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1. INTRODUCTION

In their seminal paper [3], Fock and Goncharov defined positive representations of
the fundamental group of a surface $S$ into a split semi-simple real Lie group $G$ (e.g.
PSL$(n, \mathbb{R}))$ . They showed that the space of positive representations satisfies properties
similar to those of the Teichm\"uller space: a positive representation is faithful, has dis-
crete image in $G$ , and the moduh space of positive representations is diffeomorphic to
$\mathbb{R}^{-\chi(S)\dim G}$ . In fact, when $G=$ PSL $(2, \mathbb{R})$ , the space of positive representations coincides
with the Teichm\"uller space. They showed that the space of positive representations co-
incides with the Hitchin component [9] in the representation space of $\pi_{1}(S)$ into $G$ . It
should be mentioned here that Labourie introduced in [11] the notiQn of Anosov repre-
sentations, whose moduli space coincides with the Hitchin component and the space of
positive representations [11], [8].

When the Lie group is PSL $(n, \mathbb{R})$ and an ideal triangulation of $S$ is fixed, Fock and
Goncharov defined two types of invariants for positive representations: ‘vertex functions’
and ‘edge functions’. $A$ vertex function is also called a triple ratio, which we will use
in this note. They showed that these invariants give a set of coordinates of positive
representations. (Their coordinates are also defined for more general representations
into PSL $(n, \mathbb{C}).)$ The Fock-Goncharov coordinates are extensively studied: there are
generalizations to 3-manifolds groups [1], [6], [5]; the McShane identities are studied in
[12]; Fenchel-Nielsen type coordinates for the Hitchin component in [2]. In [10], $I$ and Xin
Nie give a parametrization of PGL $(n, \mathbb{C})$-representations of a surface group as an analogue
of the Fenchel-Nielsen coordinates.

In this note, $I$ will explain Fock-Goncharov coordinates and give an explicit construc-
tion of matrix generators for once-punctured torus group, in terms of Fock-Goncharov
coordinates.

2. FLAGS

Let $GL(n, \mathbb{C})$ be the general linear group of $n\cross n$ complex matrices. We define two
subgroups $B$ and $U$ by

$B=\{[Matrix]\}, U=\{[Matrix]\}.$

The center of $GL(n, \mathbb{C})$ is isomorphic to $\mathbb{C}^{*}$ , the set of diagonal matrices with the same
diagonal entries. We let PGL$(n, \mathbb{C})=$ $GL(n, \mathbb{C})/\mathbb{C}^{*}$ . We have a short exact sequence
$1arrow \mathbb{Z}/n\mathbb{Z}arrow SL(n, \mathbb{C})arrow$ PGL $(n, \mathbb{C})arrow 1.$
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$A$ (complete) flag in $\mathbb{C}^{n}$ is a sequence of subspaces

$\{0\}=V^{0}\subsetneq V^{1}\subsetneq V^{2}\subsetneq\cdots\subsetneq V^{n}=\mathbb{C}^{n}.$

We denote the set of all flags by $\mathcal{F}_{n}.$ $GL(n, \mathbb{C})$ and PGL $(n, \mathbb{C})$ act naturally on $\mathcal{F}_{n}$ from
the left.

We represent $X\in GL(n, \mathbb{C})$ by $n$ column vectors as
$X=(x^{1} x^{2} . . . x^{n})$

where $x^{i}=t(x_{1}^{i}, \ldots, x_{n}^{i})$ are column vectors. By setting $X^{i}=span_{\mathbb{C}}\{x^{1}, \ldots, x^{i}\}$ , we

obtain a flag $\{0\}\subset X^{1}\subsetneq\cdots\subsetneq X^{n}$ from an element of $GL(n, \mathbb{C})$ . Thus we have a map
from $GL(n, \mathbb{C})$ to $\mathcal{F}_{n}$ . Since an upper triangular matrix acts from the right as

