plementation of quantum protocols. For example, it can expected loss, which is the statistical expectation value$d$ loss which is th
be used to confirm that the quantum states required of the loss function over all possible data sets. In quan-

nfin a quantum information protocol are sufficiently close tum information experiments, the infidelity (one minus
$h$the fldelity) and the trace distance are often used as lossto their theoretical targets [1]. In practice, experimen-

$f$unctions for state estimation. These evaluations are of-tal data obtained from tomographic measurements are
used to assign a mathematical description to an unknown ten performed in the theoretical limit of infinite data,

called the asymptotic regime. The asymptotic behav-quantum state or operation, called an estimate. Statis-
tically, this is a constrained multi-parameter estimation ior of these expected losses for this combination has been
problem–the quantum estimation problem–where we well studied [2, 3]. Using the asymptotic theory of param-

assume we are given a finite number of identical copies eter estimation, we can show that for a sufficiently large
ber of measurement trials $N$ thereof a quantum state or process, we perform measurements num er of measurement trials, , there is a lower bound

$f$ thwhose mathematical description is assumed to be known, of the expected losses, called the Cram\’er-Rao bound. It
and from the outcome statistics we make our estimate. is known that a maximum likelihood estimator achieves
Due to the probabilistic behavior of the measurement the Cram\’er-Rao bound asymptotically, and that those
outcomes and the finiteness of the number of measure- expected losses decrease as $O(1/N)$ .
ment trials, there always exist statistical errors in any In practice of course, no experiment produces infinitely
quantum estimate. The size of the error depends on the many data, and there are problems in applying the
choice of measurements and the estimation procedure. asymptotic theory of expected losses to finite data sets.
In statistics, the former is called an experimental design, First of all, the Cram\’er-Rao inequality holds only for a
while the latter is called an estimator. It is, therefore, a specific class of estimators, namely those that are unbi-
key aim of quantum estimation theory to evaluate pre- ased. $A$ maximum likelihood estimator is asymptotically
cisely the size of the estimation error for a given combi- unbiased, but is not unbiased for finite $N$ , so the ex-
nation of experimental design and estimator and to find a pected losses can be smaller than the bound for finite
combination of experimental design and estimator which $N$ . Particularly, when the purity of the true density ma-
gives us more precise estimation results using fewer mea- trix becomes high, the bias becomes larger. This is due
surement trials. to the boundary in the parameter space imposed by the

condition that density matrices be positive semidefinite,
and the expected losses can deviate significantly from the
asymptotic behavior [4, 5]. $A$ natural question is then to
ask at what value of $N$ the expected losses begin to be-
have asymptotically. If $N$ is large enough for the effect of
the bias to be negligible, we can safely apply the asymp-
totic theory for evaluating the estimation error in an ex-

$*$ sugiyama@eve.phys.s.u-tokyo.ac.jp periment. However, in general, determining the effects of
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the bias is a difficult problem. II. SUMMARY OF RESULTS
In this material, as the first step towards solving the

problem, we clarify the effect of the bias on the estimation The following is a summary of our results. The details
errors for one-qubit state tomography with finite data are explained in the Appendix.
sets. By introducing two simple approximations, we are
able to qualitatively reproduce the behavior of estimate
errors for one-qubit state estimation. A. Evaluation of expected losses

We analyzed the nonasymptotic (finite data) behav-
ior of the expected losses using a maximum likelihood

B. Improvement of estimation errors estimator [19]. We derived a simple function which ap-
proximates the expected squared Hilbert-Schmidt dis-
tance and the expected infidelity between a tomographic

A standard combination in quantum information ex- maximum likelihood estimate and the true state under
periments is that of quantum tomography and maxi- two approximations: a Gaussian distribution matched to
mum likelihood estimator. Although the term “quan- the moments of the asymptotic multinomial distribution,
tum tomography” can be used in several different con- and a linearization of the parameter space boundary im-
texts, we use it to mean an experimental design in which posed by the positivity of quantum states. The form of
an independently and identically prepared set of mea- this function indicates that the boundary effect decreases
surements are used throughout the entire experiment [1]. exponentially as the number of measurement trials $N$ in-
The performance of different choices for the set of to- creases, and we were able to $\cdot$ obtain a typical number
mographic measurements have been studied, in, for ex- of measurement trials $N^{*}$ which can be used for judg-
ample, [4, 6]. This of course raises the question of the ing whether the expected losses start to converge to the
performance of adaptive experimental designs, in which asymptotic behavior.
the measurements performed from trial to trial are not We performed Monte Carlo simulations of one-qubit
independent, and are chosen according to previous mea- state tomography and evaluated the accuracy of the. ap-
surement settings and the outcomes obtained. Clearly,

$y$proximation formulas by comparing them to the numer-
adaptive experimental designs are a superset of the non- ical results. Panels (EHS) and (EIF) in Figure $i$ show
adaptive ones, and as such can potentially achieve higher the pointwise expected squared Hilbert-Schmidt distance
performance. and the expected infidelity, respectively. In these two

