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ON NON-LINEAR SPECTRAL GAP FOR SYMMETRIC
MARKOV CHAINS WITH COARSE RICCI
CURVATURES

EIKI KOKUBO AND KAZUHIRO KUWAE

ABSTRACT. In this note, we report the summary of [12] for the case
that the target space is a complete separable CAT(0)-space. We
prove an upper estimate of spectral radius for (non-linear) tran-
sition operator P over LP-maps in the framework of symmetric
Markov chains on a Polish space with positive lower bound of n-
step coarse Ricci curvatures without. its proof. As consequences,
strong LP-Liouville property for P-harmonic maps, a global Poincaré
inequality (spectral gaps) for energy functional over L2-maps (or
functions), and spectral bounds of L2-generator of Markov chains
are presented.

1. COARSE RICCI CURVATURE

Throughout this note, let (E, d) be a Polish space with complete dis-
tance d and Ny := NU{0}. Denote by P?(FE), the family of probability
measures on (F, d) with finite p-th moment. We consider a conservative
Markov chain X= (Q, Xi, 0k, Fx, Foo, Pz)zcr With state space (E, d).
Then the transition kernel P(z,dy) (or P,(dy) in short) of X defined
by P(z,dy) :== P,(X; € dy), z € E satisfies

(P1) for each z € E, B(E) > A — P(x, A) is a probability measure
on (E,B(F)).
(P2) for each A € B(E), E > z — P(xz, A) is B(E)-measurable.

Conversely, for P(xz,dy) satisfying (P1) and (P2), we can construct
a conservative Markov chain X such that P(z,dy) = P,(X; € dy),
z € E. Weset Pf(z) := [, f(y)P(z,dy) = E,[f(X1)] for any non-
negative or bounded B(F)-measurable function f on E. For n € N, if
we set P"f(x) := P(P™"!f)(z) inductively, then P"f(z) = E.[f(X,)]
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and P*(z,A) := (P™14)(z) = P.(X, € A). For any non-negative
measure v on (E,B(F)) and n € N, we define a measure vP" by
vP™(A) == (v, P"1,) := [ P"(x,A)v(dz) = P,(X, € A), A € B(E).
Note that 0, P" = P}, z € E.

We further assume the following condition to X:

(P3) for each z € E, P, € P}(E).

For the given Markov chain X as above and a fixed n € N, a Markov
chain X" = (Q, X2, 607, 3%, I, P}),ck with state space (E,d) defined
by the transition kernel P™(z,dy) is called an n-step Markov chain.
Note that if X satisfies (P3), then X™ does so.

For u,v € PY(E), the L'-Wasserstein/Kantorovich-Rubinstein dis-
tance dw, (i, v) is defined by

dw, (u,v) := inf {/E Ed(x, y)m(dzdy) | m € H(p, I/)} ,

where (p,v) := {r € P(EX E) | 7(A x E) = pu(A),n(E x B) =
v(B) for any A, B € B(E)}.

Definition 1.1 (Coarse Ricci Curvature, [22]). For a pair of distinct
points z,y € E, the coarse Ricci curvature k(z,y) of X along (zy) is
defined to be

dw; (Ps, P)

d(z,y)

and k := inf{k(z,y) | (z,y) € FE x E \ diag} € [—00,1] is said to be
the lower bound of the coarse Ricci curvature. The n-step coarse Ricci
curvature K,(z,y) of X along (zy) is defined to be

dw, (P, P}) :
— 2 V(> - E\d

T (2 ), (5.y) € ExB\dig
and Kk, = inf{k,(z,y) | (z,y) € E x E \ diag} € [—00,1] is said to be
the lower bound of the n-step coarse Ricci curvature.

k(z,y):=1- (> ~00), (z,y) € E x E\ diag

kn(z,y) =1—

Remark 1.2. We denote the family of Lipschitz functions on E by
Lip(E).
(1) If k € R, then P*f € Lip(FE) for any f € Lip(F) and Lip(P"f) <
(1 — k)"Lip(f) by [22, Proposition 20], which implies that (P3)
holds for all X" provided (P3) holds for X and k € R, in par-
ticular, k,(z,y) > —oo for all n € N and z # y under k € R.
(2) The n-step coarse Ricci curvature k,(z,y) is nothing but the
coarse Ricci curvature for X" and x4 (z,y) = s(z,y) for (z,y) €
FE x E \ diag. In general, we have

(1 - Kk+g) < (1 - K,k)(]. - Kg), k,( € N,

which implies limy_,oo(1 — k¢)¢ = infen(1 — K,)Y/™ € [0, +00].
In particular, k € R implies k, € R for all n € N.
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The following example due to [4] shows that the lower bound 0 for
the coarse Ricci curvature does not necessarily mean the same bound
for the n-step coarse Ricci curvature.