(1) $X(\begin{array}{lll}b_{11} \cdots b_{1n} \ddots \vdots O b_{nn}\end{array})=(b_{11}x^{1} b_{12}x^{1}+b_{22}x^{2} . . . b_{1n}x^{1}+\cdots+b_{nn}x^{n})$ ,

the map induces a map $GL(n, \mathbb{C})/Barrow \mathcal{F}_{n}$ . We can easily show that this is bijective and
equivariant with respect to the left action of $GL(n, \mathbb{C})$ . Thus we can identify $\mathcal{F}_{n}$ with
$GL(n, \mathbb{C})/B$ . We can also identify $\mathcal{F}_{n}$ with PGL$(n, \mathbb{C})/B$ where we also denote by $B$ for
the quotient in PGL $(n, \mathbb{C})$ by abuse of notation. We let $\mathcal{A}\mathcal{F}_{n}=GL(n, \mathbb{C})/U$ and call an
element of $\mathcal{A}\mathcal{F}_{n}$ an affine flag. We have the following short exact sequence:

$1 arrow B/U arrow \mathcal{A}\mathcal{F}_{n}\Vert arrow \mathcal{F}_{n}\Vert arrow 1.$

$GL(n, \mathbb{C})/U GL(n, \mathbb{C})/B$

Example 2.1. When $n=2,\overline{J^{-}}_{n}$ can be identified with the set of lines in $\mathbb{C}^{2}$ . In other
words, $\mathcal{F}_{2}$ is the projective line $\mathbb{C}P^{1}$ . If we regard $\mathbb{C}P^{1}$ as $\mathbb{C}\cup\{\infty\}$ , PGL $(2, \mathbb{C})$ acts on
$\mathbb{C}P^{1}$ by linear fractional transformations and the stabilizer at $\infty$ is the subgroup $B$ of
upper triangular matrices. Thus we have $\mathcal{F}_{2}=\mathbb{C}P^{1}\cong$ PGL$(2, \mathbb{C})/B.$

3. TRIPLES OF FLAGS

We will describe the moduli space of configurations of‘generic’ $n$-tuples of flags.

Definition 3.1. Let $(X_{1}, \ldots, X_{k})$ be a $k$-tuple of flags. We fix a matrix representative
$X_{i}=(x_{i}^{1}\cdots x_{i}^{n})\in GL(n, \mathbb{C})$ for each $i.$ $Ak$-tuple of flags $(X_{1}, \ldots, X_{k})$ is called generic if

(2) $\det(x_{1}^{1}\cdots x_{1}^{i_{1}}x_{2}^{1}\cdots x_{2}^{i_{2}}\cdots x_{k}^{1}\cdots x_{k}^{i_{k}})\neq 0$

for any $0\leq i_{1},$
$\ldots,$

$i_{k}\leq n$ satisfying $i_{1}+i_{2}+\cdots+i_{k}=n.$

We remark that the genericity does not depend on the choice of the matrix representa-
tives. Moreover the determinant in (2) is a well-defined complex number if $X_{1},$

$\ldots,$
$X_{k}\in$

$\mathcal{A}\mathcal{F}_{n}$ (recall (1)). We denote the determinant by $\det(X_{1}^{i_{1}}X_{2}^{i_{2}}\ldots X_{k}^{i_{k}})$ for a $k$-tuple of affine
flags. In this note, we only consider generic triples or quadruples of flags,

Let $(X, Y, Z)$ be a generic triple of $\mathcal{F}_{n}$ . We fix lifts of $X,$ $Y,$ $Z$ to $\mathcal{A}\mathcal{F}_{n}$ . For a triple $(i,j, k)$

of integers satisfying $0\leq i,j,$ $k\leq n$ and $i+j+k=n$ , we denote $\triangle^{i,j,k}=\det(X^{i}Y^{j}Z^{k})$ .
Consider a big triangle subdivided into $n^{2}$ small triangles as in Figure 1. Such a triple
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FIGURE 1. $A$ subdivision into $n^{2}$ triangles $(n=4)$ .

