
TOWARD OBTAINING A TABLE OF LINK-HOMOTOPY CLASSES:
THE SECOND HOMOLOGY OF A REDUCED KNOT QUANDLE

AYUMU INOUE\dagger

1. INTRODUCTION

Link-homotopy, introduced by Milnor [11], gives rise to an equivalence relation on
oriented and ordered links. More precisely, two links are said to be link-homotopic if
they are related to each other by a finite sequence of ambient isotopies and self-crossing
changes, keeping the orientation and ordering. Here, a self-crossing change is a homotopy
for a single component of a hnk depicted in Figure 1, supported in a small ball whose
intersection with the component consists of two segments. The classification problem of
links up to link-homotopy is already solved by Habegger and Lin [5] completely. They
gave an algorithm which determines whether given links are link-homotopic or not. On
the other hand, a table consisting of all representatives of link-homotopy classes is still
not known other than partial ones given by Milnor [11, 12] for links with 3 or fewer
components and by Levine [9] for links with 4 components. The comparison algorithm
never gives us a complete table. To obtain such a table, we should require link-homotopy
invariants. Indeed, both of Milnor and Levine utilized numerical invariants to obtain the
tables.

$\frac{\lrcorner self-crossingchange\backslash }{\backslash r}$

FIGURE 1

Although numerical link-homotopy invariants had not known other than the ones given
by Milnor and Levine, the author [7] showed that we have alot of numerical link-homotopy
invariants utilizing quandle theory. $A$ quandle, introduced by Joyce [8], is an algebraic
system consisting of a set together with a binary operation whose definition is strongly
motivated in knot theory. Hughes [6] defined the reduced knot quandle of a link, which is
a certain quotient of the knot quandle given by Joyce [8], and showed that reduced knot
quandles are isomorphic if associated links are link-homotopic to each other. The author
[7] showed that we have the fundamental classes in the second quandle homology group
of a reduced knot quandle, which are invariant under link-homotopy, derived from each
components of an associated link if we modify the definition of quandle homology slightly.
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(It is shown by Carter et al. [1, 2] that we have the fundamental classes in the second
quandle homology group of a knot quandle which are invariant under ambient isotopy.)
The numerical invariants are given by evaluating the images of the fundamental classes by
homomorphisms from the second (modified) quandle homology group of a reduced knot
quandle to that of a quandle with a 2-cocycle.

The capability of the numerical invariants for classifying links up to link-homotopy
essentially depends on the second (modified) quandle homology group of a reduced knot
quandle. We are thus interested in the homology group. In this paper, we show that
the second (modified) quandle homology group of a reduced knot quandle is completely
generated by the fundamental classes derived from the components of an associated link
being non-trivial up to link-homotopy (Theorem 4.1). It means, the numerical invariants
detect that each component of a link is trivial or not up to hnk-homotopy. Theorem 4.1
is analogous to the work of Eisermann [3] showing that the second quandle homology
group of a knot quandle is freely generated by the fundamental classes derived from the
non-trivial components of an associated link.

Throughout this paper, links are assumed to be oriented, ordered and in $S^{3}.$

2. QUANDLE

In this section, we review a quandle, a knot quandle and a reduced knot quandle briefly.
We refer the reader to [2, 8] for details about quandles and knot quandles, and to [6, 7]
for details about reduced knot quandles.

We first review the definition of a quandle. $A$ quandle is a non-empty set $X$ equipped
with a binary $operation*:X\cross Xarrow X$ satisfying the following axioms:

(Ql) For each $x\in X,$ $x*x=x.$
(Q2) For eaeh $x\in X$ , a $map*x:Xarrow X(w\mapsto w*x)$ is bijective.
(Q3) For each $x,$ $y,$ $z\in X,$ $(x*y)*z=(x*z)*(y*z)$ .

The notion of a homomorphism between quandles is appropriately defined. We will write
the image $(*y)^{\epsilon}(x)$ as $x*^{\epsilon}y$ for any $x,$ $y\in X$ and $\epsilon\in\{\pm 1\}.$

Associated with a link $L$ , we have a quandle as follows. Let $N$ be a subspace of $\mathbb{C}$ which
is the union of the closed unit disk $D$ and a segment $\{z\in \mathbb{C}|1\leq z\leq 5\}$ . Assume that
$D$ is oriented counterclockwise. $A$ noose of $L$ is a continuous map $\nu$ : $Narrow S^{3}$ satisfying
the following conditions:

$\bullet$ The map $\nu$ sends $5\in N$ to a fixed base point $p\in S^{3}\backslash L.$

$\bullet$ The restriction map $\nu|_{D}:Darrow S^{3}$ is an embedding.
$\bullet$ The link $L$ intersects with ${\rm Im}\nu$ transversally only at $\nu(0)$ .
$\bullet$ The intersection number between $L$ and ${\rm Im}\nu|_{D}$ is $+1.$

The left-hand side of Figure 2 depicts an image of a noose $\nu$ . We define a product $*$ of
two nooses $\mu$ and $\nu$ by

$(\mu*\nu)(z)=\{\begin{array}{ll}\mu(z) if |z|\leq 1,\mu(4z-3) if 1\leq z\leq 2,\nu(13-4z) if 2\leq z\leq 3,\nu(\exp(2(z-3)\pi i)) if 3\leq z\leq 4,\nu(4z-15) if 4\leq z\leq 5.\end{array}$
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The right-hand side of Figure 2 shows what happens if we take this product. Let $Q(L)$

be the set consisting of all homotopy classes of nooses of $L$ . The product $*of$ nooses is
obviously well-defined on $Q(L)$ and satisfies the axioms of a quandle. We call this quandle
$Q(L)with*$ the knot quandle of $L$ . By definition, a knot quandle is obviously invariant
under ambient isotopy. It is known by Joyce [8] and independently by Matveev [10] that
knot quandles are isomorphic if and only if associated knots are week equivalent, i.e.,
there is a homeomorphism of $S^{3}$ sending an associated knot to the other.