Adaptive designs are characterized by the way in which panels, the line styles are as follows: a solid black line for
measurements are related from trial to trial, referred to as the numerically simulated expected loss, a dashed red line
an update criterion. Previously proposed update criteria for the approximate expected loss, a chain green line for
include those based on asymptotic statistical estimation the Cram\’er-Rao bound, and a dotted black vertical line
theory (Fisher information) [7-9], direct calculations of for the typical number of measurement trials $N^{*}$ The
the estimates expected to be obtained in the next mea- numerical comparison shows that our approximation re-
surement [10, 11], mutually unbiased basis [12], as well produces the behavior in the nonasymptotic regime much
as Bayesian estimators and Shannon entropy [10, 13, 14]. better than the asymptotic theory, and the typical num-
Theoretical investigations report that some of the pro- ber of measurement trials derived from the approxima-
posed update criteria give more precise estimates than tion is a reasonable threshold after which the expected
nonadaptive quantum tomography. Experimental imple- loss starts to converge to the asymptotic behavior.
mentations of the update criteria proposed in [10] and in
[9] have been performed in an ion trap system [15] and
in an optical system [16], respectively. If $N$ denotes the B. Improvement of expected losses
number of measurement trials and $N$ is sufficiently large,
it is known in 1-qubit state estimation that the expecta- In order to improve the estimation error, we considered
tion value of infidelity averaged over states, a measure of adaptive experimental design and applied a measurement
the estimation error, can decrease at best as $O(N^{-3/4})$ update method known in statistics as the A-optimality
in a nonadaptive experiment [17], compared to $O(N^{-1})$ criterion to one-qubit mixed state estimation using arbi-
in adaptive experiments [18]. Most of the proposed up- trary rank-l projective measurements [5]. We derived an
date criteria, however, have high computational cost that analytic solution of the A-optimality update procedure
makes real experiments infeasible. in this case, reducing the complexity of measurement up-

In this material, we propose an adaptive experimen- dates considerably. Our analytic solution is applicable to
tal design whose average expected infidelity decreases as any case in which the loss function can be approximated
$O(N^{-1})$ and whose update criterion, known as average- by a quadratic function to least order.
variance optimality ( $A$-optimality) in classical statistics, We performed Monte Carlo simulation of this and sev-
has low computational cost for one-qubit state estima- eral nonadaptive schemes in order to compare the be-
tion. havior of estimation errors for a finite number of mea-
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surement trials. We compared the average and point-
wise expected squared Hilbert-Schmidt distance and in-
fidelity of the following four measurement update criteria.
Panel (Aopt) in Figure 1 shows the pointwise expected
infidelity. In the panel, the line style is as follows: a
solid black line for the numerically simulated expected
infidelity of standard quantum state tomography (repe-
tition of three orthogonal projective measurements), and
a dashed blue line for that of the A-optimality update
scheme for the infidelity. The numerical results show that
A-optimality gives more precise estimates than standard
quantum state tomography with respect to the expected
infidelity.
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APPENDIX Number of trials, $N$

Appendix $A$ : Evaluation of estimation errors with
finite data

1. Preliminaries

In this subsection, we give a brief review of known
results in quantum state tomography and asymptotic es-
timation theory. The purpose of quantum state tomog-
raphy is to identify the density matrix characterizing the
state of a quantum system of interest. Here we only con-
sider states of a single qubit. Let $\mathcal{H}$ be the 2-dimensional
Hilbert space $\mathbb{C}^{2}$ and $\mathcal{S}(\mathbb{C}^{2})$ be the set of all positive
semidefinite density matrices acting on $\mathcal{H}$ . Such a den- 1 10 100 1000 $\{\infty\infty$

sity matrix $\rho$ can be parametrized as Number $\circ\iota$ trlals, $N$

$\rho(s)=\frac{1}{2}(I+s\cdot\sigma)$ , (Al) FIG. 1. Pointwise expected losses plotted against the number
of measurement trials $N$ for the true Bloch vector $s$ given

where If is the identity matrix on $\mathbb{C}^{2},$ $\sigma=(\sigma_{1}, \sigma_{2}, \sigma_{3})^{T}$ by $(r, \theta, \phi)=(0.99, \pi/4, \pi/4)$ . The other plots are shown in
is the vector of Pauli matrices, and $s\in \mathbb{R}^{3},$ $\Vert s\Vert\leq 1$ , [5, 19]
is called the Bloch vector. Let us define the parameter
space $S$ $:=\{s|\rho(s)\in S(\mathbb{C}^{2})\}$ . Identifying the true den-
sity matrix $\rho\in S(\mathbb{C}^{2})$ is equivalent to identifying the measurement outcomes. L\’ike a density matrix, a POVM
true parameter $s\in S$ . Let $\Pi=\{\Pi_{x}\}_{x\in \mathcal{X}}$ denote the can be parametrized as
POVM characterizing the measurement apparatus used
in the tomographic experiment, where $\mathcal{X}$ is the set of $\Pi_{x}=v_{x}I+w_{x}\cdot\sigma$ , (A2)
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where $(v_{x}, w_{x})\in \mathbb{R}^{4}$ . When the true density matrix is loss functions, we use both the squared Hilbert-Schmidt
$\rho(s)$ , Born’s Rule tells us that the probability distribu- distance $\Delta^{HS}$ and the infidelity $\Delta^{IF}[17]$ defined as
tion describing the tomographic experiment is given by

$p(x|s)=Tr[\rho(s)\Pi_{x}]$ (A3)
$\Delta^{HS}(s, s’):=^{r}\frac{1}{2}b[(\rho(s)-\rho(s’))^{2}]$ (A8)