$(i,j, k)$ corresponds to a vertex of the subdivided triangle. For an interior vertex $(i,j, k)$
$(in$ other words $1\leq i,j, k\leq n-1 and i+j+k=n)$ , the triple mtio is defined by

$T_{i,j,k}(X, Y, Z)= \frac{\triangle^{i+1,j,k-1}\Delta^{i-1,j+1,k}\Delta^{i,j-1,k+1}}{\Delta^{1+1,j-1,k}\Delta^{i,j+1,k-1}\triangle^{i-1,j,k+1}}.$

We show a graphical representation of $T_{i,j,k}(X, Y, Z)$ in Figure 2. Each factor of the
numerator (resp. denominator) corresponds to a vertex colored by black (resp. white)
in Figure 2. We remark that $T_{i,j,k}(X, Y, Z)$ does not depend on the choice of the matrix
representatives. By definition, we have

(3) $T_{i,j,k}(X, Y, Z)=T_{j,k,i}(Y, Z, X)=T_{k,i,j}(Z, X, Y)$ ,

(4) $T_{i,j,k}(X, Y, Z)= \frac{1}{T_{i,k,j}(X,Z,Y)},$

(5) $T_{l,j,k}(X, Y, Z)=T_{i,j,k}(AX, AY, AZ)$ ,

for any generic triple $X,$ $Y,$ $Z\in \mathcal{F}_{n}$ and $A\in$ PGL $(n, \mathbb{C})$ .

FIGURE 2. The black (resp. white) vertices correspond to the factors of
the numerator (resp. denominator) of the triple ratio.

If we denote

$Conf_{k}(\mathcal{F}_{n})=GL(n, \mathbb{C})\backslash$ { $(X_{1}, \ldots, X_{k})|$ generic $k$-tuple of $\mathcal{F}_{n}$ },

$T_{i,j,k}$ are functions on $Conf_{3}(\mathcal{F}_{n})$ by (5). Moreover, we have the following theorem.

Theorem 3.2 (Fock-Goncharov). $A$ point of $Conf_{3}(\mathcal{F}_{n})$ is completely determined by the
$\frac{(n-1)(n-2)}{2}$ triple mtios. In particular, $Conf_{3}(\overline{J^{-}}_{n})\cong(\mathbb{C}^{*})^{(n-1)(n-2)/2}.$

This theorem follows from the existence of the following normal form of a generic triple
of flags.
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Lemma 3.3. Let $(X, Y, Z)$ be a generic triple of $\mathcal{F}_{n}$ . Then there exists a unique $A\in$

$GL(n, \mathbb{C})$ and upper triangular matri ces $B_{1},$ $B_{2},$ $B_{3}$ up to scalar multiplication such that

$AXB_{1}=(\begin{array}{lll}1 O \ddots O 1\end{array}),$ $AYB_{2}=$ $(_{1}^{O}$ . $\cdot\cdot$

$01)$ , $AZB_{3}=(\begin{array}{llll}1 0 \cdots 01 1 O\vdots \ddots 1* 1\end{array}).$

This means that the lower triangular part of $AZB_{3}$ gives a set of complete invariants
for configurations of generic triples of flags. We will later give a brief sketch of the proof
of Lemma 3.3, which gives an explicit construction of the matrix $A$ . Combining with the
following lemma, we complete the proof of Theorem 3.2.

Lemma 3.4. Each entry of the lower triangular part of $AZB_{3}$ in Lemma 3.3 is written
by a Laurent polynomial of the triple mtios $T_{i,j,k}(X, Y, Z)$ .

This can be proved by induction. Probably the Laurent polynomial might be a poly-
nomial. Here are some examples for small $n.$

Example 3.5. When $n=3$ , let $T=T_{1,1,1}(X, Y, Z)$ , then we have the following normal
form:

(6) $X=(\begin{array}{lll}1 0 00 1 00 0 1\end{array}), Y=(\begin{array}{lll}0 0 10 1 01 0 0\end{array}), Z=(\begin{array}{lll}1 0 01 1 01 T+1 1\end{array})$

In fact, we have

$T_{1,1,1}(X, Y, Z)= \frac{\det(001001|_{1}^{000}0)\det(01|_{1}^{11}1)\det(00|_{1T+1}^{10}11)}{\det(0101|111)\det(001|_{10}^{000}01)\det(_{1}0|_{1T+1}^{10}11)}=T.$

When $n=4$ , let $T_{ijk}=T_{i,j,k}(X, Y, Z)$ , then we have the following normal form:

$X=I_{4}, Y=C_{4}, Z=(\begin{array}{llll}1 0 0 01 1 0 01 T_{l21}+1 1 01 (T_{211}+1)T_{121}+1 (T_{112}+1)T_{211}+1 1\end{array}),$

where $I_{4}$ is the identity matrix and $C_{4}$ is the counter diagonal matrix with all counter
diagonal entries 1.

