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1 Introduction
This is a survey of the latest development in the generalized trigonometric
functions and Jacobian elliptic functions.

First, we will review these functions shortly. In Section 2, we define
new functions, which generalize Jacobian elliptic functions and coincide with
the generalized trigonometric functions as their moduli vanish. Since a gen-
eralized Jacobian elliptic function satisfies a bistable ordinary differential
equation with $p-$-Laplacian, in Section 3 we will apply the new function to a
bifurcation problem for the equation and show all the solutions by using its
modulus as only one parameter. Moreover, it follows directly from represen-
tations of solutions by the new function that a kind of solutions of bistable
problem of p–Laplacian is also an eigenfunction of $p/2$-Laplacian. To see this
reduction in $p$ in detail, in Section 4 we will try to extend generalized Jaco-
bian elliptic functions more generally. Section 5 is devoted to give current
topics in the generalized functions.

1.1 Jacobian Elliptic Functions
A set of basic elliptic functions was introduced by Carl Gustav Jacob Jacobi
[16] in 1829. These functions are named the Jacobian elliptic functions after
him.
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For any $k\in[0,1)$ we define $K(k)$ by the incomplete elliptic integral of
the first kind.

$K(k)= \int_{0}^{1}\frac{dt}{\sqrt{(1-t^{2})(1-k^{2}t^{2})}}.$

Then, for any $k\in[O, 1)$ and any $x\in[-K(k), K(k)]$ we define sn $(x, k)$ by an
inverse of the incomplete elliptic integral of the first kind.

$x= \int_{0}^{sn(x,k)}\frac{dt}{\sqrt{(1-t^{2})(1-k^{2}t^{2})}}.$

Clearly, sn $(x, k)$ is an increasing odd function in $x$ from $[-K(k), K(k)]$ to
[-1, 1]. We extend the domain of sn $(x, k)$ to $\mathbb{R}$ by sn $(x+2K(k), k)=$
-sn $(x, k)$ , which implies that sn $(x, k)$ has $4K(k)$-periodicity. We can see
that $K(O)=\pi/2$ , sn $(x, 0)=\sin x,$ $K(k)arrow\infty$ , sn $(x, k)arrow\tanh x$ as $karrow 1$

and sn $(\cdot, k)\in C^{\infty}(\mathbb{R})$ .
Using sn $(x, k)$ , for $x\in[-K(k), K(k)]$ we also define

cn $(x, k)=\sqrt{1-sn^{2}(x,k)},$

dn $(x, k)=\sqrt{1-k^{2}sn^{2}(x,k)}.$

Clearly, cn $(x, k)$ and dn $(x, k)$ are even functions in $x$ from $[-K(k), K(k)]$

to $[0,1]$ . We extend the domains of cn $(x, k)$ and dn $(x, k)$ to the whole of $\mathbb{R}$

by cn $(x+2K(k), k)=-$ cn $(x, k)$ and dn $(x+2K(k), k)=$ dn $(x, k)$ . This
implies that cn $(x, k)$ and dn $(x, k)$ have $4K(k)-$ and $2K(k)$-periodicity. It is
shown that cn $(x, 0)=\cos x$ , dn $(x, 0)=1$ , cn $(x, k)$ , dn $(x, k)arrow\coth x$ as
$karrow 1$ and cn $(\cdot, k)$ , dn $(\cdot, k)\in C^{\infty}(\mathbb{R})$ .

These functions satisfy

$cn^{2}(x, k)+sn^{2}(x, k)=1,$

$dn^{2}(x, k)+k^{2}sn^{2}(x, k)=1,$

$(sn (x, k))’=$ cn $(x, k)$ dn $(x, k)$ ,
$(cn (x, k))’=-$ sn $(x, k)$ dn $(x, k)$ ,

$(dn (x, k))’=-k^{2}$ sn $(x, k)$ cn $(x, k)$ .

We can find many other properties of these functions in [28].
In particular, it is important that $y=$ sn $(x, k)$ satisfies

$y”+y(1+k^{2}-2k^{2}y^{2})=0,$
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which reminds that solutions of bistable problem

$\{\begin{array}{l}u"+\lambda u(1-u^{2})=0, x\in(O, L) ,u(0)=u(L)=0\end{array}$

can be represented explicitly by using sn$(x, k)$ . Indeed, for any $k\in(0,1)$ ,
the value of bifurcation parameter $\lambda$ is given by

$\lambda_{n}(k)=(1+k^{2})(\frac{2nK(k)}{L})^{2}$ (1.1)

for each $n\in \mathbb{N}$ , with corresponding solutions $\pm u_{n,k}$ , where

$u_{n,k}(x)=\sqrt{\frac{2k^{2}}{1+k^{2}}}$ sn $( \frac{2nK(k)}{L}x, k)$ . (1.2)

Conversely, all nontrivial solutions are given by Eqs. (1.1) and (1.2). In par-
ticular, it follows from Eq. (1.2) that all solutions satisfy $|u|<1$ in $[0, L].$

1.2 Generalized Trigonometric Functions
Generalized Trigonometric functions were introduced in 1879 by E. Lundberg
(see Lindqvist and Peetre [21, pp.113-141]). After that, these functions have
been developed mainly by A. Elbert [13], P. Lindqvist [19], P. Drabek and
R. Man\’asevich [11], J. Lang and D.E. Edmunds [18].

For any constants $p,$ $q>1$ , we define $\pi_{pq}$ by

$\pi_{pq}=2\int_{0}^{1}\frac{dt}{\sqrt{1-t^{q}}}=\frac{2}{q}B(1-\frac{1}{p}, \frac{1}{q})=\frac{2\Gamma(1-1/p)\Gamma(1/q)}{q\Gamma(1-1/p+1/q)},$

where $B$ and $\Gamma$ are the Beta- and the Gamma functions, respectively. Then,
for any $x\in[-\pi_{pq}/2, \pi_{pq}/2]$ we define $\sin_{pq}x$ by

$x= \int_{0}^{\sin_{pq}x}$

$dt$

Clearly, $\sin_{pq}x$ is an increasing odd function in $x$ from $[-\pi_{pq}/2, \pi_{pq}/2]$ to
[-1, 1]. We extend the domain of $\sin_{pq}x$ to the whole of $\mathbb{R}$ by $\sin_{pq}(x+\pi_{pq})=$

$-\sin_{pq}x$ , which implies that $\sin_{pq}x$ has $2\pi_{pq}$-periodicity. We can see that
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$\pi_{22}=\pi$ and $\sin_{22}x=\sin x$ . Moreover, $y=si\psi x$ satisfies that $y,$ $|y’|^{p-2}y’\in$

$C^{1}(\mathbb{R})$ and that $y\in C^{2}(\mathbb{R})$ if $1<p\leq 2.$

We agree that $\pi_{p}$ and $\sin_{p}x$ denote $\pi_{pp}$ and $\sin_{1\varphi}x$ when $p=q$ , respec-
tively. In that case, we can also refer to [7, 8, 9, 10].

Using $\sin_{pq}x$ , for $x\in[-\pi_{pq}/2, \pi_{pq}/2]$ we also define

$\cos_{pq}x=\sqrt[q]{1-|\sin_{m}x|q}$ . (1.3)

Clearly, $\cos_{pq}x$ is an even function in $x$ from $[-\pi_{pq}/2, \pi_{pq}/2]$ to $[0,1]$ . We
extend the domain of $\cos_{pq}x$ to the whole of $\mathbb{R}$ by $\cos_{pq}(x+\pi_{pq})=-\cos_{pq}x.$

These implies that $\cos_{pq}x$ has $2\pi_{pq}$-periodicity. We can see that $\cos_{22}x=$

$\cos x$ . An analogue of $\tan x$ is obtained by defining

$ta\psi x=\frac{\sin_{pq}x}{\cos_{pq}x}$

for those values of $x$ at which $\cos_{pq}x\neq 0$ . This means that $\tan_{m}x$ is defined
for all $x\in \mathbb{R}$ except for the points $(k+1/2)\pi_{pq}(k\in \mathbb{Z})$ . We denote by $\cos_{p}x$

and $\tan_{p}x$ ae for the case $\sin_{p}x$ . The functions $\sin_{p}x$ and $\cos_{p}x$ are useful for
Pr\"ufer transformation of half-linear differential equations (see [8, 9, 13, 22]).