Example 1.3 (Simple Random Walk on Cycle Graph, see [4]). Let
G = (V,E) be a cycle graph of size N, that is, G is an unweighted
finite graph with vertices V := {2;}¥, and edges E := {z;zi+1}1L, by
regarding xy.; = z; (i € N). The degree d,(G) for z € V is the number
of edges starting from z is given by d,(G) = 2 for this cycle graph G.
The weight w,, for zy € E is given by wy,s,,, = 1fori=1,2,--- ,N.
Consider a symmetric Markov chain X defined by the transition kernel
P, (dy) == 26,,_,(dy) + 26,,,,(dy). As for the simple random walk on
Z', the coarse Ricci curvature x(z,y) on X satisfles k(z,y) = 0 for
(z,y) € V x V\diag (by [8, Theorems 2,3,4 and 5], [4, Theorems 6 and
7]), hence the n-step coarse Ricci curvature k,(z,y) satisfies k,(z,y) >
0 for (z,y) € V x V \ diag by [22, Proposition 25|]. X (hence the
n-step Markov chain X") is m-symmetric with respect to m(dy) :=
7{,— Zf\;l 0z,(dy). For simplicity, hereafter, we assume N = 5. 3-step
Markov chain X3 is associated with the Cayley graph G := (V?, E3)
defined by V3 := V and E® := {ziz; | 4,7 = 1,2,3,4,5 with i # j}.
G? is a weighted complete graph. The transition kernel P3(dy) of X3
is given by PJ (dy) = §0z,_,(dy) + §0s,_, (dy) + §0e1. (dY) + 5021, (dY)-
G® is a weighted graph with no loop and the degree d,(G3) for z € V' is
given by d,(G®) = 4. The weight w,, for zy € E* is given by wy,, = 3,
Wy, gz, = Wazi,, = 5. Note here that our degree d;(G®) = 4 and the
way for weighting on edges are different from those used in Section 6
of [4], but the conclusion is the same as we calculate below. The 3-step
coarse Ricci curvature k3(z,y) for zy € E3 can be estimated by use of

[4, Theorems 6 and 7}:

3
k3(i, Civ1) = =, = < Ka(@s, Tig2) <

8 8
Therefore, k3(z,y) > 2 for all (z,y) € V x V' \ diag.

ol 3

Remark 1.4. For a continuous time parameter Markov process M, the
notion of coarse Ricci curvature k(x,y) for M is discussed in [22], [28]:

k(z,y) = %1:{%} (l - dWl(HSE;)Z’/;Dt(y’ ))) for (z,y) € ExE\diag.

We can also define the n-step coarse Ricci curvature k,(z,y):

I{n(fL‘,y) = lLIg—l- (1 _ dW1(Pnt($a')aPnt(y"))) for (x,y) = ExE\dlag,

d(x, y)

which is nothing but the coarse Ricci curvature for the time changed
process M" = (Q, Xy, P;). Then, we easily see k,(z,y) = ns(z,y)
for (z,y) € F x E \ diag, in particular, the positivity of lower bound

t—0
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for curvature is equivalent to each other between both coarse Ricci
curvatures. In our discrete setting, we have no such a relation.

Example 1.5 (Riemannian manifold). Let (M, g) be a d-dimensional
complete smooth Riemannian manifold whose Ricci curvature is bound
below by k > 0. In view of Bonnet-Myers theorem, M is compact.
Consider a Brownian motion M= (9, X;, P,) on M associated with
the following Dirichlet energy form on L*(M;m);

{ D) ={ue L*(M;m)]| [,,9(Vf,Vf)dm < oo}
E(f,9) = [,,9(Vf,Vg)dm, f,g€ D(E)

where m is the volume element of (M, g). Let P;(z, dy) be the transition
kernel of M. Under the Ricci curvature lower bound, M is a conser-
vative process, that is, Py(z, ) € P(M) for any t > 0. Moreover, we
see Py(z,-) € P} (M) for any t > 0. We set P(z,dy) := P;(z,dy) and
consider an m-symmetric Markov chain X associated with P(z,dy). It
is proved in [30] that

dw,(Pi(z,-), P(y,")) < e ™d(z,y), z,y€ M.

So the coarse Ricci curvature kp(z,y) of M has the lower estimate

1 (1 ) dw1<a(x,-),a(y,~>))

t—0
d _=k>0, (z,y) €M x M\ diag.

—kt
2 E(l —e™)
On the other hand, the n-step coarse Ricci curvature k,(z,y) of X has
the lower estimate
n n
gwld((l:—’:;fd >1—-e"™ >0, (z,y) €M x M)\ diag.
Note that the same conclusion also holds for a Markov process whose
coarse Ricci curvature is bounded below by « > 0.

kn(z,y)=1-

2. CAT(0)-SPACES

In this section, we summarize the notions of CAT(0)-space and its
properties.