Sketch of proof of Lemma 3.3. First we show that for a generic triple of flags $(X, Y, Z)$ ,
there exists a unique matrix $A\in GL(n, \mathbb{C})$ such that

$AX=(\begin{array}{lll}* \cdots * \ddots \vdots O *\end{array}), AY= (_{*}^{O}. .\cdot\cdot.\cdot **) , AZ=(\begin{array}{ll}1 \vdots 1 *\end{array})$
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We need to find a matrix $A=(a_{ij})$ satisfying
$a_{i1}\dot{d}_{1}+a_{i2}\dot{d}_{2}+\cdots+a_{ln}\dot{\theta}_{n}=0, (j<i)$

$a_{i1}\dot{\oint}_{1}+a_{i2}\dot{\oint}_{2}+\cdots+a_{in}y_{n}^{j}=0, (j<n-i+1)$

$a_{i1}z_{1}^{1}+a_{i2}z_{2}^{1}+\cdots+a_{in}z_{n}^{1}=1.$

This system of linear equations is equivalent to the matrix equation

(7) $(\begin{array}{lll}x_{1}^{1} \cdots x_{n}^{1}\vdots\cdots \cdots \vdots x_{1,y_{1}^{1}}^{i-1} \cdots x_{n}^{\dot{\iota}-1}y_{n}^{1}\vdots\cdots \cdots \vdots y_{1}^{n-i}z_{1}^{1} \cdots y_{n}^{n-i}z_{n}^{1}\end{array})(\begin{array}{l}a_{i1}\vdots a_{in}\end{array})=(\begin{array}{l}0\vdots 01\end{array}), i=1, \ldots, n.$

Since $(X, Y, Z)$ is generic, we can show that the $n\cross n$-matrix in the above equation is
invertible. So we have a unique solution $A\in M(n, \mathbb{C})$ . We can show that $\det A\neq 0$ by
genericity.

Multiplying an upper triangular matrix from the right, we can eliminate the upper right
(or lower right) triangular part of a matrix. This completes the proof of Lemma 3.3. $\square$

From the proof of Lemma 3.3, we have the following proposition.

Proposition 3.6. (1) Let $X,$ $Y\in \mathcal{F}_{n}$ and $z\in \mathbb{C}P^{n-1}$ be a generic triple, and $X’,$ $Y’\in$

$\mathcal{F}_{n}$ and $z’\in \mathbb{C}P^{n-1}$ another generic triple. Then there exists a unique matrix
$A\in$ PGL $(n, \mathbb{C})$ such that

$AX=X’, AY=Y’, Az=z’.$
(2) Let $X,$ $Y\in \mathcal{F}_{n}$ and $z\in \mathbb{C}P^{n-1}$ be a generic triple and $T_{i,j,k}$ be nonzero complex

numbers for $i,j,$ $k$ satisfying $1\leq i,j,$ $k\leq n-1$ and $i+j+k=n$ . Then there
exists a unique flag $Z$ such that $Z^{1}=z$ and $T_{i,j,k}(X, Y, Z)=T_{i,j,k}.$

4. QUADRUPLES OF FLAGS

Let $X,$ $Z$ be affine flags and $y,$ $t$ be non-zero $n$-dimensional vectors. We say that $(X, Z, y)$

is generic if $\det(X^{k}Z^{n-k-1}y)\neq 0$ for $k=0,$ $\ldots,$ $n-1$ . If $(X, Z, y)$ and $(X, Z, t)$ are generic,
we define the edge function for $i=1,$ $\ldots,$ $n-1$ by

(8) $\delta_{i}(X, y, Z, t)=\frac{\det(X^{i-1}yZ^{n-i})\det(X^{i}Z^{n-i-1}t)}{\det(X^{i}yZ^{n-i-1})\det(X^{i-1}Z^{n-i}t)}.$

We show a graphical representation of $\delta_{i}(X, y, Z, t)$ in Figure 3. We can easily check that
$\delta_{i}(X, y, Z, t)$ is well-defined for $X,$ $Z\in \mathcal{F}_{n}$ and $y,$