$=v_{x}+w_{x}\cdot s$ , (A4)
$= \frac{1}{4}(s-s’)^{2}$ , (A9)

where Tt denotes the trace operation with respect to $\mathbb{C}^{2}.$

We assume that in the experiment we prepare identical $\Delta^{IF}(s, s’);=1-\prime b[\sqrt{\sqrt{\rho(s)}\rho(s’)\sqrt{\rho(s)}}]^{2}$ (A10)
copies of an unknown state $\rho(s)$ . We perform $N$ mea-
surement trials and obtain a data set $x^{N}=(x_{1}, \ldots, x_{N})$ , $=(1-\underline{1}s s’-\sqrt{1-\Vert s\Vert^{2}}\sqrt{1-\Vert s\Vert^{2}})$ . (All)where $x_{i}\in \mathcal{X}$ is the outcome observed in the i-th trial. 2
Let $N_{x}$ denote the number of times that outcome $x$ oc- The Hilbert-Schmidt distance is a normalized Euclideancurs in $x^{N}$ , then $f_{N}(x)$ $:=N_{x}/N$ is the relative frequency $\backslash$

distance in theof $x$ for the data set $x^{N}$ . In the limit of $Narrow\infty,$
parameter space, and the infidelity is

a conventional loss function used in experiments. Wethe relative frequency converges to the true probability note that the Hilbert-Schmidt distance coincides with the
$p(x|s)$ . A POVM is called informationally complete if trace distance in one- ubit $s$ stems but it does not inTr $[\rho\Pi_{x}]=$ Tr $[\rho’\Pi_{x}]$ has a unique solution $\rho’$ for arbitrary qubit sys
$\rho\in S(\mathcal{H})[20]$ . This condition is equivalent to that of genera1

The outcomes of uantum measurements are randomthe POVM $\Pi$ being a basis for the set of all Hermitian quan
variables and the value of the loss function between anmatrices on $\mathcal{H}$ . For finite $N$ , the relative frequency and estimate and the true densit matrix is also a random$y$ matrue probability are generally not the same, i. e., there is variable. Thus in order to evaluate the recision of apreclslon $0$

unavoidable statistical error, and we need to choose an estgeneral estimator $\rho$ (not the estimate) for the true den-estimation procedure that takes the experimental result
$y$ ma rx, we use $es$ a $s$ ca expecsit matrix we use the statistical ex ectation value of the

$x^{N}$ to a density matrix, that is, we need an estimator. loss function, called an expected loss (sometimes called aIt is natural to consider a linear estimator, which de- xpec
risk functionmands that we find a $2\cross 2$ matrix $\rho_{N}^{1i}$ satisfying

$)$ [21]. The explicit form is given by

$\prime R[\rho_{N}^{l_{1}’}\Pi_{x}]=f_{N}(x),$ $x\in \mathcal{X}$ . (A5) $\overline{\Delta}_{N}(\rho^{est}|\rho):=\sum_{x^{N}\in \mathcal{X}^{N}}p(x^{N}|\rho)\Delta(\rho_{N}^{est}(x^{N}), \rho).(A12)$

However, Eq.(A5) does not always have a solution, and
even when it does, although the solution is Hermitian The value of the expected loss depends on the choice of
and normalized, it is not guaranteed that $\rho_{N}^{1i}$ is positive the estimator as well as the true density matrix. The
semidefinite. Let us explore this point further in the one latter is of course unknown in an experiment, and one
qubit case. The positive semidefinite condition restricts way to eliminate its dependence is to average over all
the physically permitted parameter region to the ball possible true states
$B:=\{s\in \mathbb{R}^{3}|\Vert s\Vert\leq 1\}$ . On the other hand, a linear esti-
mate is a random variable that can take values anywhere $\overline{\Delta}_{N}^{ave}(\rho^{est})$

$:= \int d\mu(\rho)\overline{\Delta}_{N}(\rho^{es\dot{t}}|\rho)$ , (A13)
in the cube $C$ $:=\{s\in \mathbb{R}^{3}|-1\leq s_{a}\leq 1, \alpha=1,2,3\}.$

There is therefore a ‘gap’ between $B$ and $C$ , consisting of where $\mu$ is a probability measure on $S.$

unphysical linear estimates. When the true Bloch param- Let us assume that $\Vert s\Vert<1$ . For any unbiased esti-
eter $s$ is in the interior of $B$ and $N$ becomes sufficiently mator $s^{est}$ and any positive semidefinite matrix $H_{\epsilon}$ , the
large, the probability that linear estimates are out of $B$ inequality
becomes negligibly small. However, when the Bloch vec-
tor is on the boundary of $B$ , or when $N$ is not sufficiently $\Delta_{N}(s^{est}|s)$

ignored. $A$ maximum likelihood estimator $\rho^{m1}$ is one way
large, the effect of unphysical linear estimates cannot be

$:= \sum_{x^{N}\in \mathcal{X}^{N}}p(x^{N}|s)[s_{N}^{est}(x^{N})-s]^{T}H_{e}[s_{N}^{est}(x^{N})-s]$

to address these problems. The estimated density matrix 1and the Bloch vector are defined as
$\geq\overline{N}$ tr $[H_{\delta}F_{e}^{-1}]$ (A14)

$\rho_{N}^{m1}$ $:= \arg\max_{\rho\in \mathcal{S}(\mathcal{H})}\prod_{i=1^{r}}^{N}r_{J}[\rho\Pi_{x_{i}}]$, (A6) holds, where
$s_{N}^{m1}$ $:= \arg\max_{\iota\in B}\prod_{i=1}^{N}$ Tr $[\rho(s)\Pi_{x_{i}}]$ . (A7)

It can be shown tha$t^{}$ when $\rho_{N}^{1i}\in S(\mathcal{H}),$ $\rho_{N}^{1i}=\rho_{N}^{m1}$ holds.
$F_{l};= \sum\frac{\nabla_{l}p(x|s)\nabla_{l}^{T}p(x|s)}{p(x|s)}$, (A15)