Definition 2.1 (CAT(0)-space). A metric space (Y,d) is called the
CAT(0)-space (Hadamard space, or global NPC space) if for any pair
of points vy, € Y and any ¢ € [0, 1] there exists a point v, € Y such
that for any z € Y

(21)  di(z,7) < (1 —t)dy(z, ) + tdf (z,m) — t(1 — t)dE (0, m)-

By definition, v := (7)tefo,1) is the minimal geodesic joining 7, and
7. Any CAT(0)-space is simply connected. Hadamard manifolds,
Euclidean Bruhat-Tits buildings (e.g. metric tree), spiders, booklets
and Hilbert spaces are typical examples of CAT(0)-spaces (cf. [25]).
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Let (Y,dy) be a CAT(0)-space. Then the distance function dy : Y x
Y — [0,00[ is convex (Corollary 2.5 in [25]) and Jensen’s inequality
(Theorem 6.3 in [25]) can be applied to the convex function Y 3 w —
dy(w, z) for each z € Y.

The inequality (2.1) yields the (strict) convexity of Y 3 z — d(z, z)
for a fixed z € Y. Any closed convex subset of a CAT(0)-space is again
a CAT(0)-space.

The unique existence of projection (or foot-point) to closed convex
set of CAT(0)-space is proved in [14] in more general setting.

Lemma 2.2 (Projection Map to Convex Set, see [25]). Let (Y,dy) be
a complete CAT(0)-space. The following hold:
(1) Let F be a closed convex subset of (Y,dy). Then, for each
T €Y, there exists a unique element wp(x) € F such that
dy(z,F) = dy(np(z),z) holds. We call mp : Y — F the pro-
jection map to F.
(2) Let F be as above. Then mp satisfies

(2.2)  di(z,mr(2)) + dE(np(2),w) < di(z,w), forzeY,weF,
in particular, dy (1p(z),w) < dy(z,w) for 2z € Y,w € F.

Let (Y, dy) be a metric space and P(Y’) a family of Borel probability
measures on Y. For p > 1, we set

Pr(Y) = {N € P(Y) ‘ /Ydfi(x, y)u(dy) < oo for any/some z € Y} :

Each element p € PP(Y) is called a probability measure with p-th mo-
ment.

Definition 2.3 (Barycenter or Center of Mass, see [25]). For u €
P2(Y),if z+— [, d3(2, z)u(dz) has a minimizer b(u) € Y, then we call
b(u) the barycenter, or center of mass of u € P*(Y). For u € P(Y)
and w € Y, we consider the following function F,:

23) Rul®)i= [ (@}(22) - d (w,2))uldo).

We easily see

|Fy(2)| < 2dy(z,w)/y(dy(z,x) + dy(w, x))u(dz) < oo.

IfY 3 z = F,(z) admits a minimizer b(n) independent of w in the
sense that F,(z) > F,(b(un)) if and only if F,(z) > F,(b(u)) for all
z,w,v € Y, we call it barycenter, or center of mass of u € P1(Y). If the
barycenter of p € P?(Y) exists, then it is a barycenter of u € P1(Y).

Assume that (Y, dy) is a geodesic space. For a subset F of Y, denote
by C(F) the closed convex hull of F. That is, C(F) is the smallest
closed convex subset of Y containing F'.
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If (Y,dy) is a complete CAT(0)-space, we can obtain the unique
existence of barycenter of u € P*(Y’) proved in [25].

Lemma 2.4 ([25], cf. [16],[21]). Let (Y,dy) be a complete CAT(0)-
space. Then u € PY(Y) admits a unique barycenter.

For any metric space (Y, dy), we easily see b(é,) =z forz €Y.
The following proposition is proved in Proposition 5.5 in [25].

Theorem 2.5 (Jensen’s Inequality, see [25, Theorem 6.3]). Let (Y, dy)
be a complete CAT(0)-space. Let ¢ be a lower semi-continuous convex
function on'Y and p € PY(Y). Suppose p € L}(Y; ). Then we have

(2.4) (b)) < / o(z)(dx).

Y

Corollary 2.6 (Fundamental Contraction Property, see [25]). Let (Y, dy)
be a complete CAT(0)-space. Let u,v € PX(Y). Then

dy (b(u), b(v)) < dw, (1, v),
where dy, (u,v) is the L'-Wasserstein distance on P*(Y) defined by

duy () i= _inf /Y _dv(@,y)m(dady),
Here M(u,v) = {m € P(Y xY) | n(AxY) = p(A),n(Y x B) =
v(B) for A,B € B(Y)}.