FIGURE 2

Although a knot quandle is not invariant under link-homotopy, we next see that its
certain quotient is invariant under link-homotopy. For a link $L$ , let $RQ(L)$ be the quotient
of $Q(L)$ by the moves depicted in Figure 3. Then the $product*$ of nooses is well-defined
on $RQ(L)$ and still satisfies the axioms of a quandle. We call this quandle $RQ(L)with*$
the reduced knot quandle of $L$ . It is known by Hughes [6] that reduced knot quandles are
isomorphic if associated links are link-homotopicl.

$\uparrow$ $t$ 1 1
same component same component same component same component

FIGURE 3

We finish up this section by discussing an algebraic property of a reduced knot quandle.
We start with reviewing the following notions. An automorphism group Aut(X) of a
quandle $X$ is, as usual, the group consisting of all automorphisms of $X$ . The axiom (Q3)
of a quandle says that the $bijection*x:Xarrow X$ is an automorphism of $X$ for each $x\in X.$

An inner automorphism group Inn(X) of $X$ is the subgroup of Aut(X) generated by the
automorphisms $*x$ : $Xarrow X$ . We call an element of the inner automorphism group an
inner automorphism.

Nooses $\mu$ and $\nu$ of a hnk $L$ intersect with the same component of $L$ if and only if there
is an inner automorphism of the knot quandle $Q(L)$ sending the homotopy class of $\mu$ to
that of $v$ . Thus I-moves depicted in Figure 3 are algebraically described as the following
relation in $Q(L)$ :

lThis definition of a reduced knot quandle is given by the author. In his paper [6], Hughes defined a
reduced knot quandle in an algebraic way and more complicated geometric way.
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$(*)$ For each $a\in Q(L)$ and $\varphi\in$ Inn$(Q(L)),$ $a*\varphi(a)=a.$

Further II-moves depicted in Figure 3 are described as the relation $a*(b*\varphi(b))=a*b$ for
each $a,$ $b\in Q(L)$ and $\varphi\in$ Inn$(Q(L))$ . Since this relation is an consequence of the relation
$(*)$ , the reduced knot quandle $RQ(L)$ is algebraically described as the quotient of $Q(L)$

by the relation $(*)$ .
We call a quandle $X$ to be quasi-trivial [7] if $X$ satisfies the condition $x*\varphi(x)=x$ for

each $x\in X$ and $\varphi\in$ Inn(X). $A$ reduced knot quandle is of course quasi-trivial.

Remark 2.1. For a quandle $X$ , let $F(X)$ be the free group generated by all elements
of $X$ and $N(X)$ the subgroup of $F(X)$ normally generated by all elements in the form
$y^{-1}xy(x*y)^{-1}$ with some $x,$ $y\in X$ . We call the quotient group $F(X)/N(X)$ the associated
group of $X$ and denote it by As(X). Since $w*(x*y)=((w*^{-1}y)*x)*y$ for any $w,$ $x,$ $y\in X,$

we have a homomorphism As$(X)arrow$ Inn(X) sending $xto*x(x\in X)$ . Thus As(X) acts
on $X$ from the right through this homomorphism. We will write the image of $x\in X$ by
the right action of $g\in$ As(X) as $x\triangleleft g.$

For a hnk $L$ , it is known that the associated group As$(Q(L))$ of the knot quandle $Q(L)$

is isomorphic to the knot group $G(L)$ of $L$ (see [4, 8] for example). An isomorphism
As$(Q(L))arrow G(L)$ is given by restricting each noose of $L$ to the union of $\partial D$ and the
segment $\{z\in \mathbb{C}|1\leq z\leq 5\}$ $(this is a$ positive meridian $of L, by$ definition) . Therefore,
as Hughes mentioned in [6], the associated group As$(RQ(L))$ of the reduced knot quandle
$RQ(L)$ is isomorphic to the reduced knot group $RG(L)$ , where $RG(L)$ is the quotient
group of $G(L)$ by the subgroup normally generated by all elements in the form $[g, h^{-1}gh]$

with some $g,$ $h\in G(L)$ .

3. QUANDLE HOMOLOGY

This section is devoted to reviewing homology theory of quandles. We see that we
have the fundamental classes in the second homology group of a knot quandle, which
are invariant under ambient isotopy, derived from each components of an associated link.
Although we do not have the fundamental classes in the second homology group of a
reduced knot quandle which are invariant under link-homotopy, modifying the definition
of quandle homology slightly, we define the fundamental classes being invariant under
hnk-homotopy. We refer the reader to [1, 2] for details about quandle homology, and to
[7] for details about modified quandle homology.