These functions satisfy, for $x\in[O, \pi_{pq}/2)$

$\cos_{pq}^{q}x+\sin_{pq}^{q}x=1$ , (1.4)

$(\sin_{m}x)’=\cos_{pq}^{q/p}x,$

$(\cos_{pq}x)’=-\sin_{pq}^{q-1}x\cos_{pq}^{q/p+1-q_{X}},$

$(ta\psi x)’=\cos_{pq}^{q/p-1}x(1+\tan_{pq}^{q}x)$ .

Note that
$( \frac{d}{dx}si\psi x)^{p}+\sin_{pq}^{q}x=1$ . (1.5)

We can find many other properties of these functions in [12, 18].

Remark 1.1. There are some different definitions of $\cos_{pq}x$ from Eq. (1.3).
For example, Dr\’abek and Man\’asevich [11] define $\cos_{pq}x$ by

$\cos_{pq}x=\frac{d}{dx}si_{b^{X}},$

and so Eq. (1.5) gives
$\cos_{pq}^{p}x+\sin_{pq}^{q}x=1,$

which is slightly different from Eq. (1.4). Independently of the definition of
$\cos_{pq}x$ , it is essential that $\sin_{m}x$ satisfies Eq. (1.5).
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In particular, it is important that $y=\sin_{pq}x$ satisfies

$(|y’|^{p-2}y’)’+ \frac{(p-1)q}{p}|y|^{q-2}y=0$ , (1.6)

which reminds that solutions of eigenvalue problem

$\{\begin{array}{l}(|u’|^{p-2}u’)’+\lambda|u|^{q-2}u=0, x\in(O, L) ,u(0)=u(L)=0\end{array}$

can be represented explicitly by using $\sin_{pq}x$ . Indeed, for any $R\in(0,1)$ , the
value of bifurcation parameter $\lambda$ is given by

$\lambda_{n}(k)=\frac{(p-1)q}{p}(\frac{n\pi_{pq}}{L})^{p}R^{p-q}$ (1.7)

for each $n\in \mathbb{N}$ , with corresponding solutions $\pm u_{n,k}$ , where

$u_{n,k}(x)=R \sin_{pq}(\frac{n\pi_{pq}}{L}x)$ . (1.8)

Conversely, all nontrivial solutions are given by Eqs. (1.7) and (1.8).

2 Generalized Jacobian Elliptic Functions
The author [24] introduced a generalization of Jacobian elliptic functions,
which includes both the Jacobian elliptic functions and the generalized trigono-
metric functions.

Let $p,$ $q>1$ . For any $k\in[0,1)$ we define $K_{pq}(k)$ by

$K_{pq}(k)= \int_{0}^{1}$

$dt$

Then, for any $k\in[0,1)$ and $x\in[-K_{pq}(k), K_{pq}(k)]$ we define $sn_{pq}(x, k)$ by

Clearly, $sn_{pq}(x, k)$ is an increasing odd function in $x$ from $[-K_{pq}(k), K_{pq}(k)]$

to [-1, 1]. We extend the domain of $sn_{pq}(x, k)$ to $\mathbb{R}$ by $sn_{pq}(x+2K_{pq}(k), k)=$

75



$-sn_{pq}(x, k)$ , which implies that $sn_{pq}(x, k)$ has $4K_{pq}(k)$-periodicity. We can
see that $K_{22}(k)=K(k),$ $sn_{22}(x, k)=$ sn $(x, k),$ $K_{pq}(0)=\pi_{pq}/2$ and that
$sn_{pq}(x, 0)=si\psi x$ . Moreover, $y=s\psi(x, k)$ satisfies that $y,$ $|y’|^{p-2}y’\in$

$C^{1}(\mathbb{R})$ and that $y\in C^{2}(\mathbb{R})$ if $1<p\leq 2$ . The following properties are crucial
for the new function.

$K_{2p,q}(k) arrow\frac{\pi_{pq}}{2},$ $sn_{2p,q}(x, k)arrow\sin_{pq}x$ as $karrow 1$ . (2.1)

The former follows from easy calculation as

and the latter is proved similarly.
Using $s\iota 4q(x, k)$ , for $x\in[-K_{pq}(k), K_{pq}(k)]$ we also define

$cn_{pq}(x, k)=\sqrt[q]{1-|sn_{pq}(x,k)|^{q}},$

$dn_{pq}(x, k)=\sqrt[q]{1-k^{q}|sn_{pq}(x,k)|q}.$

Clearly, $cn_{m}(x, k)$ and $d\psi(x, k)$ are even functions in $x$ from $[-K_{pq}(k), K_{pq}(k)]$

to $[0,1]$ . We extend the domains of $cn_{pq}(x, k)$ and $dn_{pq}(x, k)$ to $\mathbb{R}$ by
$cn_{pq}(x+2K_{pq}(k), k)=-cn_{pq}(x, k)$ and $dn_{pq}(x+2K_{pq}(k), k)=dn_{pq}(x, k)$ ,
respectively. This implies that $cn_{pq}(x, k)$ and $dn_{pq}(x, k)$ have $4K_{pq}(k)-$ and
$2K_{pq}(k)$-periodicity. We can see that $cn_{pq}(x, 0)=\cos_{pq}x,$ $dn_{pq}(x, 0)=1.$

Moreover, $cn_{2p,q}(x, k),$ $dn_{2p,q}(x, k)arrow\cos_{pq}x$ as $karrow 1.$

These functions satisfy, for $x\in[0, K_{pq}(k))$

$cn_{pq}^{q}(x, k)+sn_{pq}^{q}(x, k)=1,$

$dn_{pq}^{q}(x, k)+k^{q}sn_{pq}^{q}(x, k)=1,$

$(sn_{m}(x, k))’=cn_{pq}^{q/p}(x, k)dn_{pq}^{q/p}(x, k)$ ,
$(c\% (x, k))’=-sn_{pq}^{q-1}(x, k)cn_{pq}^{q/p+1-q}(x, k)dn_{pq}^{q/p}(x, k)$ ,

$(dn_{pq}(x, k))’=-k^{q}sn_{pq}^{q-1}(x, k)cn_{pq}^{q/p}(x, k)dn_{pq}^{q/p+1-q}(x, k)$ .

In our study, it is important that $y=sn_{m}(x, k)$ satisfies

$(|y’|^{p-2}y’)’+ \frac{(p-1)q}{p}|y|^{q-2}y(1+k^{q}-2k^{q}|y|^{q})=0$ . (2.2)
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Defining $(p, q)$ -elliptic integrals, we can define the generalized Jacobian
elliptic functions in a different way.

For simplicity, let $\varphi\in[0, \pi_{pq}/2]$ . Using the generalized trigonometric
function, we define the $(p, q)$-elliptic integral of the first kind:

and the complete $(p, q)$ -elliptic integral of the first kind:

$K_{pq}(k)=$

We define the $(p, q)$-amplitude function $am_{pq}(x, k)$ for $x\in[0, K_{pq}(k)]$ by

$x= \int_{0}^{am_{pq}(x,k)}$

$d\theta$

and we define

$sn_{pq}(x, k)=\sin_{pq}(a\psi_{q}(x, k))$ ,
$cn_{pq}(x, k)=\cos_{pq}(am_{pq}(x, k))$ ,

$dn_{pq}(x, k)=\sqrt[q]{1-k^{q}\sin_{pq}^{q}((aamm,(x,k))}.$

We also define the $(p, q)$-elliptic integrals of the second- and the third
kinds by
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and the corresponding complete $(p, q)$-elliptic integrals by

Finally, we show the relation between the generalized functions in Tables
1 and 2, where $\phi_{s}(u)=|u|^{\epsilon-2}u$ and $A_{s}u=(\phi_{s}(u’))’$ and $C=(p-1)q/p.$

Table 1: $karrow 0$

Table 2: $karrow 1$

3 Application to Bistable Problem

The results of this section have been obtained in [24].
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Let $L,$ $\lambda>0$ and $p,$ $q>1$ . We consider the following $(p, q)$-bistable
problem with $p$-Laplacian.