$t\in \mathbb{C}P^{\mathfrak{n}-1}$ . By definition, we have

(9) $\delta_{i}(X, y, Z, t)=\frac{1}{\delta_{i}(X,t,Z,y)},$

(10) $\delta_{i}(X, y, Z, t)=\delta_{n-i}(Z, t, X, y)$ ,

(11) $\delta_{i}(X, y, Z, t)=\delta_{i}(AX, Ay, AZ, At)$ ,

for any $A\in$ PGL $(n, \mathbb{C})$ . For a generic quadruple $X,$ $Y,$ $Z,T\in \mathcal{F}_{n}$ , we simply denote
$\delta_{1}(X, Y, Z, T)=\delta_{t}(X, Y^{1}, Z,T^{1})$ .
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By (11), $\delta_{i}(X, Y, Z, T)$ are functions on $Conf_{4}(\mathcal{F}_{n})$ . For a generic quadruple $(X, Y, Z, T)$ ,
we have $\frac{(n-1)(n-2)}{2}$ triple ratios for each $(X, Y, Z)$ and $(X, Z, T)$ and $(n-1)$ edge functions.
These $(n-1)(n-2)+(n-1)=(n-1)^{2}$ invariants completely determine a point of
$Conf_{4}(\mathcal{F}_{n})$ . First we show the following proposition.

FIGURE 3. The black (resp. white) vertices correspond to the factors of
the numerator (resp. denominator) of the edge function.

Proposition 4.1. Let $X,$ $Z\in \mathcal{F}_{n}$ and $y\in \mathbb{C}P^{n-1}$ such that the triple $(X, Z, y)$ is generic.
For any $d_{1},$

$\ldots,$
$d_{n-1}\in \mathbb{C}^{*}$ , there exists a unique $t\in \mathbb{C}P^{n-1}$ such that

$\delta_{i}(X, y, Z, t)=d_{i}, i=1, \ldots, n-1.$

In fact, by (11) and Proposition 3.6 (1), we can assume that the triple $(X, Z, y)$ is of
the form

(12) $X=(\begin{array}{lll}1 O \ddots O 1\end{array}),$ $Z=(_{1}^{O}$ .
$\cdot\cdot$

$01)$ , $y=(\begin{array}{l}1\vdots 1\end{array})$

We denote the identity matrix of size $i$ by $I_{i}$ and the counter diagonal matrix of size $i$

with counter diagonal entries 1 by $C_{i}$ . We let $t=[t_{1} :. . . : t_{n}]\in \mathbb{C}P^{n-1}$ , then we have

$\delta_{i}(X, y, Z, t)=\frac{|_{oC_{n-i}}^{I_{i-1}.\cdot.\cdot\cdot\cdot\cdot\cdot\cdot O}01O|\cdot|_{oC_{n-i-1}}^{I_{i}O}oOt_{i+1}|}{|_{0\cdot C_{n-i-1}}^{I_{i}.O}01O|\cdot|\begin{array}{lll}I_{i-1} O \vdots O O t_{i}O C_{n-i} \vdots\end{array}|}=- \frac{t_{i+1}}{t_{i}}.$

Thus $t$ is uniquely determined by $d_{1},$
$\ldots,$

$d_{n-1}.$

Corollary 4.2. $A$ point $(X, Y, Z, T)$ of $Conf_{4}(\mathcal{F}_{n})$ is uniquely determined by $T_{i,j,k}(X, Y, Z)$ ,
$T_{i,j,k}(X, Z, T)$ and $\delta_{i}(X, Y, Z, T)$ .

In fact, $(X, Y, Z)$ is uniquely determined by $T_{i,j,k}(X, Y, Z)$ by Theorem 3.2. Then
$T^{1}\in \mathbb{C}P^{n-1}$ is determined by $\delta_{i}(X, Y, Z, T)$ by Proposition 4.1, and then $T\in \mathcal{F}_{n}$ is
determined by $T_{i,j,k}(X, Z, T)$ by Proposition 3.6 (2). We remark that the quadruple
$(X, Y, Z, T)$ determined by arbitrary given $T_{i,j,k}(X, Y, Z),$ $T_{i,j,k}(X, Z, T)$ and $\delta_{i}(X, Y, Z, T)$

might not be generic but the triples $(X, Y, Z)$ and $(X, Z, T)$ are generic. (If we further
assume‘positivity’ of triple ratios and edge functions, then the quadruple must be generic.)
By a similar argument, we can show that a configuration of generic $k$ flags is uniquely
determined by some triple ratios and edge functions.
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Example 4.3. When $n=2$ , we observed in Example 2.1 that $\mathcal{F}_{2}$ is nothing but $\mathbb{C}P^{1}$ . So
we assume that $X,$ $Z\in \mathbb{C}P^{1}$ . In this identification, the normalization (12) corresponds to