3. LP-MAPS

Let (E,&,u) be a o-finite measure space and £# a completion of
€ with respect to u. In what follows, we say measurable (resp. u-
measurable) for E-measurable (resp. £#-measurable). For function f :
E — [—00,00], we set ||fll, := (fi; |f (@)Pu(dz))"””, | flloo := inf{A >
0| |f(x)] € A p-a.e. z € E}. For two R-valued functions f, g, they are
said to be u-equivalent if f = g p-a.e.

For p €)0,00], LP(E; u) denotes the family of u-equivalence class of
functions with finite || - ||,-norm. Also L°(F; u) denotes the family of
p-equivalence class of functions having finite value p-a.e. Fix a metric
space (Y,dy). For p €]0,00] and measurable maps u,v : E — Y, the
pseudo-distance dy»(u,v) is defined by dp»(u,v) := ||dy (u,v)|[,. More
precisely, for p €]0, oo[ we set

dis(u,v) = ( / dﬁ(u(w),v(x»u(dx))l/p,

and for p = 00, dos(u, v) is the p-essentially supremum of z — dy (u(x), v(z)).
We say that « and v are p-equivalent (u & v in short) if

u(z) = v(z) p-ae z € FE.



For a fixed measurable map h: E — Y, we set
LH(E,Y; ) = {f € &/B(Y) | dy(f,h) € L*(B; )}/ ~.

Such amap h: E — Y is called a base map of L} (E,Y; ). If u(E) <
oo and the image of h: F — Y is bounded, L}, (E,Y; i) is independent
of the choice of such a base map h. In this case, we can assume h = o
for some fixed point 0 € Y.

Proposition 3.1 ([23, Proposition 3.3]). Let (Y, dy) be a metric space
and h: E — Y a measurable map. Take p € [1,00]. Then we have the
following:
(1) If (Y,dy) is complete, then (LY (E,Y; 1), dre) is so.
(2) If (Y,dy) is a geodesic space and any point v, of the constant
speed geodesic 7y : [0,1] — Y joining o to y1 is a continuous
map with respect to (yo,m1), then (LL(E,Y;p),drs) is also a
geodesic space.

In what follows, we assume m(E) < co. Let L?(E,Y;m) be the
space of LP-maps with bounded base maps, that is,

u is m-measurable,

LP(E,)Y;m): = {u:E—>Y

/ d¥(u,0)dm < oo for some o € Y} /33 .
E

Definition 3.2 (Lipschitz Maps). Let (Y, dy) be a geodesic space and

(E,d) a metric space. For a map u : E — Y, we set Lip(u) :=

d(z,y)
Lip(E,Y) :={u: E - Y | Lip(u) < oo}.

Lemma 3.3. Let (Y, dy) be a geodesic space and (E,d) a metric space.
Suppose that m has a p-th moment, that is, [ d?(z,zo)m(dx) < oo for
some/any point xy € E. Then Lip(E,Y) C LP(E,Y;m).

Let S(E,Y) be a space of finite valued maps from F to Y. Any
element of S(E,Y) is called a step map or a simple map. Since m(E) <
o0, S(E,Y) (more precisely S(E,Y)/ <) is a subset of LP(E,Y;m).

Theorem 3.4. Suppose that (E,d) is a Polish space and (Y,dy) is
a separable geodesic space. Take p € [1,00[. Then any element of
LP(E,Y;m) can be LP-approzimated by elements in S(E,Y"). In par-
ticular, if E = supp[m], then (LP(E,Y;m),d») is a separable metric
space. Moreover, if m has a finite p-th moment, then LP(E,Y;m) can
be LP-approzimated by elements in Lip(E,Y), if further E = supp[m],
then Lip(E,Y) is a dense subset of LP(E,Y;m).

In what follows, (E, d) denotes a Polish space with complete distance
d.
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Definition 3.5 ( Pty for Borel Map u). Let X be a conservative Markov
chain on (E, d). Suppose that (Y, dy) is a complete CAT(0)-space and
B(E)/B(Y)-measurable map u : E — Y satisfles P! € P(Y) for
¢ € N. Then we set
Ptu(z) := b(uyPY).

Here uyP! is a push-forward measure of P(z,-) by u; uyPf(A) :=
P(z,u"1(A)), A € B(Y).

Remark 3.6. Note that any u € S(E,Y) U Lip(F,Y) satisfies uyP; €
PYY). Indeed, for u € S(E,Y), u is a constant on each Borel set A;,
where {A;}._, is a finite family of disjoint Borel sets satisfying E =
Ui, Ai, hence [, dy (20, 2)uyPa(d2) = Y., lldy (20, @)lloo,a, Po(4i) <
oo. For u € Lip(E,Y’), we have

/dy 20, 2)uy Pp(dz) = /dy 20, u(y)) Pz (dy)

< dy (a0, u(un)) + Lin(w) | dlao, 9)Pu(d) < o0
E
Lemma 3.7 (Lemma 6.4 in [23]). Let X be a conservative Markov
chain on (E,d). Suppose that (Y,dy) is a complete separable CAT(0)-
space. Then, for any Borel map u: E — Y satisfying wP, € P(Y)
forallz€e E, Pu: E —Y is B(E)/B(Y)-measurable.