We first review the definition of quandle homology. Let $X$ be a quandle. Consider the
free abelian group $C_{n}^{R}(X)$ generated by all $n$-tuples $(x_{1}, x_{2}, \ldots, x_{n})\in X^{n}$ for each $n\geq 1.$

We let $C_{0}^{R}(X)=\mathbb{Z}$ . Define a map $\partial_{n}:C_{n}^{R}(X)arrow C_{n-1}^{R}(X)$ by

$\partial_{n}(x_{1},x_{2}, \ldots, x_{n})=\sum_{i=2}^{n}(-1)^{i}\{(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n})$

$-(x_{1}*x_{i}, \ldots, x_{i-1}*x_{i}, x_{i+1}, \ldots, x_{n})\}$

for $n\geq 2$ , and $\partial_{1}=0$ . Then we have $\partial_{n-1}\circ\partial_{n}=0$ . Thus $(C_{n}^{R}(X), \partial_{n})$ is a chain complex.
Let $C_{n}^{D}(X)$ be a subgroup of $C_{n}^{R}(X)$ generated by $n$-tuples $(x_{1}, x_{2}, \ldots, x_{n})\in X^{n}$ with
$x_{i}=x_{i+1}$ for some $i$ if $n\geq 2$ , and let $C_{n}^{D}(X)=0$ otherwise. It is routine to check
that $\partial_{n}(C_{n}^{D}(X))\subset C_{n-1}^{D}(X)$ . Therefore, putting $C_{n}^{Q}(X)=C_{n}^{R}(X)/C_{n}^{D}(X)$ , we have a
chain complex $(C_{n}^{Q}(X), \partial_{n})$ . Let $G$ be an abelian group. The n-th quandle homology
group $H_{n}^{Q}(X;G)$ with coefficients in $G$ is the n-th homology group of the chain complex
$(C_{n}^{Q}(X)\otimes G, \partial_{n}\otimes id)$ . The n-th quandle cohomology group $H_{Q}^{n}(X;G)$ with coefficients in
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$G$ is the n-th cohomology group of the cochain complex $(Hom(C_{n}^{Q}(X), G), Hom(\partial_{n}, id))$ .
We will use the symbol $[\cdot]$ to denote a class of quandle homology or cohomology.

Let $L$ be an $n$-component link and $D$ its diagram. To arcs $\alpha,$
$\beta,$

$\ldots$ of $D$ , we assign
elements $a,$ $b,$

$\ldots$ of the knot quandle $Q(L)$ respectively in the same manner as Wirtinger
generators. For each $i(1\leq i\leq n)$ , consider an element $W_{i}= \sum\epsilon\cdot(a, b)\in C_{2}^{Q}(Q(L))$ ,
where the sum runs over the crossings of $D$ which consist of under arcs $\alpha$ and $\gamma$ belonging
to the i-th component and an over arc $\beta$ as depicted in Figure 4, and $\epsilon$ is 1 or-l depending
on whether the crossing is positive or negative respectively. Then, by construction, $W_{i}$

is a 2-cycle. Suppose $D’$ is a diagram of $L$ obtained from $D$ by a single Reidemeister
move and $W_{i}’\in C_{2}^{Q}(Q(L))$ the 2-cycle derived from $D’$ . The axioms (Ql), (Q2) and
(Q3) of a quandle ensure that the difference $W_{i}’-W_{i}$ is in the second boundary group
$B_{2}^{Q}(Q(L))$ (see [1, 2]). Thus the homology class $[W_{i}]\in H_{2}^{Q}(Q(L))$ does not depend on
the choice of $D$ , i.e., it is invariant under ambient isotopy. We call this homology class
the fundamental class of the knot quandle $Q(L)$ derived from the i-th component, and
denote it by $[K_{i}]\in H_{2}^{Q}(Q(L))$ .

i-th $\underline{\alpha}\downarrow^{\beta}\underline{\gamma}$

FIGURE 4

For the reduced knot quandle $RQ(L)$ , we of course have a 2-cycle $W_{i}\in C_{2}^{Q}(RQ(L))$

derived from $D$ in the same manner. However, if we let $D”$ be a diagram of $L$ obtained
from $D$ by a self-crossing change at a crossing of the i-th component, then the difference
$W_{i}"-W_{i}$ is $\pm(a, \varphi(a))\mp(\varphi(a), a)$ with some $a\in RQ(L)$ and $\varphi\in$ Inn$(RQ(L))$ . This
difference is not in the second boundary group $B_{2}^{Q}(RQ(L))$ in general. Therefore, we do
not have fundamental classes in $H_{2}^{Q}(RQ(L))$ being invariant under link-homotopy. To
solve this problem, we consider to modify the definition of quandle homology as follows.

Suppose $X$ is a quasi-trivial quandle. Let $C_{n}^{D,qt}(X)$ be a subgroup of $C_{n}^{R}(X)$ which
is generated by $n$-tuples $(x_{1}, x_{2}, \ldots, x_{n})\in X^{n}$ with $x_{i}=x_{i+1}$ for some $i$ and $n$-tuples
$(x_{1}, \varphi(x_{1}), x_{3}, \ldots, x_{n})\in X^{n}$ with some $\varphi\in$ Inn(X) for $n\geq 2$ , and $C_{n}^{D,qt}(X)=0$ for
$n=0,1$ . By the assumption that $X$ is quasi-trivial, $\partial_{n}(C_{n}^{D,qt}(X))\subset C_{n-1}^{D,qt}(X)$ . Thus,
putting $C_{n}^{Q,qt}(X)=C_{n}^{R}(X)/C_{n}^{D,qt}(X)$ , we have a chain complex $(C_{n}^{Q,qt}(X), \partial_{n})$ . For an
abehan group $G$ , let $H_{n}^{Q,qt}(X;G)$ denote the n-th homology group of the chain complex
$(C_{n}^{Q,qt}(X)\otimes G, \partial_{n}\otimes id)$ , and $H_{Q,qt}^{n}(X;G)$ the n-th cohomology group of the cochain complex
$(Hom(C_{n}^{Q,qt}(X), G), Hom(\partial_{n}, id))$ . We will use the symbol $[\cdot]^{qt}$ to denote a class of these
modified quandle homology or cohomology.