$\{\begin{array}{l}(\phi_{p}(u’))’+\lambda\phi_{q}(u)(1-|u|^{q})=0, x\in(O, L) ,u(0)=u(L)=0,\end{array}$ $(B_{pq})$

where $\phi_{p}(s)=|s|^{p-2}s.$

Problem $(B_{pq})$ has been studied by Berger and Fraenkel [1] and Chafee
and Infante [5] $(p=q=2)$ , Wang and Kazarinoff [27] and Korman, Li and
Ouyang [17] $(p=2<q)$ , Guedda and V\’eron [14] $(p=q>1)$ , and Takeuchi
and Yamada [25] $(p>2, q\geq 2)$ . However, there is no study providing
explicit forms of the values of bifurcation parameter and the corresponding
solutions for $(B_{pq})$ .

3. 1 Solutions of $(B_{pq})$

We follow closely the ideas of Dr\’abek and Man\’asevich [11]. It will be conve-
nient to find first the solution to the initial value problem

$\{\begin{array}{l}(\phi_{p}(u’))’+\lambda\phi_{q}(u)(1-|u|^{q})=0,u(0)=0, u’(0)=\alpha,\end{array}$ (3.1)

where without loss of generality we may assume $\alpha>0$ . Eq. (2.2) reminds
that the solutions of Problem (3.1) can be represented by using $sn_{pq}(x, k)$ .

Let $u$ be a solution to Eq. (3.1) and let $X(\alpha)$ be the first zero point of
$u’(x)$ . On interval $(0, X(\alpha)),$ $u$ satisfies $u(x)>0$ and $u’(x)>0$ , and thus

$\frac{u’(x)^{p}}{p}+\lambda\frac{F(u)}{q}=\lambda\frac{F(R)}{q}=\frac{\alpha^{p}}{p},$

where $p’=\overline{p}\overline{1}\underline{1},$ $F(s)=s^{q}- \frac{1}{2}s^{2q}$ and $R=u(X(\alpha))$ . Since we are interested
in functions satisfying the boundary condition of $(B_{pq})$ , it suffices to assume
$0<R\leq 1$ , which means $|u|\leq 1$ . Moreover, we restrict to $0<R<1$ and
concentrate solutions satisfying $|u|<1$ for a while.

Solving for $u’$ and integrating, we find
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which after a change of variable can be written ae

(3.2)

It is easy to verify that

$F(R)-F(Rs)=F(R)(1-s^{q})(1- \frac{R^{q}}{2-R^{q}}s^{q})$ ,

and hence

$x=( \frac{q}{\lambda p’})^{\frac{1}{p}}\frac{R}{F(R)^{\frac{1}{p}}}\int_{0}^{\#^{ux}}$

$ds$
$(k^{q}:= \frac{R^{q}}{2-R^{q}})$

$=( \frac{q}{\lambda p’})^{\frac{1}{p}}\frac{R}{F(R)^{\frac{1}{p}}}sn_{pq}^{-1}(\frac{u(x)}{R}, k)$ .

Then we obtain that the solution to Eq. (3.1) can be written as

$u(x)=R sn_{m}((\frac{\lambda p’}{q})^{\frac{1}{p}}\frac{F(R)^{\frac{1}{p}}}{R}x, k)$ , (3.3)

where

$k=( \frac{R^{q}}{2-R^{q}})^{\frac{1}{q}}$ (3.4)

We first observe the structure of the set of all nontrivial solutions of $(B_{pq})$

satisfying $|u|<1.$

Theorem 3.1 $(|u|<1)$ . All nontr,vial $\mathcal{S}$olutions of $(B_{pq})$ for $p\in(1,2]$ and
all nontrivial solutions of $(B_{pq})$ with $|u|<1$ for $p>2$ are given as follows.
For any given $k\in(0,1)$ , the value of bifurcation pammeter $\lambda$ of $(B_{pq})$ is
given by

$\lambda_{n}(k)=\frac{q}{p}(1+k^{q})(\frac{2k^{q}}{1+k^{q}})^{q}e_{-1}(\frac{2nK_{pq}(k)}{L})^{p}$ (3.5)

for each $n\in \mathbb{N}$ , with $\omega$rrespondingsolutions $\pm u_{n,k}$ , where

$u_{n,k}(x)=( \frac{2k^{q}}{1+k^{q}})^{\frac{1}{q}}sn_{pq}(\frac{2nK_{pq}(k)}{L}x, k)$ . (3.6)

80



Proof. For $k\in(0,1)$ given, we impose that Function (3.3) with $R\in(0,1)$ ,
where $R$ is uniquely decided from Eq. (3.4), satisfies the boundary conditions
in $(B_{pq})$ . Then, we obtain

$( \frac{\lambda p’}{q})^{\frac{1}{p}}\frac{F(R)^{\frac{1}{p}}}{R}L=2nK_{pq}(k) , n\in \mathbb{N},$

where from Eq. (3.4)

$\frac{F(R)^{\frac{1}{p}}}{R}=(\frac{2k^{q}}{1+k^{q}})^{\frac{1}{p}-\frac{1}{q}}(1+k^{q})^{-\frac{1}{p}}.$

Thus $\lambda$ is given by Eq. (3.5). Expression (3.6) for the solutions follows then
directly from Eq. (3.3).

It remains to show that no other nontrivial solution of $(B_{pq})$ is obtained
when $1<p\leq 2$ . Assume the contrary. Then there exist $x_{*}>0$ and a
nontrivial solution $u$ of $(B_{pq})$ with $R=u(x_{*})=1$ . However, the right-hand
side of Eq.
as $sarrow 1-$

Next we find solutions of $(B_{pq})$ with $|u|\leq 1$ , except the solutions given by
Theorem 3.1. Now we assume $p>2$ . From Property (2.1), one of solutions
of Eq. (3.1) can be obtained by $karrow 1-O$ in Eq. (3.3) with Eq. (3.4), namely

$u(t)= \sin_{2}g_{q}((\frac{\lambda p’}{2q})^{\frac{1}{p}}x)$ .

