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1 Introduction

This is ajoint project with Yuan Lou (Ohio State University), Wei-Ming Ni (Univer-

sity of Minnesota and East China Normal University) concerning mathematical analysis,

and Masaharu Nagayama (Hokkaido University), Tatsuki Mori (Ryukoku University)

concerning numerical computation.
In an attempt to model segregation phenomena in population dynamics, Shigesada,

Kawasaki and Teramoto [7] in 1979 incorporated the inter-competition system. In par-

ticular, the following system was proposed

$[Matrix]$ (1.1)

where $\Omega$ is a bounded domain $R^{N}(N\geq 1)$ with smooth boundary $\partial\Omega$ . Here $u$ and $v$

represent the densities of two competing species. The constants $a_{j},$ $b_{j},$ $c_{j}$ and $d_{j}(j=1,2)$

are all positive, where $a_{1},$ $a_{2}$ denote the intrinsic growth rates of these two species,
$b_{1}$ and $c_{2}$ account for intra-specific competitions while $b_{2},$ $c_{1}$ account for inter-specific

competitions, and $d_{1},$ $d_{2}$ are their diffusion rates. The constants $\rho_{11},$ $\rho_{22}$ represent intra-

specific population pressures, also known as self-diffusion rates, and $\rho_{12},$ $\rho_{21}$ are the

coefficients of inter-specific population pressures, also known as cross-diffusion rates.

For convenience, we set $A:=a_{1}/a_{2},$ $B$ $:=b_{1}/b_{2},$ $C$ $:=c_{1}/c_{2}$ . If $B<C$ , we call it

the strong competition case and $B>C$ the weak competition case.
If $\rho_{n}=\rho_{12}=\rho_{21}=\rho_{22}=0$ , no nonconstant steady state can exist for any diffusion

rates $d_{1},$ $d_{2}$ . On the other hand, it seems not entirely reasonable to add just diffusions

to models in population dynamics, since individuals do not move around completely

randomly. In particular, while modeling segregation phenomena for two competing

species one must take into account the cross-diffusion pressures.
Mimura and his collaborators started mathematical analysis around 1980 (see, e.g.

Mimura [4] $)$ . Considerable work has been done concerning the global existence of solu-

tions to systems (1.1) under various hypotheses. $A$ priori estimates are crucial to obtain
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the global existence. As for recent progress including stationary problems, see Ni [5], Ni
[6], Yagi[9] and Yamada [10].

We are interested in the case $\rho_{11}=\rho_{21}=\rho_{22}=0$ to clarify the effect of the cross-
diffusion. By putting $r:=\rho_{12}/d_{1}$ , we have

$\{\begin{array}{l}u_{t}=d_{1}\Delta[(1+rv)u]+u(a_{1}-b_{1}u-c_{1}v) in \Omega\cross(0, \infty) ,v_{t}=d_{2}\Delta v +v(a_{2}-b_{2}u-c_{2}v) in \Omega\cross(0, \infty) ,\underline{\partial u}_{=}\underline{\partial v}_{=0}\end{array}$

on $\partial\Omega\cross(0, \infty)$ ,
$\partial n$ $\partial n$

$u(x, 0)=u_{0}(x),$ $v(x, 0)=v_{0}(x)$ in $\Omega.$

(1.2)

The stationary problem for the above equation is

$\{\begin{array}{ll}d_{1}\triangle[(1+rv)u]+u(a_{1}-b_{1}u-c_{1}v)=0 in \Omega,d_{2}\Delta v +v(a_{2}-b_{2}u-c_{2}v)=0 in \Omega,\frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0 on \partial\Omega,u(x)>0, v(x)>0 in\Omega.\end{array}$ (1.3)

Even for these special cases, it is not easy to understand the structure of stationary
solutions, and the stability of them.

2 Limiting equations

Let us consider about a time-dependent limiting equation for (1.2) as $rarrow\infty.$

It seems from numerical computations for (1.2) and limiting equations for (1.3)
derived in Lou-Ni [1], [2] that we suspect that limiting equations with $rarrow\infty$ for (1.2)
is the following equation.

Unknown functions are $\tau(t),$ $v(x, t)$ , and

$\{\begin{array}{l}\frac{d}{dt}(\int_{\Omega}\frac{\tau}{v}dx)=\int_{\Omega}\frac{\tau}{v}(a_{1}-b_{1}\frac{\tau}{v}-c_{1}v)dx in (0, \infty) ,\frac{\partial v}{\partial t}=d_{2}\triangle v+v(a_{2}-c_{2}v)-b_{2}\tau in \Omega\cross(0, \infty) ,\frac{\partial v}{\partial n}=0 on \partial\Omega\cross(0, \infty) ,\tau(0)=\tau_{0}>0, v(x, O)=v_{0}(x)>0 in \Omega.\end{array}$ (2.1)