Definition 3.8 (Pu for LP-map u). Fix p > 1. Let X be an m-
symmetric conservative Markov chain on (F, d). Suppose that (Y, dy)
is a complete CAT(0)-space and u € LP(E,Y;m), we can define Pu €
LP(E,Y;m) in the following way: Let {ux} C S(E,Y) be an LP-
approximating sequence to u. Applying the Jensen'’s inequality to the
convex function df on Y x Y and the m-symmetry, we have the fol-
lowing inequality for any maps v,w € S(E,Y).

(3.1) d?, (Pv, Pw) = / dy (Pv(z), Pw(z))m(dz)
E
< /Pd{}(v,w)dm < dl,(v,w).
E
These mean that {Puy} forms an LP-Cauchy sequence. We set Pu :=

limy Puy € LP(E,Y;m). The well-definedness of Pu is clear from (3.1)
and this is valid for any v,w € LP(E,Y;m).
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Definition 3.9 (P-harmonic Map, [16],[15]). A (lower or upper) bounded

Borel function f : E — R is said to be P-subharmonicif f < Pfon E
and it is said to be P-harmonic if both f and — f are P-subharmonic.

A Borel map u : E — Y is said to be P-harmonic if u = Puon E
holds under that uyP, € P!(Y) for all z € E.
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Lemma 3.10. Let X be a Markov chain on (E,d). Fizn € N and
assume k € R. Suppose that (Y, dy) is a complete CAT(0)-space. Then
forw € Lip(E,Y) and £ € N, we have P*u € Lip(E,Y) and

Lip(P™u) < (1 — k,)*Lip(u),
wn particular,
Lip(P*u) < (1 — k)*Lip(w).

Corollary 3.11 (Strong Liouville Property for Lipschitz Maps). Let X
be a Markov chain on (E,d). Assume that k € R and there existsn € N
such that k, > 0. Suppose that (Y,dy) is a complete CAT(0)-space.
Then any P"-harmonic map u € Lip(F,Y) is a constant map.

Definition 3.12 (Variance). Fix p > 1, u € P(F), a metric space
(Y,dy) and u € LP(E,Y; u). The p-variance Var?(u) of u is defined by

Var®(u) := ;gg | dp(u(@), puda)(< o0).

The quasi p-variance Var ) is defined by

Vi =5 [ / 42 (uly), u(w))u(dz)pu(dy) (< o0).

We easily see Varf(u) < 2Var# (u). When p = 2, we write Var,(u) :=
Var’(u) and Var,(u) := Vﬁi(u), and call them simply variance, quasi
variance, respectively. Let (Y dy) be a complete CAT(0)-space. If
u € L2(E Y;u), then Var,(u) = [ dg(u(z), b(uyr)))p(dz) holds. For
u € L*(E,Y;u), we have Varu(u) < Var,(u). If (Y,dy) is a Hilbert
space H, then we have Var,(u) = Var,(u). In this case we can define
the covariance Cov,(f,g) for f,g € L*(E, H; n) by

Cov,(f,g) := / <f<x) — s 1) 9(@) — {1, ) sl d)

E

(1, (f, ) ey — (s £)s (s 9)) 1
/ / () - (2),9(w) — g()) mu(dz)u(dy),

where (u, f) := [, f(z)u(dz) € H is the barycenter of fyu € P*(Y).

Definition 3.13 (Energy of Maps). Take m € P(E) and let X be
an m-symmetric Markov chain and (Y, dy) is a metric space. For u €

LP(E,Y;m),
=5 /[ [ (), u(@)P(o, dyym(aa)

is said to be p-energy of u with respect to X and

1 [ _ 1
=3 [ Pu@) u@miaz) = Sz (P
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is said to be quasi p-energy of u with respect to X for p > 1 when
(Y, dy) is a complete separable CAT(0)-space.

When p = 2, we simply say energy (resp. quasi 2-energy) and write
E(u) := E?(u) (resp. E.(u) := EX(u)). Since

Varf (u) < [ df(u(y), u(z))P(z, dy),

(3.2) % EVarﬁx(u)m(da:) < EP(u).
We use
{ D(E"’) = {u € LP(E, Y m) | E?(u) < oo}
2fEfEdY u(z))P(z,dy)m(dz), u€ D(EP).

When (Y, dy) is a Hilbert space H, we use the symbol £ instead of £
for the (2-)energy on L%(E, H;m) and set
1
&9 =5 [ _U0) ~1(@).9) - 9(@) wPx(dy)m{dz)
X

for f,g € D(E). Wesee E(f) = E(f, f) for f € L*(E, H;m).