We take a number $x_{*}$ as $(_{2q}^{\underline{\lambda}\not\simeq})^{\frac{1}{p}}x_{*}=\pi_{2}e_{q}/2$, then $u$ attains 1 at $x=x_{*}$

(note that $x_{*}$ is well-defined if and only if $p>2$). Using this $u$ , we can
make the other solutions of Eq. (3.1) as follows. In the phase-plane, the
orbit $(u(x), u’(x))$ arrives at the equilibrium point $(1, 0)$ at $x=x_{*}$ and can
stay there for any finite time $\ell$ before it begins to leave there. Then, the
interval $[x_{*}, x_{*}+\ell]$ is a flat core of the solution. Similarly, there is the other
equilibrium point $(-1,0)$ , where the orbit can stay, and the solution has
another flat core of any finite length. Thus we have solutions of Eq. (3.1)
attaining $\pm 1$ with any number of flat cores.
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Theorem 3.2 $(|u|\leq 1)$ . Let $p>2$ , then all nontrivial solutions of $(B_{pq})$

without $|u|<1$ $(that is, |u|$ attains $1)$ are given as follows. For any given
$\ell\in[0, L)$ , the value of bifurcation parameter $\lambda$ of $(B_{pq})$ is given by

$\Lambda_{n}(\ell)=\frac{2q}{p}(\frac{n\pi_{2}e_{q}}{L-\ell})^{p}$

for each $n\in \mathbb{N}$ , with corresponding $sets\pm U_{n,\ell}$ of solutions, where $U_{n,\ell}$ consists
of all functions given as follows: for any $\{\ell_{i}\}_{i=1}^{n}$ with $\ell_{i}\geq 0$ and $\sum_{i=1}^{n}\ell_{i}=\ell$

$u(x)=\{\begin{array}{ll}(-1)^{j-1}\sin_{2}g_{q}(_{L-}^{n\pi}-B\frac{q}{p}(x-L_{j-1})) if L_{j-1}\leq x\leq L_{j-1}+\frac{L-\ell}{2n},(-1)^{j-1} if L_{j-1}+\frac{L-\ell}{2n}\leq x\leq L_{j}-\frac{L-\ell}{2n},(-1)^{j-1}\sin_{2}e_{q}(_{L-}^{n\pi}-S\frac{q}{\ell}(L_{j}-x)) if L_{j}-\frac{L-\ell}{2n}\leq x\leq L_{j},j=1,2, \ldots, n, \end{array}$

(3.7)

where $L_{0}=0$ and $L_{j}= \frac{(L-\ell)j}{n}+\sum_{i=1}^{j}\ell_{i}$ for $j=1,2,$ $\ldots,$
$n$ . (Figure 1)

Figure 1: $A$ solution in $U_{3,\ell}$ . It has 3-flat cores with total length of $\ell.$

Proof. For each $n\in \mathbb{N}$ , it suffices to construct solutions with $(n-1)$-zeros.
Let $\ell\in[0, L)$ . They are all generated by the value of bifurcation parameter
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and the corresponding solution of $(B_{pq})$ with $L$ replaced by $L-l$ , namely,

$\Lambda_{n}(\ell)=\frac{2q}{p}(\frac{n\pi e_{q}2}{L-\ell})^{p}$

$u_{n,\ell}(x)= \sin_{2}\epsilon_{q}(\frac{n\pi_{2}\epsilon_{q}}{L-\ell}x)$ ,

which are obtained from Eqs. (3.5) and (3.6) with $karrow 1-0$ , respectively.
In the phase-plane, the orbit $(u_{n,\ell}(x), u_{n,\ell}’(x))$ goes through the equilibrium
points $(\pm 1,0)$ in $n$-times without staying there as $x$ increases from $0$ to
$L-\ell$ . Therefore, if the orbit stays the i-th equilibrium point for time $\ell_{i},$

where $\ell_{1}+\ell_{2}+\cdots+\ell_{n}=\ell$, then we can obtain Solution (3.7) with n-flat
cores in $[0, L].$ $\square$

We notice that for any $\ell\in[0, L)$ , the sets $\pm U_{n,\ell}$ consist of solutions of
$(B_{pq})$ having n-flat cores with total length of $\ell$ . Clearly, $\pm U_{n,\ell}$ are continua
for $\ell>0$ and singletons for $\ell=0$ . We call the (unique) elements of $\pm U_{n,0}$

special solutions $\pm U_{n}(x)$ , respectively.
In Theorems 3.1 and 3.2, we gave parameters $k$ and $P$ to obtain the value of

bifurcation parameter and the corresponding solution of $(B_{pq})$ . Conversely,
giving any $\lambda>0$ , we can observe the set $S_{\lambda}$ of all solutions of $(B_{pq})$ by
considering the inverses of $\lambda_{n}$ and $\Lambda_{n}.$

Theorem 3.3. Let $p>1$ and $q>1.$
Case $p>q$ (Figure 2). For any $\lambda>0$ there exists a strictly decreasing

positive sequence $\{k_{j}\}_{j=1}^{\infty}$ such that $k_{j}arrow 0$ as $jarrow\infty$ and

$S_{\lambda}= \{0\}\cup\bigcup_{j=1}^{\infty}\{\pm u_{j,k_{j}}\}.$

Case $p=q$ (Figure 3). Let $\lambda_{n}=(p-1)(n\pi_{p}/L)^{p}$ with $\pi_{p}=2\pi/(p\sin(\pi/p))$ .
If $0<\lambda\leq\lambda_{1}$ , then $S_{\lambda}=\{0\}$ . If $\lambda_{n}<\lambda\leq\lambda_{n+1},$ $n\in \mathbb{N}$ , then there exists a
strictly decreasing positive sequence $\{k_{j}\}_{j=1}^{n}$ such that

$S_{\lambda}= \{0\}\cup\bigcup_{j=1}^{n}\{\pm u_{j,k_{j}}\}.$

Case $p<q$ (Figure 4). There exists $\lambda_{*}>0$ such that if $0<\lambda<\lambda_{*},$

then $S_{\lambda}=\{0\}$ . If $n^{p}\lambda_{*}\leq\lambda<(n+1)^{p}\lambda_{*},$ $n\in \mathbb{N}$ , then there exist a
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strictly decreasing positive sequence $\{k_{j}\}_{j=1}^{n}$ and a strictly increasing positive
sequence $\{l_{j}\}_{j=1}^{n}$ such that $k_{j}>l_{j},$ $j=1,2,$ $\ldots,$ $n-1$ and

$S_{\lambda}= \{0\}\cup\bigcup_{j=1}^{n}\{\pm u_{j,k_{j}}\}\cup\bigcup_{j=1}^{n}\{\pm u_{j,l_{j}}\},$

where $u_{n,k_{n}}=u_{n,l_{n}}$ with $k_{n}=l_{n}$ for $\lambda=n^{p}\lambda_{1}$ and $|u_{n,k_{m}}|>|u_{n,l_{n}}|(x\neq$

$jL/n,$ $j=1,2,$ $\ldots,$ $n-1)$ with $k_{n}>l_{n}$ otherwise.
In any case, each $k_{j},$ $l_{j}$ is calculated by Eq. (3.5) for $\lambda$ and $j$ , and the

cowesponding solution is given in Form (3.6).
When $1<p\leq 2$ , we have $k_{j}<1$ ( $i.e_{Z}\pm u_{j,k_{j}}$ have no flat core).
When $p>2$ , in addition, if

$\lambda\geq\frac{2q}{p}(\frac{m\pi_{2}\epsilon_{q}}{L})^{p} m\in \mathbb{N}$, (3.8)

then for each $j=1,2,$ $\ldots,$
$m$ , the set $\{\pm u_{j,k_{j}}\}$ in $S_{\lambda}$ above is replaced by

$\pm U_{j,\ell}$ , where

$\ell=L-j\pi_{2}e_{q}(\frac{2q}{\lambda p})^{\frac{1}{p}}$ (3.9)

Proof. First we assume $1<p\leq 2$ . In this case, we have already known that
all nontrivial solutions of $(B_{pq})$ are obtained by Theorem 3.1.

Now we fix $\lambda>0$ . We obtain that $\lambda$ is the j-th smallest value for which
$(B_{pq})$ has a solution if and only if from Eq. (3.5) there exists $k\in(0,1)$ such
that $\lambda=\lambda_{j}(k)$ , that is,

$\Phi(k)=c(\lambda)$ , (3.10)

where

$\Phi(k)=(1+k^{q})^{\frac{1}{p}}(\frac{2k^{q}}{1+k^{q}})^{\frac{1}{q}-\frac{1}{p}}K_{pq}(k)$ ,

$c( \lambda)=\frac{L}{2j}(\frac{\lambda p’}{q})^{\frac{1}{p}}$

Case $p>q.$ $\Phi(k)$ is strictly increasing in $(0,1)$ and $\Phi(0)=0$ and
$\lim_{karrow 1-0}\Phi(k)=\infty$ . Thus, there exists a unique $k=k_{j}(\lambda)$ satisfying
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Figure 2: Bifurcation diagram for $p>q.$

Figure 3: Bifurcation diagram for $p=q$ , where $\lambda_{n}=(p-$ 1 $)$ $( \frac{n\pi}{T}E)^{p}$

Figure 4: Bifurcation diagram for $p<q.$
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Eq. (3.10). For $j$ and $k_{j}$ , a unique solution $u_{j,k_{j}}$ of $(B_{pq})$ is obtained by
Eq. (3.6).