$X=[1:O]=\infty, Z=[O:1]=0, y=[1:1]=1.$

Then we have $\delta_{1}(\infty, 1,0, t)=-t$ . (See Figure 4.) Thus if we define the cross ratio by

$[x_{0}:x_{1}:x_{2}:x_{3}]= \frac{x_{3}-x_{0}x_{2}-x_{1}}{x_{3}-x_{1}x_{2}-x_{0}},$

we have $\delta_{1}(X, y, Z, t)=-[X : Z : y : t].$

$t=-\delta_{1}(X,y,Z,t)fZ=0 y=1$

FIGURE 4

5. FocK-GONCHAROV COORDINATES

We will use triple ratios and edge functions to give a parametrization of PGL$(n, \mathbb{C})-$

representations of a surface group.
Let $S$ be an orientable surface with at least one puncture. We assume that $S$ admits

a hyperbolic metric. An ideal triangle is a triangle with the vertices removed. An ideal
triangulation of $S$ is a system of disjointly embedded arcs on $S$ which decomposes $S$ into
ideal triangles $\Delta_{1},$

$\ldots,$
$\triangle_{N}$ , see Figure 5. (If $S$ is a surface of genus $g$ with $p$ punctures,

then $N=4g-4+2p.$ ) We denote the universal cover of $S$ by $\tilde{S}$ , which can be identified
with the hyperbolic plane $\mathbb{H}^{2}$ . The ideal triangulation of $S$ lifts to an ideal triangulation
of $\tilde{S}$. Each ideal vertex of an ideal triangle of $\tilde{S}$ defines a point on the ideal boundary
$\partial \mathbb{H}^{2}$ . Let $\partial\tilde{S}\subset\partial \mathbb{H}^{2}$ be the set of these ideal points. The fundamental group $\pi_{1}(S)$ acts
on the universal cover $\tilde{S}$ by deck transformations. It also acts on the ideal triangulation
of $\tilde{S}$ and the ideal boundary $\partial\tilde{S}.$

FIGURE 5

Let $\rho$ : $\pi_{1}(S)arrow$ PGL $(n, \mathbb{C})$ be a representation. $A$ map $f$ : $\partial\tilde{S}arrow \mathcal{F}_{n}$ is called a
developing map for $\rho$ if it is $\rho$-equivariant i.e. it satisfies $f(\gamma x)=\rho(\gamma)f(x)$ for $x\in\partial\tilde{S}$ and
$\gamma\in\pi_{1}(S)$ . The representation $\rho$ is recovered from the developing map as follows. Fix an
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ideal triangle of $\tilde{S}$, and denote its ideal vertices by $v_{1},$ $v_{2},$ $v_{3}$ . Since $f$ is -equivariant, we
have $f(\gamma v_{i})=\rho(\gamma)f(v_{i})$ for any $\gamma\in\pi_{1}(S)$ and $i=1,2,3$ . By Proposition 3.6 (1), $\rho(\gamma)$ is
uniquely determined by these data as an element of PGL $(n, \mathbb{C})$ .

Let $\triangle$ be an ideal triangle of the ideal triangulation of $S$ . We take a lift of $\triangle$ to $\tilde{S}$. Then
the ideal vertices of the triangle are mapped to a triple of flags by $f$ . If the triple is generic,
we can define the triple ratios for $\triangle$ . Since $f$ is $\rho-$-equivariant and by (5), the triple ratios
do not depend on the choice of the lift. We can similarly define the edge functions for each
edge of the ideal triangulation. Thus, if $S$ is a surface of genus $g$ with $p$ punctures, we

Altogetherwehave ($2g-2+p)$ parameters.
$Theseparameterscompletelydeterminehave(4g-4+2p)\frac{(n-1)(n-2)}{(n^{2}-1)2}trip1$eratioparametersand ($6g-6+3p)(n-l)$ edgefunctions.