Let $L,$ $D$ and $D”$ be the same as above. Then we obviously have 2-cycles $W_{i}$ and
$W_{i}"$ in $C_{2}^{Q,qt}(RQ(L))$ derived from $D$ and $D”$ respectively. Remark that the difference
$W_{i}"-W_{i}$ is equal to zero in $C_{2}^{Q,qt}(RQ(L))$ because $\pm(a, \varphi(a))\mp(\varphi(a), a)$ is an element of
$C_{2}^{D,qt}(RQ(L))$ . Therefore, the homology class $[W_{i}]^{qt}\in H_{2}^{Q,qt}(RQ(L))$ is invariant under
link-homotopy. We call this homology class the fundamental class of the reduce knot
quandle $RQ(L)$ derived from the i-th component, and denote it by $[K_{i}]^{qt}\in H_{2}^{Q,qt}(RQ(L))$ .
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Remark 3.1. Let $X$ be a quandle, $G$ an abelian group and $\theta\in Hom(C_{2}^{Q}(X), G)$ a
2-cocycle. For an $n$-component hnk $L$ , consider the multi-set consisting of $n$-tuples

$(\langle[\theta]|f|[K_{1}]\rangle, \langle[\theta]|f|[K_{2}]), \ldots, \langle[\theta]|f|[K_{n}]\rangle)\in G^{n}$

derived from all homomorphisms $f$ : $Q(L)arrow X$ , where $\langle[\theta]|f|[K_{i}]\rangle\in G$ denotes the
value obtained by evaluating the image of $[K_{i}]\in H_{2}^{Q}(Q(L))$ by the homomorphism
$H_{2}^{Q}(Q(L))arrow H_{2}^{Q}(X)$ induced from $f$ with $[\theta]\in H_{Q}^{2}(X;G)$ . This multi-set, introduced
by Carter et al. [2], is obviously invariant under ambient isotopy and is called a quandle
cocycle invariant.

Assume that $X$ is quasi-trivial and $\theta$ a 2-cocycle in $Hom(C_{2}^{Q,qt}(X), G)$ . Then obviously
the multi-set consisting of $n$-tuples

$(\langle[\theta]^{qt}|f|[K_{1}]^{qt}\rangle, \langle[\theta]^{qt}|f|[K_{2}]^{qt}\rangle, \ldots, \langle[\theta]^{qt}|f|[K_{n}]^{qt}\rangle)\in G^{n}$

derived from all homomorphisms $f$ : $RQ(L)arrow X$ is invariant under link-homotopy. $A$

numerical hnk-homotopy invariant introduced by the author in [7] is exactly this multi-set,
i.e., a type of quandle cocycle invariant.

4. THE SECOND HOMOLOGY OF A REDUCED KNOT QUANDLE

The aim of this section is to show the following theorem:

Theorem 4.1. Let $L$ be an $n$ -component link. If the $i_{1},$ $i_{2},$
$\ldots,$

$i_{m}$ -th components of $L$ are
non-trivial and the other components are trivial, up to link-homotopy, then

$H_{2}^{Q,qt}(RQ(L))=\langle[K_{i_{1}}]^{qt}\rangle\oplus\langle[K_{i_{2}}]^{qt}\rangle\oplus\cdots\oplus\langle[K_{i_{m}}]^{qt}\rangle.$

Here, a component of a hnk is said to be trivial up to hnk-homotopy if the component
bounds a disk which is disjoint from the other components of the hnk, after deforming
the link by link-homotopy. The second homology group $H_{2}^{Q,qt}(RQ(L))$ is not always
torsion-free (see Remark 4.8).

Theorem 4.1 is an analogue of the following theorem introduced by Eisermann [3]:

Theorem 4.2 (Eisermann [3]). Let $L$ be an $n$ -component link. If the $i_{1},$ $i_{2},$
$\ldots,$

$i_{m}$ -th
components of $L$ are non-trivial and the other components are trivial, then $H_{2}^{Q}(Q(L))$ is
freely generated by $[K_{i_{1}}],$ $[K_{i_{2}}],$

$\ldots,$
$[K_{i_{m}}]$ , i. e.,

$H_{2}^{Q}(Q(L))=\langle[K_{i_{1}}]\rangle\oplus\langle[K_{i_{2}}]\rangle\oplus\cdots\oplus\langle[K_{i_{m}}]\rangle=span_{Z}\{[K_{i_{1}}], [K_{i_{2}}], \ldots, [K_{i_{m}}]\}.$

We prove Theorem 4.1 in a similar way to the proof of Theorem 4.2 which Eisermann
gave in [3]. We first review the notion of a quandle covering. Let $X$ and $\tilde{X}$ be quandles.
An epimorphism $p$ : $\tilde{X}arrow X$ is said to be a covering if $p(\tilde{x})=p(\tilde{y})$ implies $\tilde{w}*\tilde{x}=\tilde{w}*\tilde{y}$

for any $\tilde{w},\tilde{x},\tilde{y}\in\tilde{X}$ . In other words, the natural map $\tilde{X}arrow$ Inn(X) sending $\tilde{x}to*\tilde{x}$ factors
through $p$ . This property of a covering enables us to write an element $\tilde{w}*\tilde{x}$ as $\tilde{w}*p(\tilde{x})$ .

A reduced knot quandle has the universal covering. To see it, we consider the following
situation. Let $L$ be an $n$-component link and $\mathscr{D}$ an embedded oriented disk in $S^{3}$ with
which each component of $L$ intersects only once transversally and positively. Choose a
diagram $D$ of $L$ so that the image of $\mathscr{D}$ is a segment intersecting with each component
of $L$ in order (see the left-hand side of Figure 5). Furthermore, let $T_{i}$ be $a(1,1)$-tangle
obtained from $(S^{3}, L)$ by removing a small regular neighborhood of the intersection point
of the i-th component of $L$ and $\mathscr{D}$ . We remark that we have a diagram $D_{i}$ of $T_{i}$ , removing
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the image of $\mathscr{D}$

$D$ $D_{3}$

FIGURE 5

a small regular neighborhood of the intersection point of the i-th component and the
image of $\mathscr{D}$ in $(S^{2}, D)$ (see the right-hand side of Figure 5).