Case $p=q.$ $\Phi(k)$ is strictly increasing in $(0,1)$ and $\Phi(0)=\pi_{p}/2$ and
$\lim_{karrow 1-0}\Phi(k)=\infty$ . Thus, if $c(\lambda)>\pi_{p}/2$ , namely, $\lambda>\lambda_{j}$ , then there exists
a unique $k=k_{j}(\lambda)$ satisfying Eq. (3.10). For $j$ and $k_{j}$ , a unique solution $u_{j,k_{j}}$

of $(B_{pq})$ is obtained by Eq. (3.6).
Case $p<q$ . It is clear that $\lim_{karrow+0}\Phi(k)=\lim_{karrow 1-0}\Phi(k)=\infty$. Chang-

ing variable $r= \frac{k^{q}}{1+kq}$ , we can write $\Phi$ as

$\Psi(r)=\int_{0}^{1}\frac{(1+s^{q})^{\frac{1}{p}-\frac{1}{q}}}{(1-s^{q})^{\frac{1}{p}}}\psi((1+s^{q})r)ds, r\in(0,1/2)$,

where $\psi(t)=(2t)^{\frac{1}{q}-\frac{1}{p}}(1-t)^{-\frac{1}{p}}$ . It is easy to see that $\psi$ is convex in $(0,1)$

because $\psi(t)>0$ and

$( \log\psi(t))"=(\frac{1}{p}-\frac{1}{q})\frac{1}{t^{2}}+\frac{1}{p}\frac{1}{(1-t)^{2}}>0.$

Then, $\Psi$ is twice-differentiable in $(0,1/2)$ and

$\Psi"(r)=\int_{0}^{1}\frac{(1+s^{q})^{\frac{1}{p}-\frac{1}{q}+2}}{(1-s^{q})^{\frac{1}{p}}}\psi"((1+s^{q})r)ds>0.$

Thus, $\Psi$ is convex and there exists $k_{*}\in(0,1)$ such that $\Phi(k_{*})$ is the only one
critical value, and hence the minimum of $\Phi$ in $(0,1)$ .

If $c(\lambda)=\Phi(k_{*})$ , namely, $\lambda=j^{p}\lambda_{*}$ , where $\lambda_{*}=(2\Phi(k_{*})/L)^{p}q/p’$ , then $k_{*}$

satisfies Eq. (3.10). For $j$ and $k_{*}$ , a unique solution $u_{j,k_{*}}$ of $(B_{pq})$ is obtained
by Eq. (3.6). If $c(\lambda)>\Phi(k_{*})$ , namely, $\lambda>j^{p}\lambda_{*}$ , then there exist $k=k_{j}(\lambda)$

and $l_{j}(\lambda)$ such that $k_{j}(\lambda)=\Phi^{-1}(c(\lambda))\in(k_{*}, 1),$ $l_{j}(\lambda)=\Phi^{-1}(c(\lambda))\in(0, k_{*})$ .
For $j,$ $k_{j}$ and $l_{j}$ , solutions $u_{j,k_{j}}$ and $u_{j,l_{j}}$ of $(B_{pq})$ are obtained by Eq. (3.6)
(Figure 5).

Next, we assume $p>2$ . In any case, a similar proof as above with
$\lim_{karrow 1-0}\Phi(k)=2^{\frac{1}{p}-1}\pi e_{q}$ instead of $\lim_{karrow 1-0}\Phi(k)=\infty$ implies that it is
impossible to find $k_{m}\in 2(0,1)$ above satisfying Eq. (3.10), provided $\lambda$ satisfies
Inequality (3.8). Then, however, for each $j=1,2,$ $\ldots,$

$m$ , we can take $\ell\in$

$[0, L)$ as Eq. (3.9) so that $\lambda=\Lambda_{j}(\ell)$ . Therefore, Theorem 3.2 yields the set
$U_{n,\ell}$ of solutions (Figure 6). $\square$
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Figure 5: Graphs of $\Phi(k)$ for $p>q,$ $p=q$ and $p<q$ in case $1<p\leq 2.$

Figure 6: Graphs of $\Phi(k)$ for $p>q,$ $p=q$ and $p<q$ in case $p>2$ , where
$\Phi(1)=2^{\frac{1}{p}-1}\pi_{2_{q},2},\cdot$

3.2 Property of Special Solutions of $(B_{pq})$

It follows directly from Representation (3.7) of Theorem 3.2 that the special
solutions $\pm U_{n}$ of $(B_{pq})$ for $p$-Laplacian are also solutions of $(E_{2}e_{q})$ , eigenfunc-
tions of $p/2$-Laplacian. That is,

Corollary 3.1. Let $p>2$ . For each $n\in \mathbb{N}$ and $\ell\in[0, L)$ , any solution in
$\pm U_{n,\ell}$ of $(B_{pq})$ also satisfies

$( \phi_{2}R(u’))’+\frac{(p-2)q}{p}(\frac{n\pi_{2}e_{q}}{L-\ell})^{2}\phi_{q}(u)e=0$

in the $interval_{\mathcal{S}}$ where $|u|<1$ . In particular, for each $n\in \mathbb{N}$, the special
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solutions $\pm U_{n}$ of $(B_{pq})$ are also solutions of $(E_{2}e_{q})$ , that is,

$\{\begin{array}{l}(\phi_{2}e(u’))’+\frac{(p-2)q}{p}(^{n}-A_{L}^{\pi_{q}}-)^{2}\phi_{q}(u)\epsilon=0, x\in(0, L) ,u(0)=u(L)=0,\end{array}$

and hence, the solution is chamcterized by $\pm u_{n,R}$ with $R=1$ in Solution
(1.8) with $p$ replaced by $p/2.$

We will give an example of Corollary. It follows from Theorem 3.2 that
the (4, 2)-bistable problem

$\{\begin{array}{l}(|u’|^{2}u’)’+3\pi^{4}u(1-|u|^{2})=0,0<x<1,u(0)=u(1)=0, u\not\equiv 0\end{array}$ $(B_{42})$

has a special solution $U_{1}(x)=\sin_{\frac{4}{2},2}\pi x=\sin\pi x$ . Clearly, $U_{1}$ also satisfies
the (2, 2)-eigenvalue problem

$\{\begin{array}{l}u"+\pi^{2}u=0,0<x<1,u(0)=u(1)=0, u\not\equiv 0.\end{array}$ $(E_{22})$

In the above, we have seen that the special solutions $\pm U_{n}$ of $(p, q)$-bistable
problem are also the $(p/2, q)$-eigenhnctions if and only if $p>2$ . We can also
another formal explanation why the reduction arises.