$f$ and hence $\rho$ up to conjugacy. In fact, we can reconstruct $f$ from these parameters. First
we choose one ideal triangle in $\tilde{S}$ and denote the ideal vertices by $v_{1},$ $v_{2},$ $v_{3}$ . Then take
arbitrary $X_{1},$ $X_{2}\in \mathcal{F}_{n}$ and $x_{3}\in \mathbb{C}P^{n-1}$ . Define $f(v_{i})=X_{i}$ for $i=1,2$ . By Proposition
3.6 (2), there exists unique $f(v_{3})\in \mathcal{F}_{n}$ such that $f(v_{3})^{1}=x_{3}$ and the triple ratios
$T_{i,j,k}(f(v_{1}), f(v_{2}), f(v_{3}))$ are the same as the prescribed ones. Let $(v_{1}, v_{2}, v_{4})$ be the ideal
triangle of $\tilde{S}$ adjacent to $(v_{1}, v_{2}, v_{3})$ . By Proposition 4.1, $f(v_{4})^{1}\in \mathbb{C}P^{n-1}$ is uniquely
determined by the edge functions $\delta_{i}(f(v_{1}), f(v_{3})^{1}, f(v_{2}), f(v_{4})^{1})$ . Again by Proposition
3.6 (2), $f(v_{4})\in \mathcal{F}_{n}$ is determined by the triple ratios $T_{i,j,k}(f(v_{1}), f(v_{2}), f(v_{4}))$ . Iterating
these steps, $f$ : $\tilde{S}arrow \mathcal{F}_{n}$ is uniquely determined by these data. If we change the first
choice of $X_{1},$ $X_{2}\in \mathcal{F}_{n}$ and $x_{3}\in \mathbb{C}P^{n-1}$ , then the result differs by a conjugation. The
conjugating element is explicitly given by Proposition 3.6 (1). This system of triple ratio
and edge function parameters are called Fock-Goncharov coordinates.

6. ONCE-PUNCTURED TORUS CASE

Let $S$ be a once punctured torus. Fix an ideal triangulation of $S$ as in Figure 5. We
take a system of generators $\gamma_{1},$ $\gamma_{2}$ of $\pi_{1}(S)$ as in the right of Figure 5. We give the explicit
representation $\rho$ : $\pi_{1}(S)arrow$ PGL $(n, \mathbb{C})$ when $n=3$ parametrized by Fock-Goncharov
coordinates.

FIGURE 6

Figure 6 shows a part of the universal cover $\tilde{S}$ . We let $z,$ $w$ be the triple ratios for the
two ideal triangles and $a,$ $b,$ $c,$ $d,$ $e,$ $f$ be the edge functions for the three edges as indicated
in Figure 6. Each $X_{i}$ in Figure 6 indicates the flag corresponding to the ideal vertex.
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First we fix

$X_{1}=(\begin{array}{lll}1 0 00 1 00 0 1\end{array}), X_{2}=(\begin{array}{lll}0 0 10 1 01 0 0\end{array}), X_{4}^{1}=(\begin{array}{l}111\end{array})$

By(4), we have $z=T_{1,1,1}(X_{1}, X_{4}, X_{2})=(T_{1,1,1}(X_{1}, X_{2}, X_{4}))^{-1}.$ Fkom the normal form
(6), we have

$X_{4}=(\begin{array}{lll}1 0 01 1 01 1+1/z 1\end{array})$

Next we compute $X_{5}^{1}$ . Put $X_{5}^{1}=[\mathcal{S}_{1} : s_{2} : s_{3}]$ . By the definition (8), we have

$a= \delta_{2}(X_{1}, X_{5}^{1}, X_{4}, X_{2}^{1})=\frac{|\begin{array}{l}100\end{array}|S_{2}|_{100}^{110}1|.\cdot|01|_{1}^{0}0|}{|_{00}^{101}01|_{s_{3}0}^{S}S_{2||0|\begin{array}{l}111\end{array}|}10|}=\frac{s_{2}-s_{3}}{s_{3}},$