Proposition 3.14. Let X be an m-symmetric Markov chain on (E,d)
and (Y,dy) is a metric space. Fiz p € [1,00[. For measurable maps
u,v: E—Y, the following inequalities hold:

(3.3) EP(u)? < EP(v)> + 2" 5dps(u,v),
(3.4) Var,fl(u)zl’ < Var,’,’l(v)% + dp»(u,v),
(3.5) Var’ (v)? < Var’,(v)? + 2" 7 dps(u,v).

Corollary 3.15. Let X be an m-symmetric Markov chain on (E,d).
Suppose that (Y, dy) is a complete separable CAT(0)-space. For p > 1
and u € LP(E,Y;m), the following inequalities hold:

'BI“

(3.6) Var? (u)? < Var? (Pu)s + 25 EP(u)7,
(3.7) Var? (u )P < Var! (Pu)v +2EP(u)>.

'ul»-'

Ifue L?(E,Y;m), we have
(3.8) EX(u) < 4E%(u).

Corollary 3.16 (Lower Semi Continuity of Energy). Let X be an m-
symmetric Markov chain with m € P(E) and (Y,dy) a metric space.
Take p > 1 and let (EP, D(EP)) be the p-energy on LP(E,Y;m) asso-
ciated with X. We set EP(u) := oo foru € LP(E,Y;m)\ D(EP). Then
E? is a [0, oo]-valued lower semi continuous functional on LP(E,Y ;m).
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Remark 3.17. When p = 2, Y = R, the lower semi continuity of energy
is equivalent to the completeness of D(E) with respect to the norm

|- lle, defined by || flle, := /Ei(f, f). Here &1(f, 9) := E(f,9)+(f, Dm,
f,9 € D(€).

Lemma 3.18 (Contraction Property). Let X be an m-symmetric Markov
chain on (E,d) with m € P(E). Fizp > 1. Let (Y,dy) be a complete
separable CAT(0)-space. Then, for any u € L?(E,Y;m), we have

(3.9) Var? (Pu) < Var? (u),
(3.10) Var? (Pu) < Var} (u).

4. MAIN RESULTS

In this section, we fix p > 1 and assume m € P(FE) and supp[m] = E.

Theorem 4.1 (Non-linear Spectral Radius of P on LP(E,Y;m)/{const}).
Let X be an m-symmetric Markov chain on (E,d) with m € PP(E)
and assume k € R. Let (Y,dy) be a complete separable CAT(0)-space.
Then, we have

1
Var? (Ptu) | ™

£—o0 \u€eLP(E\Y;m) Varfﬁ(u) neN

(4.2) lim ( sup w)

l—oo \uel?(E,Y;m) W::z(u)

Ri=

< inf(l - K,n)% Al
neN

Corollary 4.2 (Linear Spectral Radius of P on L?(E, H; m)/{const}).
Let X be an m-symmetric Markov chain on (E,d) and H a real sepa-
rable Hilbert space. Assume m € P*(E) and k € R. Then, we have

[

£

, Var,,,(P¢f) , 1
4.3 lim sup —_ <inf(l—-k,)» AL
( ) £—00 <f6L2(E,H;m) Varm(f) TLGN( )

Consequently, P is an inf,en(1 — /en)'rli A 1-contraction operator on
L*(E,H;m)/{const}. In particular, for f € L*(E, H;m)/{const}, the
following hold:

(4.4) Var(Pf) < (inf (1 — ka)» A1) Var(f),
(4.5) [Covin (P1, £)] < (inf (1~ Kn)® A 1)Var,(f).

The main part of the following theorem is a slight generalization of
[22, Corollary 31], and its proof is similar as in [22] based on Corol-
lary 4.2 above.



Theorem 4.3 (Poincaré Inequality, cf. Corollary 31 in [22]). Assume
m € P2(E) and k € R. Let X be an m-symmetric Markov chain on
(E,d) and H a real separable Hilbert space. Then, for f € L*(E, H;m)

@6)  (1-inf(1~ra)* A DVara() < /E Var, (fym(dz),
(4.7) 1—ggrﬂ%ﬁA1gwiﬁﬂ51+$g1—mﬁAL

In particular, if k, > 0 for some n € N, we have a global Poincaré
nequality:

| L &)
- - n <

O < 1= =R < ) Vet (1)

£()

1
< sup <1+ inf(l—Kp)» <2.
feL?(E,H;m) Va‘rm(f) neN n)

Moreover, if X is an even step Markov chain obtained from an m-
symmetric Markov chain, then

<1l

E(f)
4.8 su
(48) feLﬁ(EI,)H;m) Varm,(f)
Corollary 4.4 (Estimates of Eigenvalues). Let X be an m-symmetric
Markov chain on (E,d) withm € P*(E) and assume that k € R and the
embedding D(E) C L2(E;m) is compact. Then any non-zero eigenvalue
X of the L2-operator —A = I — P on L?(E;m) satisfies

1 1
. — 1 - n <AL i — n .
(4.9) 1 111161[{1(1 Kn)n A1 <AL +33é§(1 Kn)n N1

Moreover, if X is an even step Markov chain obtained from an m-
symmetric Markov chain, then any eigenvalue ) satisfies A < 1.