In order to evaluate the precision of estimates, we in- $x\in \mathcal{X}$

troduce a loss function. $A$ loss function $\Delta$ is a map
$= \sum_{x\in \mathcal{X}}\underline{w_{x}w_{x}^{T}}$ (A16)

from $S(\mathcal{H})\cross S(\mathcal{H})$ to $\mathbb{R}$ such that (i) $\Psi\rho,$ $\sigma\in S(\mathcal{H})$ , $v_{x}+w_{x}\cdot s$

$\triangle(\rho, \sigma)\geq 0$ , and (ii) $\forall\rho\ \in \mathcal{O},$ $\Delta(\rho, \rho)=0$ . For exam-
ple, the trace-distance and the infidelity (one minus the is called the Fisher matrix and tr denotes the trace oper-
fidelity) are loss functions for density matrices. For our ation with respect to the parameter space $\mathbb{R}^{3}$ . Equation
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(Bl) is called the Cram\’er-Rao inequality, and it holds For a one-qubit system, the boundary between the
not only for one-qubit state tomography, but also for ar- physical and unphysical regions of the state space is a
bitrary finite dimensional parameter estimation problems sphere with unit radius. Despite its simplicity, it is dif-
under some regularity condition [22]. The matrix $F_{\delta}$ is ficult to derive the explicit formula of a maximum likeli-
a $3\cross 3$ positive semidefinite matrix for $s\in \mathbb{R}^{3}$ . It is hood estimator even in this case. Indeed, this is a major
known that a maximum likelihood estimator asymptoti- contributor to the general complexity of the expected loss
cally achieves the equality of Eq.(Bl) [22]. From the ex- behavior in quantum tomography. We therefore choose
plicit formulas for the squared Hilbert-Schmidt distance the simplest possible way to approximate the boundary,
and infidelity in Eqs. (A9) and (All), we have namely by replacing it with a plane in the state space.

Suppose that the true Bloch vector is $s\in B$ . The bound-
$\Delta^{HS}(s, s’)=(s’-s)^{T}\frac{1}{4}I(s’-s)$ , (A17) ary of the Bloch ball, $\partial B$ , is represented as

$\Delta^{IF}(s, s’)=(s’-s.)^{T}\frac{1}{4}(I+\frac{ss^{T}}{1-\Vert s\Vert^{2}})(s’-s) \partial B :=\{s’\in \mathbb{R}^{3}|\Vert s’\Vert=\backslash 1\}$
. (A20)

We approximate this by the tangent plane to the sphere
$+O(\Vert s’-s\Vert^{3})$ , (A18) at the point $e_{\epsilon}:=s/\Vert s\Vert$ , represented as

where $I$ is the identity matrix on $\mathbb{R}^{3}$ . Therefore when $\partial D_{8}$ $:=\{s’\in \mathbb{R}^{3}|s\alpha(s’-e_{e})=0\}$ , (A21)
we use the Hilbert-Schmidt distance as our loss function, and so the approximated parameter space is representedwe substitute $H_{\epsilon}$ in Eq. (Bl) by $H_{8}^{HS};= \frac{1}{4}I$. On the as

presen

other hand, when our loss function is the infidelity, we
must use $H_{S}^{IF};= \frac{1}{4}(I+\frac{\epsilon\epsilon^{T}}{1-||\epsilon||^{2}})$ . These two matrices $D_{s}=\{s’\in \mathbb{R}^{3}|s\cdot(s’-e_{\epsilon})\leq 0\}$ (A22)
$H^{HS}$ and $H^{F}$ are half of the Hesse matrices for $\Delta^{HS}$ and We will refer to this as the linear boundary approxima-
$\Delta^{f_{F}}$ , respectively. tion (LBA).

2. Theoretical analysis $b$ . Approximated maximum likelihood estimator

In this subsection, we derive a function which approxi- In [23], it is proved that the distribution of a max-
mates the expected losses of the squared Hilbert-Schmidt imum likelihood estimator in a constrained parameter
distance and infidelity for finite data sets. estimation problem converges to the distribution of the

following vector
$\tilde{s}_{N}^{m1}$ $:= \arg\min_{\epsilon\in D_{*}}(s_{N}^{1i}-s’)\cdot F_{s}(s_{N}^{1i}-s’)$ . (A23)

$a$ . Two approximations
By using the Lagrange multiplier method, we can derive

In general, the explicit form of expected losses with the approximated maximum likelihood estimates as
flnite data sets is extremely complicated. In this pre-sentation,a we try to derive notthem exact form $butr$ a $\overline{s}_{N}^{m1}=\{$

$s^{1i}$ $(s^{1i}\in D)$
$N$ $N$ $s$

$1i$
$e_{*}\cdot s_{N}^{1i}-1$

$1$ $1i$ . (A24)
simpler function which reproduces the behavior of the $s_{N_{\overline{e..F^{-1}e}}^{-}}..F_{s}^{-}e_{\epsilon}(s_{N}\not\in D_{s})$

true function accurately enough to help us understand
the boundary effect. In order to accomplish this, we in-
troduce two approximations. First, we approximate the $c$ . Expected squared Hilbert-Schmidt distance
multinomial distribution generated by successive trials
by a Gaussian distribution. Second, we approximate the From a straightforward calculation using formulas for
spherical boundary by a plane tangent to its boundary. Gaussian integrals, we can derive the approximate ex-

From the central limit theorem, we can readily prove pected squared Hilbert-Schmidt distance.
that the distribution of a linear estimator $s^{1i}$ converges
to a Gaussian distribution with mean $s$ and covariance $\overline{\Delta}_{N}^{HS}(\tilde{s}^{m1}|s)=\underline{1}(tr[F^{-1}]-\underline{1}\underline{e_{\theta}\cdot F_{\epsilon}e_{s}}$erfc $[\sqrt{\frac{N}{N^{*}}}])$