$b= \delta_{1}(X_{1}, X_{5}^{i}, X_{4}, X_{2}^{1})=\frac{s_{1}/z-s_{2}(1+1/z)+s_{3}}{s_{2}-s_{3}}.$

Solving these equations, we have $X_{5}^{1}=[s_{1} : s_{2} : s_{3}]=[abz+az+a+1 : a+1 : 1].$

Similarly we have

$X_{3}^{1}=[1:-e:ef], X_{6}^{1}=[cdz:cdz+cz:cdz+cz+c+1].$

Next we determine $X_{3}$ in $\mathcal{F}_{n}$ . We have

$X_{1}=I_{3}, X_{2}=C_{3}, X_{3}= (-e1 *** ***)$ ,

where $I_{3}$ and $C_{3}$ are defined as in Example 3.5. Since this triple is obtained from the
normal form of $(X_{1}, X_{2}, X_{3})$ by multiplication by a diagonal matrix with diagonal entries
$(1, -e, ef)$ , we have

$X_{3}=(\begin{array}{lll}1 0 0-e -e 0ef ef(1+w) ef\end{array})$

The matrix $\rho(\gamma_{1})$ maps the triple $(X_{1}^{1}, X_{2}, X_{3})$ to $(X_{5}^{1}, X_{4}, X_{1})$ . Decompose $\rho(\gamma_{1})$ into
two matrices as

$(X_{2}, X_{3}, X_{1}^{1})arrow A(I_{3}, C_{3}, (\begin{array}{l}111\end{array}))arrow B(X_{4}, X_{1}, X_{5}^{1})$ ,

each of which is calculated explicitly by (7). After some computation, we have

$\rho(\gamma_{1})=((1+a)efwefwf(w+1)+afw(z+1)f(w+1)+afwf(w+1) 111)$
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Similarly, since $\rho(\gamma_{2})$ maps $(X_{1}, X_{2}^{1}, X_{3})$ to $(X_{4}, X_{6}^{1}, X_{2})$ , we obtain

$\rho(\gamma_{2})=(_{cdefwz}^{cdefwz}$cdefwz $cf(z+1)+cdf(w+1)zcfz+cdf(w+1)zcdf(w+1)z$ $1+c(z+1)+cdzczc+$dzcdz)
We end this note by drawing some pictures of the images of developing maps. If

we restrict the coordinates to real numbers, we obtain a PGL $(3, \mathbb{R})$-representation. $A$

PGL $(3, \mathbb{R})$ representation preserving a convex set in $\mathbb{R}P^{2}$ is called a convex projective
representation. In [4], Fock and Goncharov showed that, when all triple ratios and edge
functions are positive, the associated PGL $(3,\mathbb{R})$-representation is convex projective. We
remark that Goldman gave a parametrization of convex projective structures in [7]. Fig-
ures 7, 8 and 9 are drawn in local $co$ordinates of $\mathbb{R}P^{2}$ given by

$[x:y:z] \mapsto(\frac{z-y}{x+z’}\frac{x-y}{x+z})$ .

In particular, $X_{1}^{1}=[1 : 0 : 0]$ maps to, $(0,1),$ $X_{2}^{1}=[0 : 0 : 1]$ to $(0,0)$ and $X_{4}^{1}=[1$ : 1 : 1 $]$

to $(0,0)$ . $I$ only drew triangles developed by the products of $\rho(\gamma_{1})$ and $\rho(\gamma_{2})$ whose word
lengths within 4 by using Sage [13]. $I$ remark that these pictures might miss large triangles
in the developed images.
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$e=f=0.5$ $e=f=1.2$ $e=f=2$

FIGURE 7. $a=b=c=d=1.2,$ $z=w=1$ . (These correspond to FUchsian
representations, so the developed images are in a round disk.)

$z=0.2,$ $w=1$

$z=1.5,w=1$
$z=3,w=1$

FIGURE 8. $a=b=c=d=e=f=1.2.$

$e=1.2, f=0.2 e=1.2, f=0.8 e=1.2, f=1.5 e=1.2, f=2$

FIGURE 9. $a=b=c=d=1.2,$ $z=w=1.$
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