For each $i(1\leq i\leq n)$ , consider the set consisting of the homotopy classes of nooses of
$T_{i}$ which intersect with the i-th component. Let $\overline{RQ}(L)$ be the union of the quotients of
these sets by I- and II-moves depicted in Figure 3, i.e.,

$\overline{RQ}(L)=\bigcup_{i=1}^{n}$ (( $\{$noose of $T_{i}$ i.w. i-th component $\}/$ homotopy)/ $I$- and II-moves).

For each noose $\mu$ of $T_{i}$ intersecting with the i-th component and noose $\nu$ of $T_{j}$ intersecting
with the j-th component, regarding $v$ as a noose of $T_{i}$ in a natural way, we define the
product $\mu*\nu$ in the same manner as in Section 2. This product $*$ is well-defined on $\overline{RQ}(L)$ ,
and satisfies the axioms of a quandle and the condition for a quasi-trivial quandle. That is,
$\overline{RQ}(L)with*$ is a quasi-trivial quandle. Inclusion maps ( $S^{3}\backslash$ (small ball), $T_{i}$ ) $\hookrightarrow(S^{3}, L)$

naturally induce a projection $\pi$ : $\overline{RQ}(L)arrow RQ(L)$ . By definition, the natural map
$\overline{RQ}(L)arrow$ Inn$(\overline{RQ}(L))$ factors through $\pi$ . Thus $\pi$ is a covering.

To claim that $\pi$ is universal, we further introduce the following notations. For each $i$

$(1\leq i\leq n)$ , let $\alpha_{ij}$ denote an arc of $D_{i}$ which is a part of the i-th component $(0\leq j\leq r_{i})$ ,
in the way as depicted in the right-hand side of Figure 5. We assign $a_{ij}\in\overline{RQ}(L)$ to each
$\alpha_{ij}$ in the same manner as a Wirtinger generator. Note that we have $\pi(a_{ir_{i}})=\pi(a_{i0})$ .
Let $\beta_{ij}$ be the arc separating $\alpha_{i,j-1}$ and $\alpha_{ij}(1\leq j\leq r_{i})$ , and $b_{ij}\in\overline{RQ}(L)$ the element
assigned to $\beta_{ij}$ . Then we have a relation $a_{ij}=a_{i,j-1}*^{\epsilon_{tj}}b_{ij}$ in $\overline{RQ}(L)$ , where $\epsilon_{ij}$ is
1 or $-1$ depending on whether the crossing consisting of $\alpha_{i,j-1},$ $\alpha_{ij}$ and $\beta_{ij}$ is positive
or negative respectively. We note that $\overline{RQ}(L)$ is generated by all elements of the set
$\{a_{ij}|1\leq i\leq n, 0\leq j\leq r_{i}\}$ and any relation in $\overline{RQ}(L)$ is a consequence of the relations
$\{a_{ij}=a_{i,j-1}*^{\epsilon_{ij}}b_{ij}|1\leq i\leq n, 1\leq j\leq r_{i}\}.$

Proposition 4.3. Let $X$ and $\tilde{X}$ be quasi-trivial quandles and $p:\tilde{X}arrow X$ a covering.
Then, for each homomorphism $f$ : $\overline{RQ}(L)arrow X$ sending $a_{i0}$ to $x_{i}$ , we have a unique lift

$\tilde{f}:\overline{RQ}(L)arrow\tilde{X}$ of $f$ sending $a_{i0}$ to $\tilde{x_{i}}\in p^{-1}(x_{i})(i.e.,\tilde{f}$ is a homomorphism satisfying
$p\circ\tilde{f}=f)$ . In particular, the natural projection $\pi$ : $\overline{RQ}(L)arrow RQ(L)$ is the universal
covering.
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Proof. We inductively define a map $\tilde{f}:\{a_{ij}|1\leq i\leq n, 0\leq j\leq r_{i}\}arrow\tilde{X}$ as follows. To
start with we let $\tilde{f}(a_{i0})=\tilde{x_{i}}$ for all $i(1\leq i\leq n)$ so that $p\circ\tilde{f}(a_{i0})=x_{i}$ . At each crossing,
we set $\tilde{f}(a_{ij})$ $=\tilde{f}(a_{i,j-1})*^{\epsilon_{j}}\cdot f(b_{ij})$ . Then, by induction, we have $p\circ\tilde{f}(a_{ij})=f(a_{ij})$ and
so $\tilde{f}(a_{ij})=\tilde{f}(a_{i,j-1})*^{\epsilon}:j\tilde{f}(b_{ij})$ for all $i$ and $j(1\leq i\leq n, 1\leq j\leq r_{i})$ . It means that $\tilde{f}$

uniquely extends to a homomorphism $\tilde{f}:\overline{RQ}(L)arrow\tilde{X}$ satisfying $p\circ\tilde{f}=f.$ $\square$

Remark 4.4. Remember that the reduced knot group $RG(L)$ acts on $RQ(L)$ from the
right. Thus $RG(L)$ also acts on $\overline{RQ}(L)$ from the right, because $\pi$ : $\tilde{RQ}(L)arrow RQ(L)$

is a covering. For each $i(1\leq i\leq n)$ , let $RG_{i}(L)$ denote the reduced knot group for
the subhnk of $L$ obtained by removing the i-th component. Since $\overline{RQ}(L)$ is quasi-trivial,
$RG_{i}(L)$ acts on each element of $\overline{RQ}(L)$ intersecting with the i-th component from the
right through the quotient map $RG(L)arrow RG_{i}(L)$ . Therefore, each element of $\overline{RQ}(L)$

can be written as $a_{j0}\triangleleft u$ with some $j(1\leq j\leq n)$ and $u\in RG_{j}(L)$ . Identifying an element
of $\overline{RQ}(L)$ with an element of $RG_{i}(L)$ , consider the element