$-2$

matrix $F_{S}^{-1}$ For finite $N$ , we approximate the true prob- $4N$ $s$
$2e_{s}\cdot F_{s}^{-1}e_{S}$

ability distribution by the Gaussian distribution
$- \frac{1}{4}\frac{1-\Vert s||}{\sqrt{2\pi e_{\epsilon}F_{s}^{-1}e_{S}}}e_{s}\cdot F_{8}^{-1}e_{\epsilon}e_{S}\cdot F_{s}^{-2}e_{s}\frac{e^{-N/N^{r}}}{\sqrt{N}}$

$PG(s_{N}^{1i}|s):= \frac{N^{3/2}}{(2\pi)^{3/2}\sqrt{\det F_{s}^{-1}}}$

$+ \frac{1}{8}(1-\Vert s\Vert^{2})\frac{e_{s}.\cdot F_{S}^{-2}e_{\epsilon}}{(e_{\epsilon}F_{S}^{-1}e_{s})^{2}}$ erfc $[\sqrt{\frac{N}{N^{*}}}]$ , (A25)
$\cross\exp[-\frac{N}{2}(s_{N}^{1i}-S)\cdot F_{\epsilon}(s_{N}^{1i}-s)1^{A19)}$

where
We will refer to this as the Gaussian distribution approx- 2
imation ($GDA$ )

$t$ $s$ as te aussian distribution approx-
erfc $[a]$ $:= \overline{\sqrt{\pi}}\int_{a}^{\infty}dte^{-t^{2}}$ (A26)
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is the complementary error function and case, we omit the index, using $\mathcal{M}$ for the measurement
class and $\mathcal{X}$ for the outcome set. Let $x^{n}=\{x_{1}, \ldots, x_{n}\}$

$N^{*}$ $:=2 \frac{e_{\iota}\cdot F_{l}^{-1}e_{l}}{(1-||\epsilon\Vert)^{2}}$ (A27) denote the sequence of outcomes obtained -up to the
n-th trial, where $x_{i}\in \mathcal{X}_{i}$ . We will denote the pair
of measurement performed and outcome obtained by

is a typical scale for the number of trials.
$D_{n}=(\Pi_{n}, x_{n})\in \mathcal{D}_{n}$ $:=\mathcal{M}_{n}\cross \mathcal{X}_{n}$, and refer to it as
the data for trial $n$ . The sequence of data up to trial
$n$ is thus $D^{n}=\{D_{1}, \ldots, D_{n}\}\in \mathcal{D}^{n}$ $:=x_{i=1}^{n}\mathcal{D}_{i}$ . After

$d$. Expected infidelity
the n-th measurement, we choose the next, $(n+1)-th,$
POVM $\Pi_{n+1}=\{\Pi_{n+1,x}\}_{x\in \mathcal{X}_{n+1}}$ according to the pre-

In order to analyze the expected infidelity, we take the viously obtained data. Let $u_{n}$ denote the map from the
Taylor expansion of the infidelity around the true Bloch data to the next measurement, that is, $u_{n}$ : $\mathcal{D}^{n-1}arrow \mathcal{M}_{n},$

vector $s$ up to the second order. The explicit form is in
$\Pi$ $=u_{n}(D^{n-1})$ . We call $u_{n}$ the measurement update

Eq. (A18). Again, using formulas for Gaussian integrals $n$

criterion for the n-th trial and $u^{N}$ $:=\{u_{1}, u_{2}, \ldots, u_{N}\}$

we can derive the approximate expected infidelity. When the measurement update rule. Note that $u_{1}$ is a map
$\Vert s\Vert<1,$ from $\emptyset$ to $\mathcal{M}_{1}$ and corresponds to the choice of the first

$\overline{\Delta}_{N}^{IF}(\tilde{s}^{m1}|s)=\frac{1}{4}(tr[F_{\iota}^{-1}]+\frac{s\cdot F_{\iota}^{-1}s}{1-||s\Vert^{2}})\frac{1}{N}(1-\frac{1}{2}erfc[\sqrt{\frac{N}{N}}])$

measurement.

$- \frac{1}{4}\frac{1-\Vert s||}{\sqrt{2\pi e_{\epsilon}F_{l}^{-1}e_{g}}}(tr[F_{\epsilon}^{-1}]-$ tr $[(Q_{e}F_{e}Q_{\epsilon})^{-}]$

$b.$ $A$ generalized Cmm\’er-Rao inequality

The A-optimality criterion is a measurement update
$F^{-1}$ $-N/N^{\cdot}$

$+^{S\cdot S}\underline{\epsilon})^{\underline{e}}$ criterion based on the asymptotic theory of statistical
$1-\Vert s\Vert^{2} \sqrt{N}$ parameter estimation [24, 25]. In this subsection we in-

$+ \frac{1}{4}(1-\Vert s\Vert)$erfc $[\sqrt{\frac{N}{N^{*}}}]$ ,
troduce a few basic results of the asymptotic theory. First

(A28)let us parametrize the state space $S(\mathcal{H})$ . Any density ma-
trix on $d$-dimensional Hilbert space can be parametrized

where by $d^{2}-1$ real numbers, $s\in \mathbb{R}^{d^{2}-1}$ , i.e. $\rho=\rho(s)$ . In
$Q_{\iota}:=I-e_{\delta}e_{l}^{T}$ (A29) the $d=2$ case, we take $\rho(s)=\frac{1}{2}(1+s \sigma)$ , where

$\sigma=(\sigma_{1}, \sigma_{2}, \sigma_{3}),$ $\sigma_{\alpha}(\alpha=1,2,3)$ are the Pauli matri-
is the projection matrix onto the subspace orthogonal to ces, and $s\in \mathbb{R}^{3},$ $\Vert s\Vert\leq 1$ , is called the Bloch vector.
$s$ , and $A^{-}$ is the Moore-Penrose generalized inverse of a The estimation of $\rho$ is equivalent to the estimation of
matrix $A$ . From the argument above, we can see that the $s$ , and we let $s^{est}$ denote the estimator. Estimates of
approximate expected infidelity converges to the Cram\’er- a density matrix and of a Bloch vector are related as
Rao bound in the limit of large $N.$ $\rho_{n}^{est}(D^{n})=\rho(s_{n}^{est}(D^{n}))$ .