For simplicity, we replace $p$ by $2p$ and show the reduction from $2p$ to $p$

for $p>1$ . The special solution of $(2p, q)$-bistable problem satisfies

$( \phi_{2p}(y’))’+\frac{(2p-1)q}{p}\phi_{q}(y)(1-|y|^{q})=0$ (3.11)

and attains the maximum 1 for some $x>0$ . Therefore, we have

$\frac{2p-1}{2p}|y’|^{2p}+\frac{2p-1}{p}(|y|^{q}-\frac{1}{2}|y|^{2q})=\frac{2p-1}{2p},$

which implies
$1-|y|^{q}=|y’|^{p}.$

Moreover, formal calculation gives that $(\phi_{2p}(y’))’=(2p-1)|y’|^{2p-2}y"$ . Thus,
cancehng $|y’|^{p}$ in Eq. (3.11), we have

$(2p-1)|y’|^{p-2}y"+ \frac{(2p-1)q}{p}\phi_{q}(y)=0,$
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which implies the $(p, q)$ -eigenvalue problem:

$( \phi_{p}(y’))’+\frac{(p-1)q}{p}\phi_{q}(y)=0.$

4 Further Generalization
We will try to extend Jacobian elliptic functions more generally.

Let $p,$ $q,$ $r>1$ . For any $k\in[O, 1)$ we define $K_{pqr}(k)$ as

$K_{pqr}(k)= \int_{0}^{1}\frac{dt}{\sqrt[p]{1-t^{q}}\sqrt[r]{1-k^{q}t^{q}}}.$

Then, for any $k\in[O, 1)$ and any $x\in[-K_{pqr}(k), K_{pqr}(k)]$ we define $sn_{pqr}(x, k)$

as an inverse of the incomplete elliptic integral of the first kind.

$x= \int_{0}^{sn_{pqr}(x,k)}$

$dt$

We can also give another definition. For simplicity, let $\varphi\in[0, \pi_{pq}/2].$

Using the generalized trigonometric function, we define the $(p, q, r)$ -elliptic
integral of the first kind:

$F_{pqr}(k, \varphi)=\int_{0}^{\varphi}\frac{d\theta}{\sqrt[r]{1-k^{q}\sin_{pq}^{q}\theta}}=\int_{0}^{\sin_{pq}\varphi}\frac{dt}{\sqrt{}\sqrt[r]{1-k^{q}t^{q}}},$

and the complete $(p, q, r)$-elliptic integral of the first kind:

$K_{pqr}(k)=F_{pqr}(k, \frac{\pi_{pq}}{2})=\int_{0^{\underline{\pi}_{R1}}}^{2}\frac{d\theta}{\sqrt[r]{1-k^{q}\sin_{pq}^{q}\theta}}=\int_{0}^{1}\frac{dt}{\sqrt{}\sqrt[r]{1-k^{q}t^{q}}}.$

We define the $(p, q, r)$-amplitude function $am_{pqr}(x, k)$ for $x\in[O, K_{pqr}(k)]$ as

$x= \int_{0}^{am_{pqr}(x,k)}\frac{d\theta}{\sqrt[r]{1-k^{q}\sin_{pq}^{q}\theta}}$

and
$sn_{pqr}(x, k)=\sin_{pq}(am_{\varphi qr}(x, k))$ .
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We can see that $s\psi_{r}(x, k)=sn_{pq}(x, k)$ if $p=r$ and that $K_{pqr}(0)=$

$\pi_{pq}/2,$ $s\psi_{r}(x, 0)=si\% x$ . We have

$K_{2p,q,2r}(k) arrow\frac{\pi_{sq}}{2},$ $sn_{2p,q,2r}(x, k)arrow\sin_{sq}x$ a$s$ $karrow 1,$

where $s$ is the harmonic mean of $p$ and $r$ , i.e., $2/s=1/p+1/r$ . The former
follows from easy calculation as

$K_{2p,q,2r}(k)= \int_{0}^{1}\frac{dt}{\sqrt[2]2\sqrt[r]{1-k^{q}t^{q}}}arrow\int_{0}^{1}\frac{dt}{\sqrt[*]{1-t^{q}}}=\frac{\pi_{sq}}{2}.$

Moreover, the function $y=s\psi_{r}(x, k)$ satisfies

$(|y’|^{p-2}u’)’+ \frac{(p-1)q}{p}|y|^{q-2}y(1-k^{q}|y|^{q})^{p/r-1}(1+\frac{p}{r}k^{q}-(1+\frac{p}{r})k^{q}|y|^{q})=0.$

Thus, $y=sn_{2p,q,2r}(x, k)$ satisfies

$(|y’|^{2p-2}u’)’+ \frac{(2p-1)q}{2p}|y|^{q-2}y(1-k^{q}|y|^{q})^{p/r-1}(1+\frac{p}{r}k^{q}-(1+\frac{p}{r})k^{q}|y|^{q})=0.$

By letting $karrow 1$ in above and Eq. (1.6), we see that the function $y=$

$\sin_{sq}x(2/s=1/p+1/r)$ satisfies the following two equations simultaneously.

$(|y’|^{2p-2}y’)’+ \frac{(2p-1)q}{s}|y|^{q-2}y(1-|y|^{q})^{p/r}=0,$

$(|y’|^{s-2}y’)’+ \frac{(s-1)q}{s}|y|^{q-2}y=0.$

We have seen the case $p=r=s$ in the previous section.

5 Topics in the Generalized Functions

5.1 Isoperimetric Problem
The isoperimetric property of the circle is well-known among scientists. Of
all curves with the same length, the circle has the largest area.

We replace the Euclidean metric with the $\mathfrak{x}\succ$metric according to which
the distance between two points is measured as
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Then, the $q$-circle with radius $R$ and centre $(x_{0}, y_{0})$ has the equation
$|x-x_{0}|^{q}+|y-y_{0}|^{q}=R^{q}.$

The problem is to find a curve which has the largest area, of all curves
with the same $p$-length, that is,

$A= \frac{1}{2}\oint(xdy-ydx)=$ Maximum;

$L_{p}= \int(|x’(t)|^{p}+|y’(t)|^{p})^{1/p}dt=Constant.$

Theorem 5.1 ([20]). Among all closed curves of the same $p$-length, the q-
circle encloses the largest area where $q=p’= \frac{p}{p-1}.$

Several of the proofs in the literature of the classical isoperimetric inequal-
ity can be adapted to the present more general situation. The isoperimetric
inequality reads

$L_{p}^{2} \geq 4\omega_{q}A, \omega_{q}=\pi_{pq}=\frac{2\Gamma(1/q)^{2}}{q\Gamma(2/q)}$ . (5.1)

The case $p=q=2$ reduces to the familiar
$L^{2}\geq 4\pi A.$

Lindqvist and Peetre [20] (see also [18]) calculate the arc-length and area
of $q$-circle, using generalized trigonometric functions. Let us turn our atten-
tion to the unit $q$-circle, where $q$ is conjugate to $p$ . The first quarter of it can
be parametrized by

$x=\cos_{pq}t, y=\sin_{pq}t,$

where $0\leq t\leq\pi_{pq}/2$ . Then, noting that
$x’(t)=-\sin_{pq}^{q-1}t\cos_{pq}^{q/p+1-q}t=-\sin_{pq}^{q-1}t,$

$y’(t)=\cos_{pq}^{q/p}t=\cos_{pq}^{q-1}t,$

we have

$\int_{0}^{t}(|x’(t)|^{p}+|y’(t)|^{p})^{1/p}dt=\int_{0}^{t}(|-\sin_{pq}^{q-1}t|^{p}+|\cos_{pq}^{q-1}t|^{p})^{1/p}dt$

$= \int_{0}^{t}(\sin_{pq}^{q}t+\cos_{pq}^{q}t)^{1/p}dt$

$= \int_{0}^{t}dt=t.$
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Moreover,

$\frac{1}{2}\oint(xdy-ydx)=\frac{1}{2}\int_{0}^{t}(\cos_{pq}t\cos_{pq}^{q-1}t-\sin_{pq}t\cdot(-\sin_{pq}^{q-1}t))dt$

$= \frac{1}{2}\int_{0}^{t}(\cos_{pq}^{q}t+\sin_{pq}^{q}t)dt$

$= \frac{1}{2}\int_{0}^{t}dt=\frac{1}{2}t.$

Thus, $q$-circle attains the equality of Isoperimetric Inequality (5.1), indeed

$L_{p}^{2}=(4 \cdot\frac{\pi_{pq}}{2})^{2}=4\pi_{pq}^{2},$

$4 \pi_{pq}A=4\pi_{pq}\cdot 4\cdot\frac{\pi_{pq}}{4}=4\pi_{pq}^{2}.$

5.2 Superellipse
In a similar way to the above, we can obtain the $r$-length $L_{p}$ and area $A$ of
$q$-superellipse or $q$-Lam\’e curve