This is formally derived by rewriting the first equation in (1.2) as

$u_{t}=d_{1}r \Delta[(\frac{1}{r}+v)u]+u(a_{1}-b_{1}u-c_{1}v)$ ,
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and letting $rarrow\infty$ after dividing by $r$ . In fact, this implies that $u(x, t)v(x,t)$ is equal
to a constant $\tau(t)$ depending only on $t$ . On the other hand, by integrating the above
equation in $\Omega$ , we get

$\frac{d}{dt}(\int_{\Omega}udx)=\int_{\Omega}u(a_{1}-b_{1}u-c_{1}v)dx.$

Thus, we obtain (3.1).
The stationary limiting equation for (3.1) becomes as follows:

$\{\begin{array}{l}\int_{\Omega}\frac{\tau}{v}(a_{1}-b_{1}\frac{\tau}{v}-c_{1}v)dx=0,d_{2}\Delta v+v(a_{2}-c_{2}v)-b_{2}\tau=0 in \Omega,\frac{\partial v}{\partial n}=0 on\partial\Omega,\tau>0, v(x)>0 in\Omega.\end{array}$ (2.2)

3 1-dimensional case

Now, we consider the 1-dimensional case with $\Omega=(0,1)$ . The stationary limiting
equation (2.2) becomes as follows:

$\{\begin{array}{l}\int_{0}^{1}\frac{1}{v}(a_{1}-b_{1^{\frac{\tau}{v}}})dx-c_{1}=0,d_{2}v_{xx}+v(a_{2}-b_{2}\frac{\tau}{v}-c_{2}v)=0, in (0,1),v_{x}(0)=v_{x}(1)=0,v>0, in (0,1) .\end{array}$

Due to the scaling and reflection properties of solutions to autonomous ordinary
differential equations, all solutions to the (3.1) are obtained by several reflections and a
suitable re-scaling from solutions of the following system:

$\{\begin{array}{l}\int_{0}^{1}\frac{1}{v}(a_{1}-b_{1}\frac{\tau}{v})dx-c_{1}=0,d_{2}v_{xx}+v(a_{2}-b_{2}\frac{\tau}{v}-c_{2}v)=0 in (0,1) ,v_{x}(0)=v_{x}(1)=0,\tau>0, v>0, v_{x}>0, in(O, l).\end{array}$ (3.1)

Now, we will discuss about the structure of stationary solutions and their stability.
This system (3.1) consists of a nonlinear elliptic equation and an integral constraint.

As far as existence and non-existence in one dimensional domain are concerned, Lou-
Ni-Yotsutani [3] obtained nearly complete knowledge. They also obtained the precise
qualitative behavior of solutions to this limiting system as the diffusion rate varies.
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Their basic approach is to convert the problem of solving the system to a problem
of solving its “representation” in a different parameter space. This is first done without
the integral constraint, and then they use the integral constraint to find the “solution
curve” in the new parameter space. This turns out to be a powerful method as it gives
fairly precise information about the solutions.

We have recently made clear the remained delicate parts due to the explicit repre-
sentation by elliptic functions.

We summarized the structure of solutions of (3.1). We concentrate on the case

$B<C$ (strong competition case).

The following two theorem are due to [3].

Theorem 3.1 (Existence) Suppose that $B<C$ . If
$\max\{0, \frac{B+C-2A}{C-B}\}\frac{a_{2}}{\pi^{2}}<d_{2}<\frac{a_{2}}{\pi^{2}},$

then there exists a solution $(v(x), \tau)$ of (3.1).

Theorem 3.2 (Nonexistence) Suppose that $B<C.$
(i) If $d_{2} \geq\frac{a_{2}}{\pi^{2}}$ , then there exists no solution of (3.1).
(iii) If $A<B$ , there exists no solution of (3.1).

(iii) If $B \leq A<\frac{B+C}{2}$ , then there exists a $d_{2}^{*}=d_{2}^{*}(A, B, C, a_{2})>0$ such that
there exists no solution of (3.1) for $d_{2}\in(0, d_{2}^{*}].$

We see that the above theorem is sharp by the following theorems. The existence
region depending on the the ratio $C/B$ . The situation drastically changes at $C/B=7/3.$

Theorem 3.3 Suppose that $B<C\leq 7B/3$ . (3.1) has a solution $(v(x), \tau)$ if and only
if $d_{2}$ satisfies

$\max\{0, \frac{B+C-2A}{C-B}\}\frac{a_{2}}{\pi^{2}}<d_{2}<\frac{a_{2}}{\pi^{2}}.$

Moreover, the solution is unique.