For any estimator $s^{est}$ , any number of measurement
trials $N$ , and any positive semidefinite matrix $H(s)$ , the

Appendix $B$ : Improvement of estimation errors by inequality
adaptive design of experiments

1. Preliminaries
$\sum_{D^{N}\in D^{N}}p(D^{N}|s)[s_{N}^{est}(D^{N})-s]^{T}H(s)[s_{N}^{est}(D^{N})-s]$

$\geq tr[H(s)G_{N}(u^{N}, s^{est}, s)^{T}F_{N}(u^{N}, s)^{-1}G_{N}(u^{N}, \epsilon^{est}, s)]$

$a$ . Experimental design (Bl)

holds, where
We consider sequential measurements on copies of $\rho.$

. We will index measurement trials using subscripts $n\in$ $p(D^{N}|s):=p(D^{N}|\rho(s))$ , (B2)
$\{$ 1, 2, $\ldots,$

$N\}$ , and sequences using superscripts. Thus,
for some symbol $A,$ $A_{n}$ is its value taken at the n-th trial, $N$$G(u^{N}, s^{est}, s):= \nabla_{\iota}\sum_{D^{N}\in \mathcal{D}^{N}}p(D^{N}|s)s_{N}^{estT}(D^{N})$

, (B3)

while $A^{n}$ is the sequence $\{A_{1}, A_{2}, \ldots, A_{n}\}$ . We will also

our sensemeansthater the POVM performedat ($nAa+^{i}1)$-th
$\sum_{D^{N}\in D^{N}}\underline{\nabla_{\epsilon}p(D|s)\nabla_{\delta}p(D|s)},$

$N$ $T$ $N$

try to use calligraphic fonts for supersets. Adaptivity in $F_{N}(u^{N}, s):=$
$p(D^{N}|s)$

trial can depend on all the previous $n$ trials’ outcomes (B4)
and POVMs.

The measurement class $\mathcal{M}_{n}$ is the set of POVMs which and tr denotes the trace operation with respect to the
are available at the n-th trial. We choose the n-th parameter space. Eq.(Bl) is a known generalization of
POVM, $\Pi_{n}=\{\Pi_{n,x}\}_{x\in \mathcal{X}_{n}}$ from $\mathcal{M}_{n}$ , where $\mathcal{X}_{n}$ de- the Cram\’er-Rao inequality [22]. $F_{N}(s)$ is $a(d^{2}-1)\cross$

notes the set of measurement outcomes for the n-th trial. $(d^{2}-1)$ positive semidefinite matrix called the Fisher
When it is independent of the trial, as is usUally the matrix of the probability distribution $\{p(D^{N}|s)\}_{D^{N}\in \mathcal{D}^{N}}.$
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If the estimate converges to the true parameter, i.e., and $\overline{F}_{n+1}(u^{n+1}, s|D^{n})$ is the sum of the Fisher matrices
$s_{N}^{est}(D^{N})arrow s$ as $Narrow\infty$ with probability 1, the LHS of from the first to the $(n+1)$-th trial. Instead of minimizing
Eq.(Bl) converges to $0$ and therefore the RHS should con- $K_{n+1}(u^{n+1}, s)$ , we consider the minimization of
verge to $0$ . In this case, if we assume the exchangeability

$\tilde{K}_{n+1}(u^{n+1}, s|D^{n}) :=tr[H(s)\tilde{F}_{n+1}(u^{n+1}, s|D^{n}|)^{-1}].$

of the limit and derivative, the matrix $G_{N}(u^{N}, s^{est}, s)$

converges to the identity matrix $I$ , and the quantity (B10)
$K_{N}(u^{N}, s)$ defined as It is known that the convergence of $\overline{K}_{N}(u^{N}, s|D^{N})$ to $0$

$-K_{N}(u^{N}, s);=$ tr $[H(s)F_{N}(u^{N}, s)^{-1}]$ (B5) is part of a sufficient condition for the convergence of a
maximum likelihood estimator [26], and this justifies theconverges to $0$ . This $K_{N}(u^{N}, s)$ can be interpreted as use of this second approximation. After making thesea lower bound of the weighted $($by $H(s))$ mean squared two approximations, we define the A-optimality criterion

error when $N$ is sufficiently large. It is known that under as
certain regularity conditions, a maximum likelihood es-
timator achieves the equality of Eq.(Bl). asymptotically. $\Pi_{n+1}^{A-opt}:=u_{n+1}^{A-opt}(D^{n})$ .