$l_{i}=b_{i1}^{\epsilon_{t1}}b_{i2}^{\epsilon_{i2}}\cdots b_{ir_{1}}^{\epsilon_{1r_{1}}}\in RG_{i}(L)$ .
Then, by definition, we have $a_{ir}:=a_{i0}\triangleleft l_{i}.$

Let $X$ and $\tilde{X}$ be (not necessary quasi-trivial) quandles. Assume that an abelian group
$G$ acts on Xf from the left. We call an epimorphism $E$ : $Garrow\tilde{X}arrow X$ to be a centml
extension if the following conditions hold:

(El) For each $g\in G$ and $\tilde{x},\tilde{y}\in\tilde{X},$ $(g\cdot\tilde{x})*\tilde{y}=g\cdot(\tilde{x}*\tilde{y})$ and $\tilde{x}*(g\cdot\tilde{y})=\tilde{x}*\tilde{y}.$

(E2) The abehan group $G$ acts freely and transitively on each fiber $E^{-1}(x)$ .
By definition, a central extension is a covering equipped with special properties. We next
see that, for a quasi-trivial quandle $X$ and its central extension $Garrow\tilde{X}arrow X$ with some
quasi-trivial quandle 51, when a homomorphism $RQ(L)arrow X$ lifts to $RQ(L)arrow\tilde{X}.$

Two central extensions $E_{1}$ : $Garrow\tilde{X}_{1}arrow X$ and $E_{2}$ : $Garrow\tilde{X}_{2}arrow X$ are said to be
equivalent if there is a $G$-equivariant isomorphism $f$ : $\tilde{X}_{1}arrow\tilde{X}_{2}$ satisfying $E_{1}=E_{2}$ of.
For a quasi-trivial quandle $X$ and an abehan group $G$ , let $\mathscr{E}^{qt}(X, G)$ be the set consisting
of all equivalence classes of central extensions $Garrow\tilde{X}arrow X$ with some quasi-trivial
quandle Xf. Then we have the following lemma:

Lemma 4.5. There is a bijection between $\mathscr{E}^{qt}(X, G)$ and $H_{Q,qt}^{2}(X;G)$ .

Proof. For a central extension $E$ : $Garrow\tilde{X}arrow X$ , choose a section $s$ : $Xarrow\tilde{X}$ and define a
map $\theta:X\cross Xarrow G$ so that $s(x)*s(y)=\theta(x, y)\cdot s(x*y)$ . We remark that $\theta$ is well-defined
because $G$ acts freely and transitively on each fiber and we have $s(x)*s(\varphi(x))=s(x)$ for
all $x\in X$ and $\varphi\in Inn(X)$ . It is easy to see that $\theta$ is a 2-cocycle in $Hom(C_{2}^{Q,qt}(X), G)$ .
Suppose $\theta’\in Hom(C_{2}^{Q,qt}(X), G)$ is a 2-cocycle derived from another section $s’$ : $Xarrow\tilde{X}.$

Then the difference $\theta’-\theta$ is in the second coboundary group $B_{Q,qt}^{2}(X;G)$ . Indeed, with a
map $\eta:Xarrow G$ defined so that $\mathcal{S}’(x)=\eta(x)\cdot s(x)$ , we have $\theta’(x, y)-\theta(x, y)=\eta(\partial_{1}(x, y))$ .
We thus have a unique class $[\theta]^{qt}\in H_{Q,qt}^{2}(X;G)$ associated with $E$ . Further, consider
equivalent central extensions $Garrow\tilde{X}_{1}arrow X$ and $Garrow\tilde{X}_{2}arrow X$ with a $G$-equivariant
isomorphism $f$ : $\tilde{X}_{1}arrow\tilde{X}_{2}$ , and a 2-cocycle $\theta$ derived from a section $s$ : $Xarrow\tilde{X}_{1}$ . Then,
$fos$ : $Xarrow\tilde{X}_{2}$ is of course a section and we have $(fos)(x)*(f\circ s)(y)=\theta(x, y)\cdot(f\circ s)(x*y)$

for all $x,$ $y\in X$ . Therefore, we have a map $\Phi$ : $\mathscr{E}^{qt}(X, G)arrow H_{Q,qt}^{2}(X;G)$ .
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On the other hand, for a 2-cocycle $\theta\in Hom(C_{2}^{Q,qt}(X), G)$ , define a binary operation
$*$ on $G\cross X$ by $(g, x)*(h, y)=(g+\theta(x, y), x*y)$ . Then $G\cross X$ with $*$ is in fact a
quasi-trivial quandle. We let $G\cross\theta X$ denote this quasi-trivial quandle. The abelian group
$G$ acts on $G\cross\theta X$ from the left by $h\cdot(g, x)=(g+h, x)$ . We thus have a central extension
$Garrow G\cross\theta Xarrow X$ sending $(g, x)$ to $x$ . Consider a map $\eta$ : $Xarrow G$ and a 2-cocycle
$\theta’=\theta+\eta\circ\partial_{1}$ cohomologous to $\theta$ . Then the central extensions $Garrow G\cross\theta Xarrow X$ and
$Garrow G\cross\theta’Xarrow X$ are equivalent with a $G$-equivariant isomorphism $G\cross\theta Xarrow G\cross\theta’X$

sending $(g, x)$ to $(g-\eta(x), x)$ . Therefore, we have a map $\Psi$ : $H_{Q,qt}^{2}(X;G)arrow \mathscr{E}^{qt}(X, G)$ .
For a 2-cocycle $\theta\in Hom(C_{2}^{Q,qt}(X), G)$ , define a section $s$ : $Xarrow G\cross\theta X$ by $\mathcal{S}(x)=(O, x)$ .