Corollary 4.5 (Recurrence). Assume m € P*(E) and k € R. Let X
be an m-symmetric Markov chain on (E,d). Suppose that there exists
n € N such that k, > 0. Then X is recurrent, that is, for any non-

trivial f € LL(E;m), we have Gf = 00 m-a.c. Here Gf := Y, P¥.

Remark 4.6. (1) When X is an m-symmetric random walk on a
finite undirected weighted connected graph G = (V, E) with
m({z}) := d.(G), the degree of G at z € V, Bauer-Jost-Liu [4]
proved (4.9) for any n € N.

(2) If we assume the existence of non-constant Lipschitz eigenfunc-
tion of —A := I — P, then we can directly prove the estimate
for the associated real eigenvalue A;

(4.10) 1— (1= kp)n <A< 1+ (1 —ky)

under £,(z,y) > k(€ R) for (z,y) € E x E\ diag without
assuming the m-symmetricity of X. If x, > 0, (4.10) is equiv-
alent to (4.9). We show (4.10) as mentioned above. Let f

3=
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be a non-constant Lipschitz eigenfunction and assume that A
is a real eigenvalue of f with respect to —A. Then, we have
(I — P)f = Mf, equivalently, P*f = (1 — A)¥f for any k € N.
By scaling, we may assume that the Lipschitz constant of f is
1. Kantorovich-Rubinstein duality formula yields

d(z,y)(1 = kn) > dwy (Py, P}) > P" f(z) — P"f(y)
=1 =N"(f(z) - f(v))

for (z,y) € E x E, which implies (1 — k,) > |1 — A|*, that is,
we obtain (4.10).

Theorem 4.7 (Strong LP-Liouville Property). Assume m € PP(E).
Let X be an m-symmetric Markov chain on (E,d). Suppose that k € R
and there exists n € N such that k, > 0. Let (Y,dy) be a complete
separable CAT(0)-space. Suppose that u € LP(E,Y;m) satisfies Pu =
u m-a.e. on E. Then u is a constant map m-a.e. In particular, if
u € Lip(E,Y) is P-harmonic, then u is a constant map.

Corollary 4.8 (Ergodicity). Let X be an m-symmetric Markov chain
on (E,d). Suppose that k € R and there exists n € N such that k, > 0.
Then X is ergodic, that is, for any P-invariant Borel set A, m(A) =0
or m(A°) = 0.

Theorem 4.9 (Poincaré Inequality). Assume m € P?(E) and k € R.
Let X be an m-symmetric Markov chain on (F,d). Suppose that there
exists n € N such that k, > 0. Let (Y,dy) be a complete separable
CAT(0)-space. Then for any € €]0,1 — (1 — ky )= |, there exists £y € N
depending on €, ky, (E,d,m,X) and (Y, dy) such that

inf E(u) > (1—(1—mn)%/\1_5)2

> 0.
u€L?(E\Y;m) Varm(u) - 88%

Remark 4.10. (1) For the random walk on an undirected weighted
finite graph G = (V,E) with N := |V|, Bauer-Jost-Liu [4]
proved the equivalence among the following:

(i) G is non-bipartite.

(i) Ay_1 < 2.
(iii) There exists n € N such that &, > 0.
Since G is connected, we have \; > 0. Here A\; (resp. Ay_;)
is the smallest non-zero (resp. maximum) eigenvalue of the
Laplace operator on G. Under the equivalent conditions (i)-
(iii), we have a positivity of non-linear spectral gap as in Theo-
rem 4.9. Remark that the positivity of non-linear spectral gap
on the finite connected weighted graph G (having no loop and
no multi-edges) with graph distance is already proved by Izeki-
Kondo-Nayatani 7] for CAT(0)-space target.
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(2) Our Theorem 4.9 covers the case for the random walk derived
from the Brownian motion on Riemannian manifolds with pos-
itive Ricci curvature as in Example 1.5.

cknowledgment. The authors thank Professor Kazumasa Kuwada

for his valuable comments.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

REFERENCES

. L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in
the space of probability measures, Second edition. Lectures in Mathematics ETH
Zirich. Birkhauser Verlag, Basel, 2008.

K. Ball, E. A. Carlen and E. H. Lieb, Sharp uniform convezity and smoothness

inequalities for trace norms, Invent. Math. 115 (1994), no. 3, 463-482.