$| \frac{x}{a}|^{q}+|\frac{y}{b}|^{q}=1,$

where $a\geq b>0$ and $q=p’=\overline{p}-\overline{1}l$ for $p>1.$

The first quarter of $q$-superellipse can be parametrized by

$x=a\cos_{pq}t, y=b\sin_{m}t,$

where $0\leq t\leq\pi_{pq}/2$ . Then, as above, we have

$\int_{0}^{t}(|x’(t)|^{p}+|y’(t)|^{p})^{1/p}dt=\int_{0}^{t}(|-a\sin_{pq}^{q-1}t|^{p}+|b\cos_{pq}^{q-1}t|^{p})^{1/p}dt$

$= \int_{0}^{t}(a^{p}\sin_{pq}^{q}t+b^{p}\cos_{pq}^{q}t)^{1/p}dt$

$=a \int_{0}^{t}(1-k^{q}\sin_{pq}^{q}t)^{1/p}dt$

$=aE_{pq}(k, t)$ ,
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where $k^{q}=(a^{p}-b^{p})/a^{p}$ and $E_{pq}(k, t)$ is the $(p, q)$ -elliptic integral of the
second kind. Moreover,

$\frac{1}{2}\oint(xdy-ydx)=\frac{1}{2}\int_{0}^{t}(a\cos_{pq}t\cdot b\cos_{pq}^{q-1}t-b\sin_{pq}t\cdot(-a\sin_{pq}^{q-1}t))dt$

$= \frac{ab}{2}\int_{0}^{t}(\cos_{pq}^{q}t+\sin_{pq}^{q}t)dt$

$= \frac{ab}{2}\int_{0}^{t}dt=\frac{ab}{2}t.$

Thus,

$L_{p}=4aE_{pq}(k, \frac{\pi_{pq}}{2})=4aE_{pq}(k)$ ,

$A=4 \cdot\frac{ab}{2}\cdot\frac{\pi_{pq}}{2}=\pi_{pq}ab.$

Remark 5.1. We do not use $q=p’$ to obtain $A.$

5.3 Catalan’s Constant
Bushell and Edmunds [4] (see also [18]) have obtained a new representation
of Catalan’s constant $G$ , which is defined as

$G= \sum_{n=0}^{\infty}\frac{(-1)^{n}}{(2n+1)^{2}}=0.915965594\cdots$

It is well known that
$\int_{0}^{\pi/2}\frac{x}{\sin x}dx=2G$ . (5.2)

There are connections between the generalized trigonometric functions
and those of classical analysis. Since the integral formula of Euler type (see
[28, Section 14.6] $)$ yields

$\sin_{p}^{-1}x=\frac{x}{p}\int_{0}^{1}t^{-1/p’}(1-x^{p}t)^{-1/p}dt=\frac{x}{p}F(\frac{1}{p},\frac{1}{p};1+\frac{1}{p};x^{p})$ ,

where $F$ is the hypergeometric function, we have

$\sin_{p}^{-1}x=x\sum_{n=0}^{\infty}\frac{\Gamma(n+1/p)x^{1^{yn}}}{\Gamma(1/p)(np+1)n!}.$
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This leads to: for $x\in(O, \pi_{p}/2)$ ,

$x= \sin_{p}x\sum_{n=0}^{\infty}\frac{\Gamma(n+1/p)}{\Gamma(1/p)(np+1)}\frac{\sin_{p}^{pn}x}{n!}.$

Thus,

$\int_{0}^{\pi_{p}/2}\frac{x}{\sin_{p}x}dx=\sum_{n=0}^{\infty}\frac{\Gamma(n+1/p)}{\Gamma(1/p)(pn+1)n!}\int_{0}^{\pi_{p}/2}\sin_{p}^{pn}xdx.$

Using

$\int_{0}^{\pi_{p}/2}\sin_{p}^{pn}xdx=\frac{1}{p}B(n+\frac{1}{p},\frac{1}{p})=\frac{\Gamma(n+1/p)\Gamma(1/p’)}{p\Gamma(n+1)}=\frac{\pi_{p}\Gamma(n+1/p)}{2\Gamma(1/p)n!},$

we have
$\int_{0}^{\pi_{p}/2}\frac{x}{\sin_{\varphi}x}dx=\frac{\pi_{p}}{2}\sum_{n=0}^{\infty}(\frac{\Gamma(n+1/p)}{\Gamma(1/p)n!})^{2}\frac{1}{pn+1}.$

In particular, the case $p=2$ with Eq. (5.2) reduces to

$2G= \frac{\pi}{2}\sum_{n=0}^{\infty}(\frac{\Gamma(n+1/2)}{\sqrt{\pi}n!})^{2}\frac{1}{2n+1}.$

Since $\Gamma(n+1/2)=(2n)!\sqrt{\pi}/(2^{2n}n!)$ from the duplication formula of $\Gamma$ in [28,
Section 12.15], we obtain

$G= \frac{\pi}{4}\sum_{n=0}^{\infty}(\frac{(2n)!}{2^{2n}(n!)^{2}})^{2}\frac{1}{2n+1}.$

5.4 Addition Theorem
Edmunds, Gurka and Lang [12] have obtained an addition formula for $\sin_{w’}x$

in a very special case.
We consider the case $p= \frac{4}{3}$ and $q=p’=4$ . Then, we have

$\sin_{\frac{4}{3},4}^{-1}u=\int_{0}^{u}\frac{dt}{(1-t^{4})^{\frac{3}{4}}}.$
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The change of variable $w=( \frac{1-t^{2}}{1+t^{2}})^{\frac{1}{2}}$ leads to

$\sin_{\frac{4}{3},4}^{-1}u=\frac{1}{\sqrt{2}}\int_{(\frac{1-u}{1+u})}^{1}2b\frac{dw}{\sqrt{w(1-w^{2})}}z.$

The further change of variable $1-w=z^{2}$ leads to

$\sin_{\frac{4}{3},4}^{-1}u=\int_{0}^{\phi(u)}\frac{dz}{\sqrt{(1-z^{2})(1-\frac{z^{2}}{2})}},$

where $\phi(u)=(1-(\frac{1-u^{2}}{1+u^{2}})^{\frac{1}{2}})^{\frac{1}{2}}$ . Therefore,

$\phi(u)=sn(\sin_{\frac{4}{3},4}^{-1}u, \frac{1}{\sqrt{2}})$

Setting $y=\sin_{\frac{4}{3},4}^{-1}u$ , we have

$\sin_{\frac{4}{3},4}y=\phi^{-1}(sn(y, \frac{1}{\sqrt{2}}))$

Thus, using the addition theorem for sn$(x, k)$ (see [28, Section 22.2]), we
obtain

$\sin_{\frac{4}{3},4}(u+v)$

$= \phi^{-1}(\frac{\phi(U)\sqrt{1-\phi(V)^{2}}\sqrt{1-\frac{1}{2}\phi(V)^{2}}+\phi(V)\sqrt{1-\phi(U)^{2}}\sqrt{1-\frac{1}{2}\phi(U)^{2}}}{1-\frac{1}{2}\phi(U)^{2}\phi(V)^{2}})$ ,

where $U=\sin_{4/3,4}u,$ $V=\sin_{4/3,4}v$ . For simplicity, putting $u=v$ , we have
the following duplication formula.

Proposition 5.1 ([12]).