Then we have $s(x)*s(y)=\theta(x, y)\cdot s(x*y)$ for all $x,$ $y\in X$ . It means that $\Phi\circ\Psi=$ id.
Conversely, for a central extension $E$ : $Garrow\tilde{X}arrow X$ , suppose $\theta\in Hom(C_{2}^{Q,qt}(X), G)$ is a
2-cocycle derived from a section $s:Xarrow\tilde{X}$ . Then the central extensions $G\cross\theta Xarrow X$

and $E$ are equivalent with a $G$-equivariant isomorphism $f$ : $G\cross\theta Xarrow\tilde{X}$ sending $(g, x)$

to $g\cdot s(x)$ . It means that $\Psi\circ\Phi=$ id. $\square$

Let $X$ and Xf be quasi-trivial quandles, $G$ an abelian group and $E$ : $Garrow\tilde{X}arrow X$ a
central extension. Consider a homomorphism $f$ : $RQ(L)arrow X$ sending $\pi(a_{i0})$ to $x_{i}$ . Then
we have a homomorphism $f\circ\pi$ : $\overline{RQ}(L)arrow X$ sending $a_{i0}$ to $x_{i}$ , and so its unique lift
$\overline{f\circ\pi}$ : $\overline{RQ}(L)arrow\tilde{X}$ sending $a_{i0}$ to $\tilde{x_{i}}\in E^{-1}(x_{i})$ in the light of Proposition 4.3. Suppose
$\theta\in Hom(C_{2}^{Q,qt}(X), G)$ is a 2-cocycle derived from a section $s$ : $Xarrow\tilde{X}$ . Then we have
the following proposition, of which a necessary and sufficient condition for the existence
of a lift $RQ(L)arrow\tilde{X}$ of a homomorphism $RQ(L)arrow X$ is given as a corollary:

Proposition 4.6. For each $i(1\leq i\leq n)$ and $u\in RG_{i}(L)$ , we have
$\overline{f\circ\pi}(a_{i0}\triangleleft l_{i}u)=\langle[\theta]^{qt}|f|[K_{i}]^{qt}\rangle\cdot\overline{f\circ\pi}(a_{i0}\triangleleft u)$ .

Proof. By a straightforward calculus, we have

$s(f\circ\pi(a_{\’{i} j}))=\{\begin{array}{ll}-\theta(f\circ\pi(a_{i,j-1}), f\circ\pi(b_{ij}))\cdot(s(f\circ\pi(a_{i,j-1}))*s(f\circ\pi(b_{ij}))) if \epsilon_{ij}=1,\theta(f\circ\pi(a_{ij}), f\circ\pi(b_{ij}))\cdot(s(f\circ\pi(a_{i,j-1}))*^{-1}s(f\circ\pi(b_{ij}))) if \epsilon_{ij}=-1\end{array}$

for all $j(1\leq j\leq r_{i})$ . Therefore, by definition, we have
$\overline{f\circ\pi}(a_{i0}\triangleleft l_{i})=\overline{f\circ\pi}(a_{ir_{i}})=\langle[\theta]^{qt}|f|[K_{i}]^{qt}\rangle\cdot\overline{f\circ\pi}(a_{i0})$.

It is easy to see that we have the equation in the proposition from the above equation. $\square$

Corollary 4.7. $A$ homomorphism $f$ : $RQ(L)arrow X$ sending $\pi(a_{i0})$ to $x_{i}$ uniquely lifts
to a homomorphism $\tilde{f}$ : $RQ(L)arrow\tilde{X}$ sending $\pi(a_{i0})$ to $\tilde{x_{i}}\in E^{-1}(x_{i})$ if and only if
$\langle[\theta]^{qt}|f|[K_{i}]^{qt}\rangle=0$ for all $i(1\leq i\leq n)$ .

Proof. Since $\pi(a_{i0}\triangleleft l_{i})=\pi(a_{i0})$ for all $i$ , the lift $\overline{fo\pi}$ is decomposed as $\tilde{f}\circ\pi$ if and only
if $\langle[\theta]^{qt}|f|[K_{i}]^{qt}\rangle=0$ for all $i(1\leq i\leq n)$ . $\square$

We now prove Theorem 4.1.

Proof of Theorem 4.1. We first remark that $[K_{i}]^{qt}=0$ if the i-th component of $L$ is trivial
up to hnk-homotopy. Indeed, we have a diagram of a hnk being hnk-homotopic to $L$ in
which the i-th component has no crossings.

Milnor [11] showed that $l_{i}\in RG_{i}(L)$ is trivial if and only if the i-th component of
$L$ is trivial up to link-homotopy. We thus have the cyclic subgroups $\langle l_{i_{1}}\rangle,$ $\langle l_{i_{2}}\rangle,$

$\ldots,$
$\langle l_{i_{m}}\rangle$
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of $RG_{i_{1}}(L),$ $RG_{i_{2}}(L),$
$\ldots,$

$RG_{i_{m}}(L)$ respectively, which are not trivial. We note that the
orders of these cyclic subgroups are not always infinite.