F. Bauer and J. Jost, Bipartite and neighborhood graphs and the spectrum of the

normalized graph Laplacian, http://arxiv.org/abs/0910.3118v3, to appear

in Comm. Anal. Geom. 2011.

. F. Bauer, J. Jost and S. Liu, Ollivier’s Ricci curvature and the spectum of the
normalized graph Laplace operator, preprint, 2011.

. M. R. Bridson and A. Haefliger, Metric spaces of non-posilive curvature,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999.

. F.-Z. Gong, Y. Liu and Z.-Y. Wen, Some notes on Ricci-Ollivier curvature,

preprint 2012, to appear in Osaka J. Math.

H. Izeki, T. Kondo and S. Nayatani, private communication, (2012).

. J. Jost and S. Liu, Ollivier’s Ricci curvature, local clustering and curvature
dimention inequality on graphs, preprint, 2011.

. W. S. Kendall, Probability, convezity, and harmonic maps with small image I:

Uniqueness and fine existence, Proc. London Math. Soc., (3) 61 (1990), no. 2,

371-406.

W. S. Kendall, From stochastic parallel transport to harmonic maps, New di-

rections in Dirichlet forms, 49-115, AMS/IP Stud. Adv. Math., 8, Amer. Math.

Soc., Providence, RI, 1998.

Y. Kitabeppu, Lower bound of coarse Ricci curvature on metric measure spaces

and eigenvalues of Laplacian, preprint 2012.

E. Kokubo and K. Kuwae, On spectral bounds for symmetric Markov processes

with coarse Ricci curvatures, preprint, 2012.

K. Kuwae, Jensen’s inequality over CAT(k)-space with small diameter, Pro-

ceedings of Potential Theory and Stochastics, Albac Romania, 173-182, Theta

Ser. Adv. Math., 14, Theta, Bucharest, 2009.

K. Kuwae, Jensen’s inequality on convex spaces, preprint (2012).

K. Kuwae, Variational convergence over convez spaces, (2012), in preparation.

K. Kuwae and K.-Th. Sturm, On a Liouville type theorem for harmonic maps to

convex spaces via Markov chains, Proceedings of German-Japanese symposium

in Kyoto 2006, 177-192, RIMS Koéky{iroku Bessatsu B6, 2008.

Y. Lin and S.-T. Yau, Ricci curvature and eigenvalue estimate on locally finite

graphs, Math. Res. Lett. 17 (2010), no. 2, 343-356.

Y. Lin, L. Lu and S.-T. Yau, Ricci curvature on graphs, Tohoku Math. J. 63

(2011), no. 4, 605-627.

J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal

transport, Ann. of Math. 169 (2009), no. 3, 903-991.

S.-I. Ohta, Convezities of metric spaces, Geom. Dedicata 125, (2007), no. 1,

225-250.

100



21.
22.
23.
24.

25.

26.
27.
28.

29.

30.

S.-1. Ohta, Extending Lipschitz and Holder maps between metric spaces, Posi-
tivity 13 (2009), no. 2, 407-425.

Y. Ollivier, Ricci curvature of Markov chains on metric spaces, J. Func. Anal.
256 (2009), no. 3, 810-864.

kernels and energy minimizing maps between singular spaces, Calc. Var. Partial
Differential Equations 12 (2001), no. 4, 317-357.

maps between singular spaces, Potential Anal. 16 (2002), no. 4, 305-340.
K.-Th. Sturm, Probability measures on metric spaces of nonpositive curvature.
Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002),
357-390, Contemp. Math., 338, Amer. Math. Soc., Providence, RI, 2003.

K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math. 196

(2006), no. 1, 65-131.

K.-T. Sturm, On the geometry of metric measure spaces. II, Acta Math. 196

(2006), no. 1, 133-177.

L. Veysseire, Coarse Ricci curvature for continuous-time Markov processes,

preprint, 2012.

C. Villani, Optimal transport, old and new, Grundlehren der Mathematischen

Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338,
Springer-Verlag, Berlin, 2009.

M.-K. von Renesse and K.-Th. Sturm, Transport inequalities, gradient esti-

mates, entropy, and Ricci curvature, Comm. Pure Appl. Math. 58 (2005), no.
7, 923-940.

Eikt KokuBo

HINODE-CHO 7-37, KAsugA CITy

Fukuoka, 816-0873

JAPAN

E-mail address: city-hunter-xxyyzz@hotmail.co.jp

KAzUHIRO KUWAE

DEPARTMENT OF MATHEMATICS AND ENGINEERING
GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY
KuMAMOTO UNIVERSITY

KuMaMOTO, 860-8555

JAPAN

E-mail address: kuwae@gpo.kumamoto-u.ac. jp

K.-Th. Sturm, Nonlinear Markov operators associated with symmetric Markov

K.-Th. Sturm, Nonlinear Markov operators, discrete heat flow, and harmonic

101