For a given $s$ , it would be wise to choose a measure- $=$ argmin tr $[H(\hat{s}^{est})\tilde{F}_{n+1}(u^{n+1},\hat{s}^{est}|D^{n})^{-1}].$
$n$ment update rule which makes the value of $K_{N}(u^{N}, s)$

$n$

$\Pi_{n+1}\in \mathcal{M}_{n+1}$

as small as possible. This is the guiding principle of the (Bll)
A-optimality criterion. A-o $t$

Finding $\Pi_{n+1}^{p}$ is a nonlinear minimization problem with
high computational cost in general. In this paper, we

$c.$ $A$ -optimality criteria derive the analytic solution of Eq. (Bll) in the 1-qubi$t^{(}$

case, reducing the computational cost significantly.
We move on to the explanation of the procedure of

A-optimality. The $A$” stands for “average-variance;’
$d$ . Estimation settin[25]. According to the asymptotic theory of statistical

$g$

parameter estimation described in the previous subsec-
tion, we wish to minimize the value of $K_{N}(u^{N}, s)$ . Sup- We consider a one-qubit mixed state estimation prob-
pose that we perform $n$ trials and obtained the data se- lem. We identify the Bloch parameter space $\{s$ $\in$

quence $D^{n}$ . We would like to choose the POVM min- $\mathbb{R}^{3}|\Vert s\Vert<1\}$ with $\mathcal{O}$ , where we restrict the true state
imizing $K_{n+1}(u^{N}, s)$ in $\mathcal{M}_{n+1}$ as the next, $(n+1)-th$ , space to be strictly the interior in order to avoid the pos-
measurement. When we consider minimizing this func- sible divergence of the Fisher matrix. Suppose that we
tion, there are two problems. In order to avoid them, we can choose any rank-l projective measurement in each
introduce two approximations. The first problem is that trial. Let $\Pi(a)=\cdot\{\Pi_{x}(a)\}_{x=\pm}$ denote the POVM corre-
the minimized function depends on the true parameter sponding to the projective measurement ont$0$ the. $a$-axis

3
$s$ . Of course the true parameter is unknown in parame- $(a\in \mathbb{R} \Vert a\Vert=1)$ , whose elements can be represented as
ter estimation problems, and we must use an estimate in 1
the update criterion, $\hat{s}_{n}^{est}(D^{n})$ , instead. The mesurement $\Pi_{\pm}(a)=_{\overline{2}}(1\pm a\cdot\sigma)$ (B12)

update estimator $\hat{s}^{est}$ is not necessarily the same as $s^{est}.$ This is the Bloch parametrization of projective
The second problem is that unlike the independent and measurements. We identify the set of parameters
identically distributed $(i.i.d.)$ measurement case, calcu- $\mathcal{A}=\{a\in \mathbb{R}^{3}|\Vert a\Vert=1\}$ with the measurement class $\mathcal{M}=$

lation of the Fisher matrix in the adaptive case requires {All rank-l projective measurements on a one-qubit system}.
summing over an exponential amount of data, and is The asymptotic behavior of the average expected $fi-$

computationally intensive. To avoid this problem, we delity $\triangle_{N}^{IFave}-$ is known in the 1-qubit state estimation
approximate the sum over all possible measurements by case [17, 18, 27]. The measure used for calculating
that over only those measurements that have been per- this average is the Bures distribution, $d\mu(s)=\pi\neg 1(1-$

formed:
$\Vert s\Vert^{2})^{-1/2}ds$ . If we limit our available measurements to

$F_{n+1}(u^{n+1}, s)\approx\tilde{F}_{n+1}(u^{n+1}, s|D^{n})$ (B6) be sequential and independent (i.e., nonadaptive), $\overline{\Delta}_{N}^{IFave}$

$n+1$ behaves at best as $O(N^{-3/4})[17,27]$ . On the other hand,
$:= \sum_{i=1}F(\Pi_{i}, s)$ , (B7) if we are allowed to use adaptive, separable, or collective

measurements, $\triangle_{N}^{IFave}-$ can behave as $O(N^{-1})$ [18]. In
where [17, 18, 27], the coefficient of the dominant term in the

asymptotic limit is also derived.
$F( \Pi_{i}, s);=\sum_{x_{i}\in \mathcal{X}_{i}}\frac{\nabla_{\epsilon}p(x_{i\rangle}\Pi_{i}|s)\nabla_{s}^{T}p(x_{i};\Pi_{i}|s)}{p(x_{i;}\Pi_{i}|s)}$, (B8)

2. Results and analysis
$\Pi_{i}=u_{i}(D^{i-1}),$ $i=1,$ $\cdots,$ $n+1$ . (B9)

The matrix $F(\Pi_{i}, s)$ is the Fisher matrix for the i-th As explained in Sec. $B$ ld, we consider the A-
measurement probability distribution $\{p(x_{i};\Pi_{i}|s)\}_{x_{i}\in \mathcal{X}_{\mathfrak{i}}}$ , optimality criterion for one-qubit state estimation using
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projective measurements. In Sec. $B2$ a we give the ana- In this case, Eq. (Bll) is rewritten in the Bloch vector
lytic solution. representation as

$a_{n+}^{A}$ $:=$
$\arg\min_{a\in A}$

tr $[H(\hat{s}_{n}^{est})\{\tilde{F}_{n}(a^{n},\hat{s}_{n}^{est}|D^{n})$

$+F(a,\hat{s}_{n}^{est})\}^{-1}]$ . (B15)

We present the analytic solution of Eq.(B15) in the form
of the following theorem.