$\sin_{\frac{4}{3},4}2x=\frac{2\sin_{\frac{4}{3},4}x\cos_{\frac{4}{3}}}{(1+4\sin_{\frac{44}{3},4}x\cos x)^{\frac{1}{2}}} (0\leqq x<\frac{\pi_{\frac{4}{3},4}}{4})$

Finally it should be noted that we still have no addition formula for $\sin_{pq}x$

in the other cases even if $q=p’.$
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Remark 5.2. In [12, Proposition 3.4], this formula is written in a slightly
different form as

$\sin_{\frac{4}{3},4}2x=\frac{2\sin_{\frac{4}{3},4}x(\cos_{\frac{4}{3},4}x)^{\frac{1}{3}}}{(1+4\sin_{\frac{44}{3},4}x\cos_{\frac{\frac{4}{43}}{3},4}x)^{\frac{1}{2}}} (0\leqq x<\frac{\pi_{\frac{4}{3},4}}{4})$ .

The difference is caused by that of the definitions of $\cos_{pq}x$ . They define
$\cos_{pq}x$ in [12] as

$\cos_{pq}x=\frac{d}{dx}\sin_{pq}x,$

while we have defined in Eq. (1.3)

$\cos_{pq}x=\sqrt[q]{1-|\sin_{pq}x|q}=(\frac{d}{dx}\sin_{pq}x)^{q}2$

5.5 Basis Property
Given any element in $L^{q}(0,1)$ for every $q\in(1, \infty)$ , its odd extension to
$L^{q}(-1,1)$ has a unique representation in terms of the functions $\sin(n\pi x)$ ,
which means that $\sin(n\pi x)$ is a basis of $L^{q}(0,1)$ . Binding, Boulton, $\check{C}epi\check{c}ka,$

Dr\’abek and Girg [2] showed that the functions $\sin_{p}(n\pi_{p}x)$ have a similar
property, provided that $p$ is not too close 1.

Stating their result, we recall the definitions of Schauder and Riesz bases.
For details, see Singer [23] and Higgins [15].

Definition 5.1. $\{g_{n}\}$ is a Schauder basis of a Banach space $X$ , if for any
$g\in X$ , there exist unique coefficients $c_{n}$ , depending continuously on $g$ , so
that $g= \sum_{n=1}^{\infty}c_{m}g_{n}$ , i.e., $\Vert\sum_{n=1}^{N}c_{2?}g_{n}-g\Vert_{X}arrow 0$ ae $Narrow\infty.$

Definition 5.2. $\{g_{n}\}$ is a Riesz basis of a Hilbert space $H$ , if it is a Schauder
basis of $H$ and there exist $0<C_{1}\leqq C_{2}$ such that $C_{1}( \sum_{n=1}^{N}|c_{n}|^{2})^{1/2}\leqq$

$\Vert\sum_{n=1}^{N}c_{m}g_{n}\Vert_{H}\leqq C_{2}(\sum_{n=1}^{N}|c_{m}|^{2})^{1/2}$ for all finite sequences $\{c_{n}\}$ of scalars.

Remark 5.3. Riesz basis is also defined as a basis being simultaneously Besselian
and Hilbertian. See [23, Corollary 11.2].

Then, we can obtain (omitting the proof)

Theorem 5.2 ([2]). Let $f_{n}(t);=\sin_{p}(n\pi_{p}t)$ . If $\frac{12}{11}\leqq p<\infty$ , then the
family $\{f_{n}\}_{n=1}^{\infty}$ forms a Riesz basis of $L^{2}(0,1)$ and a Schauder basis of $L^{q}(0,1)$

whenever $1<q<\infty.$
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The condition $\frac{12}{11}\leqq p<\infty$ can be relaxed as

$\pi_{p}=\frac{2\pi}{p\sin\frac{\pi}{p}}<\frac{4\sqrt{2}\pi^{2}}{\pi^{2}-8}=29.86242088\cdots$

We can see that the number $\frac{12}{11}=1.\dot{0}\dot{9}$ satisfies this condition, indeed

$\pi_{\frac{12}{11}}=\frac{2\pi}{\frac{12}{11}\sin\frac{11\pi}{12}}=\frac{11\pi\sqrt{2}}{3(\sqrt{3}-1)}=22.25333351\cdots$

The optimal value for the condition is $p=1.067415277\cdots$ , i.e., $\pi_{1.067415277}\ldots=$

$\frac{4\sqrt{2}\pi^{2}}{\pi^{2}-8}$ , but this is not so for the conclusion of theorem.
Recently, Edmunds, Gurka and Lang [12] proved that $\sin_{pq}(n\pi_{pq}x)$ also

has the basis property. This does not include Theorem 5.2 completely, but
holds for cases $q\neq p$ . In particular, it assures that $\sin_{m’}(n\pi_{1\varphi’}x)$ is a basis
for all $1<p<\infty.$

Theorem 5.3 ([12, 18]). Let $f_{n}(t):=\sin_{pq}(n\pi_{pq}t)$ . If $\pi_{pq}<\frac{16}{\pi^{2}-8}=8.557960158\cdots,$

then the family $\{f_{n}\}_{n=1}^{\infty}$ is a $ba\mathcal{S}is$ in $L^{r}(0,1)$ for any $r\in(1, \infty)$ .

For Jacobian elliptic functions, we have known a result of Craven [6,
Theorem 2]. In that paper, Stone’s theorem is used to prove a more general
completeness theorem, which can also be applied to certain expansions in
Jacobian elliptic functions, analogous to trigonometric Fourier series.

Theorem 5.4 ([6]). The sequence of Jacobian elliptic functions
1, cn $(x, k)$ , cn $(2x, k),$ $\cdots$ , cn $(nx, k)$ , $\cdots$

is complete in $L^{2}(0,2K(k))$ , provided that $0<k<k_{c}$ , where $k_{c}=0.99$

approximately.

A similar proof, and conclusion, applies to the sequence

1, sn $(x, k)$ , sn $(2x, k),$ $\cdots$ , sn $(nx, k)$ , $\cdots$

in $L^{2}(0,2K(k))$ , with a similar restriction on $k.$

In the forthcoming paper [26], the author will give the basis property for
generalized Jacobian elliptic functions, which includes the results of [2] and
$[12]$ , partially of [6].
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5.6 Arithmetic-Geometric Mean
Let $a_{0}=a>0,$ $b_{0}=b>0$ . We consider the sequences

$a_{n+1}= \frac{a_{n}+b_{n}}{2}, b_{n+1}=\sqrt{a_{n}b_{n}}.$

Then, it was shown by Gauss in 1799 that

$\lim_{narrow\infty}a_{n}=\lim_{narrow\infty}b_{n}=\frac{\pi}{\int_{-\infty}^{\infty}\frac{dx}{\sqrt{(x^{2}+a^{2})(x^{2}+b^{2})}}},$

where the limit is called the arithmetic-geometric mean.
Concerning this, D. Borwein and P. B. Borwein [3] gave the problem:

The following conjecture appears in Les Annales des Sciences
Math\’ematiques du Qu\’ebec, 6 (1982), p. 79: Let $\alpha+\beta=1,$ $\alpha>$

$0,$ $\beta>0$ . If $a_{0}=a>0,$ $b_{0}=b>0$ and

$a_{n+1}=\alpha a_{n}+\beta b_{n}, b_{n+1}=a_{n}^{\alpha}b_{n}^{\beta},$

then

$\lim_{narrow\infty}a_{n}=\lim_{narrow\infty}b_{n}=\frac{\pi}{\int_{-\infty}^{\infty}\frac{dx}{(x^{2}+a^{2})^{\alpha}(x^{2}+b^{2})^{\beta}}}.$

Show that this conjecture is false unless $\alpha=\beta=1/2.$

In [3] they give a proof by themselves, but they mention nothing about
the correct limit of these sequences. It seems to be still open and interesting
to study the relation between $\pi_{pq},$ $K_{pq}(k)$ and this generalized arithmetic-
geometric mean.
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