For each (1, 1)-tangle $T_{i}(i=i_{1}, i_{2}, \ldots, i_{m})$ , consider its reduced knot quandle $RQ(T_{i})$

in the same manner as in Section 2. We then have a natural projection $\pi_{i}$ : $RQ(T_{i})arrow$

$RQ(L)$ , which is obviously a covering. Define a left action of $\langle l_{i}\rangle$ on $RQ(T_{i})$ by

$l_{i}\cdot(a_{j0}\triangleleft u)=\{\begin{array}{ll}a_{i0}\triangleleft l_{i}u (j=i) ,a_{j0}\triangleleft u (j\neq i) .\end{array}$

We remark that each element of $RQ(T_{i})$ can be written as $a_{j0}\triangleleft u$ with some $j(1\leq j\leq n)$

and $u\in RG_{j}(L)$ . The projection $\pi_{i}$ with the action $\langle l_{i}\ranglearrow RQ(T_{i})$ satisfies the condition
(El) of a central extension but does not satisfy the condition (E2) in general. Indeed,
although $\langle l_{i}\rangle$ acts freely and transitively on a fiber $\pi_{i}^{-1}(a_{10}\triangleleft u)$ , it acts trivially on a fiber
$\pi_{i}^{-1}(a_{j0}\triangleleft u)$ if $j\neq i$ . However, we can define a 2-cocycle $\theta_{i}\in Hom(C_{2}^{Q,qt}(RQ(L)), \langle l_{i}\rangle)$

associated with a section $s$ : $RQ(L)arrow RQ(T_{i})$ so that $s(a)*s(b)=\theta_{i}(a, b)\cdot s(a*b)$ if
$a=a_{i0}\triangleleft u$ with some $u\in RG_{i}(L)$ , and $\theta_{i}(a, b)=0$ otherwise. It is routine to check that
the class $[\theta_{i}]^{qt}\in H_{Q,qt}^{2}(RQ(L);\langle l_{i}\rangle)$ does not depend on the choice of $s$ . By definition,
we have $\langle[\theta_{i}]^{qt}|$ id $|[K_{j}]^{qt}\rangle=l_{i}^{\delta_{1j}}$ , where $\delta_{ij}$ denotes the Kronecker delta. It means that
$[K_{i}]^{qt}\neq 0$ for $i=i_{1},i_{2},$ $\ldots i_{m}$ and $\langle[K_{i_{1}}]^{qt}\rangle\oplus\langle[K_{i_{2}}]^{qt}\rangle\oplus\cdots\oplus\langle[K_{i_{m}}]^{qt}\rangle$ is a subgroup of
$H_{2}^{Q,qt}(RQ(L))$ .

It is easy to see that $H_{1}^{Q,qt}(RQ(L))$ is freely generated by $[(a_{10})]^{qt},$ $[(a_{20})]^{qt},$
$\ldots,$

$[(a_{n0})]^{qt}.$

Thus, for each abelian group $G,$ $H_{Q,qt}^{2}(RQ(L);G)$ is isomorphic to $Hom(H_{2}^{Q,qt}(RQ(L)), G)$

by the universal coefficient theorem. We let
$G=H_{2}^{Q,qt}(RQ(L))/\langle[K_{i_{1}}]^{qt}\rangle\oplus\langle[K_{i_{2}}]^{qt}\rangle\oplus\cdots\oplus\langle[K_{i_{m}}]^{qt}\rangle$

and $[\theta]^{qt}:H_{2}^{Q,qt}(RQ(L))arrow G$ be the projection. Then, by Lemma 4.5, we have a central
extension $E:Garrow G\cross\theta RQ(L)arrow RQ(L)$ associated with a representative $\theta$ of $[\theta]^{qt}$ . By
definition, $\langle[\theta]^{qt}|$ id $|[K_{i}]^{qt}\rangle=0$ for all $i(1\leq i\leq n)$ . Therefore, by Corollary 4.7, we have
a homomorphism $s$ : $RQ(L)arrow G\cross\theta RQ(L)$ which is a hft of the identity map of $RQ(L)$ .
Since $s$ is a section of $E,$ $[\theta]^{qt}$ should be the zero map by Lemma 4.5 again. It means that
$G$ is trivial, i.e., $H_{2}^{Q,qt}(RQ(L))=\langle[K_{i_{1}}]^{qt}\rangle\oplus\langle[K_{i_{2}}]^{qt}\rangle\oplus\cdots\oplus\langle[K_{i_{m}}]^{qt}\rangle.$ $\square$

In the light of Theorem 4.1, we can completely determine which components of a link
$L$ are trivial up to link-homotopy by computing $H_{2}^{Q,qt}(RQ(L))$ .
Remark 4.8. Consider the projection $[\zeta_{i}]$ : $H_{2}^{Q,qt}(RQ(L))arrow\langle[K_{i}]^{qt}\rangle$ , which sends $[K_{j}]^{qt}$

to $([K_{i}]^{qt})^{\delta_{:j}}$ , for each $i=i_{1},$ $i_{2},$
$\ldots,$

$i_{m}$ . Then, in the light of Lemma 4.5, we have a central
extension $E_{i}$ : $\langle[K_{i}]^{qt}\ranglearrow\langle[K_{i}]^{qt}\rangle\cross\zeta:RQ(L)arrowRQ(L)$ associated with a representative
$\zeta_{i}$ of $[\zeta_{i}]$ . Further, by Proposition 4.6, we have id $\circ\pi(a_{i0}\triangleleft l_{i})=[K_{i}]^{qt}\cdot\overline{id\circ\pi}(a_{i0})$ . Thus
the order of $[K_{i}]^{qt}$ should divide that of $l_{i}$ , if $l_{i}$ has finite order. On the other hand, we
have the homomorphism $[\theta_{i}]$ : $H_{2}^{Q,qt}(RQ(L))arrow\langle l_{i}\rangle$ sending $[K_{j}]^{qt}$ to $l_{i}^{\delta_{*j}}$ . Therefore, the
cardinality of $\langle[K_{i}]^{qt}\rangle$ coincides with that of $\langle l_{i}\rangle.$
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