$a$ . Analytic solution for $A$ -optimality in 1-qubit state
estimation Theorem 1 Given a sequence of data $D^{n}$ $=$

$\{(a_{1}, x_{1}), \ldots, (a_{n}, x_{n})\}$ , the n-th estimate $\hat{s}_{n}^{est}$ , and
a real positive matrix $H$ , the $A$ -optimal POVM Bloch

First, we give the explicit form of the Fisher matrix for vector is given by
projective measurements. The probability distribution
for the rank-l projective measurement $\Pi(a)$ is given by $a_{\dot{n}+1}^{A-\circ pt}= \frac{B_{n}e_{\min}(C_{n})}{\Vert B_{n}e_{\min}(C_{n})\Vert}$, (B16)

where

$p( \pm;a|s)=\frac{1}{2}(1\pm s\cdot a)$ , (B13) $B_{n}=\sqrt{\tilde{F}_{n}(a^{n},\hat{s}_{n}^{est}|D^{n})H(\hat{s}_{n}^{est})^{-1}F_{n}^{-}(a^{n},\hat{s}_{n}^{est}|D^{n})},$

(B17)
$C_{n}=B_{n}^{-}(I-\hat{s}_{n}^{est}\hat{s}_{n}^{estT}+\tilde{F}_{n}(a^{n},\hat{s}_{n}^{est}|D^{n})^{-1})B_{n}$, (B18)

and the Fisher matrix is $e_{\min}(C_{n})$ is the eigenvector of the matrix $C_{n}$ correspond-
ing to the minimal eigenvalue, and I is the identity in
the parameter space.

$F(a, s)=\underline{aa^{T}}.$ $(B14)$ Here we omit the proof of Theorem 1. That is in the
$1-(a\cdot s)^{2}$ Appendix of [5].

[1] M. Paris and. J. Reh&ek, e&., Quantum State Estima- [14] F. Husz\’ar and N. M. T. Houlsby (2011), quant-
tion, Lecture Notes in Physics (Springer, Berlin, 2004). ph/1107.0895.

[2] R. D. Gill and S. Massar, Phys. Rev. $A$ 61, 042312 [15] T. Hannemann, D. Reiss, C. Balzer, W. Neuhauser, P. $E.$

(2000). Toschek, and C. Wunderlich, Phys. Rev. $A$ 65, 050303
[3] M. Hayashi, ed., Asymptotic Theory of Quantum Statis- (2002).

tical Inference: Selected Papers (World Scientific, Singa- [16] R. Okamoto, M. Iefuji, S. Oyama, K. Yamagata, H. Imai,
pore, 2005). A. Fujiwara, and S. Takeuchi, Phys. Rev. Lett. 109,

[4] M. $D$ . de Burgh, N. K. Langford, A. C. Doherty, and 130404 (2012).
A. Gilchrist, Phys. Rev. $A$ 78, 052122 (2008). [17] E. Bagan, M. Baig, R. $Mu\overline{n}oz$-Tapia, and A. Rodriguez,

[5] T. Sugiyama, P. S. Tumer, and M. Murao, Phys. Rev. A Phys. Rev. $A$ 69, 010304(R) (2004).
85, 052107 (2012). [18] E. Bagan, M. A. Ballester, R. D. Gill, R. Munoz-Tapia,

[6] J. Nunn, B. J. Smith, G. Puentes, I. A. Walmsley, and and O. Romero-Isart, Phys. Rev. Lett. 97, 130501 (2006).
J. S. Lundeen, Phys. Rev. $A$ 81, 042109 (2010). [19] T. Sugiyama, P. S. Tumer, and M. Murao, New J. Phys.

[7] H. Nagaoka, in Proc. Int. Symp. on Inform. Theory (2012).
(1988), p. 198. [20] E. Pmgove\v{c}ki, Int. J. Theor. Phys. 16, 321 (1977).

[8] H. Nagaoka, in Asymptotic Theory of Quantum Statis- [21] Notel, there are also different approaches to evaluating
tical Inference: Selected Papers, edited by M. Hayashi the precision of estimators, including error probabilities
(World Scientific, 2005), chap. 10. [28], region estimators [29, 30].

[9] A. Fujiwara, J. Phys. $A$ : Math. Gen. 39 (2006). [22] C. R. Rao, Linear Statistical Inference and Its Applica-
[10] D. G. Fischer, S. H. Kienle, and M. Freyberger, Phys. tions, Wiley series in probability and statistics (Wiley,

Rev. $A$ 61, 032306 (2000). New York, 2002), 2nd ed., (originally published in 1973).
[11] C. J. Happ and M. Freyberger, Phys. Rev. $A$ 78, 064303 [23] S. G. Self and K. Y. Liang, J. Am. Stat. Assoc. 82, 605

(2008). (1987).
[12] C. J. Happ and M. Freyberger, Eur. Phys. $J.$ $D64,579$ [24] S. Watanabe, K. Hagiwara, S. Akaho, Y. Motomura,

(2011). K. Fukumizu, M. Okada, and M. Aoyagi, Theory and
[13] D. G. Fischer and M. Freyberger, Phys. Lett. $A$ 273, 293 Implimentation of Leaming Systems (Morikita Publish-

(2000). ing Co., 2005), (in Japanese).

116



[25] F. Pukelsheim, Optimal Design of Experiments, Classics [27] E. Bagan, M. A. Ballester, R. D. Gill, A. Monras andin Applied Mathematics (SIAM, Philadelphia, 2006). R. Munoz-Tapia, Phys. Rev. $A$ 73, 032301 (2006).[26] P. Hall and C. C. Heyde, Martingale Limit Theory and [28] T. Sugiyama, P. S. Tumer, and M. Murao, Phys. Rev. $A$

Its Application, Probability and mathematical statistics 83, 012105 (2011).
(Academic Press, New York, 1980). [29] K. M. R. Audenaert and S. Scheel, New J. Phys. 11,

023028 (2009).
[30] R. Blume-Kohout (2012), quant-ph/1202.5270.

117