Theorem 3.4 Suppose that $7B/3<C.$ $(3.1)$ has the unique solution $(v(x), \tau)$ if

$\max\{0, \frac{B+C-2A}{C-B}\}\frac{a_{2}}{\pi^{2}}<d_{2}<\frac{a_{2}}{\pi^{2}}$

Moreover, there exists the only one connected non-empty open set $D$ with

$D \subset\{(A, d_{2}):B<A<\frac{B+C}{2}, 0<d_{2}<\{\frac{B+C-2A}{C-B}\}\frac{a_{2}}{\pi^{2}}\}$

such that (3.1) has exactly two solutions $(v(x), \tau)$ if and only if $d_{2}\in D.$
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Figure 3.1: Case $B<C\leq 7B/3$

Figure 3.2: Case $7B/3<C$

The following theorems in [3] give the shape of solutions to (3.1) as $d_{2}\uparrow a_{2}/\pi^{2}.$

Theorem 3.5 (Shape of solutions as $d_{2}\uparrow a_{2}/\pi^{2}$ ) Suppose that $B<C.$

Let $(v(x, d_{2}), \tau(d_{2}))$ be solutions of (3.1). If $A\geq B$ , then

$v(x;d_{2})arrow 0,$ $\frac{v(x;d_{2})-v(0;d_{2})}{v(1;d_{2})-v(0;d_{2})}arrow\frac{1-\cos(\pi x)}{2},$

$\frac{\tau(d_{2})}{v(x;d_{2})}arrow\frac{a_{2}}{b_{2}}\cdot\frac{1}{1-\sqrt{1-\frac{B}{A}}\cos(\pi x)}$

uniformly on $[0,1]$ as $d_{2}\uparrow a_{2}/\pi^{2}.$

$w_{*}$ $1=$

Figure 3.3: $u$ as $d_{2}\uparrow a_{2}/\pi^{2}$ Figure 3.4: $v$ as $d_{2}\uparrow a_{2}/\pi^{2}$
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The following theorems in [3] give the shape of solutions to (3.1) as $d_{2}\downarrow 0.$ $A$ new
number $(B+3C)/4$ appears. The shape is drastically change at $A=(B+3C)/4.$

Theorem 3.6 (Shape of solutions as $d_{2}arrow 0$ for $A< \frac{B+3C}{4}$ ) Suppose that $B\neq C$ . Let
$(v(x, d_{2}), \tau(d_{2}))$ be solutions of (3.1). If $A< \frac{B+3C}{4}$ and $B<C$ , then

$v( O;d_{2})arrow 2\cdot\frac{a_{2}}{c_{2}}\cdot\frac{\frac{B+3C}{4}-A}{C-B},$
$v(x;d_{2}) arrow\frac{a_{2}}{c_{2}}\cdot\frac{A-B}{C-B}$ for $x>0,$

$\frac{\tau(d_{2})}{v(0;d_{2})}arrow\frac{a_{2}}{2c_{2}}\cdot\frac{C-A}{C-B}.$
$\frac{A-B}{\frac{B+3C}{4}-A},$ $\frac{\tau(d_{2})}{v(x;d_{2})}arrow\frac{a_{2}}{b_{2}}\cdot\frac{C-A}{C-B}$ for $x>0.$

Figure 3.5: $u$ for $A\leq(B+3C)/4$ Figure 3.6: $v$ for $A\leq(B+3C)/4$

Theorem 3.7 (Shape of solutions as $d_{2}arrow 0$ for $A \geq\frac{B+3C}{4}$ ) Suppose that $B\neq C$ . Let
$(v(x, d_{2}), \tau(d_{2}))$ be solutions of (3.1). If $B<C$ and $A \geq\frac{B+3C}{4}$ , then

$v(O;d_{2})arrow 0,$ $v(x;d_{2}) arrow\frac{3a_{2}}{4c_{2}}$ for $x>0,$

$\frac{\tau(d_{2})}{v(0;d_{2})}arrow\infty,$ $\frac{\tau(d_{2})}{v(x;d_{2})}arrow\frac{a_{2}}{4c_{2}}$ for $x>0$ , as $d_{2}arrow 0.$

Figure 3.7: $u$ for $(B+3C)/4<A$ Figure 3.8: $v$ for $(B+3C)/4<A$
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Let us comment on the stability of stationary solutions in $1-\dim$ case.
The following Figure 3.9 shows numerical results for

$d_{1}=1, d_{2}=*, r=700,000$

$a_{2}=*, b2=1, c2=2.$

$a_{2}=1, b2=1, c2=1.$

We note that $C<7B/3,$ $(B+C)/2=1.5$ and $(B+3C)/4=1.75.$

Figure 3.9: Stability and instability

Yaping Wu[8] gave a proof of instability for
$d_{2}$ sufficiently small with $(B+C)/2<A<(B+3C)/4.$

Recently, she has also given proofs of the asymptotically stability for
$d_{2}(<a_{2}/\pi^{2})$ sufficiently close to $a_{2}/\pi^{2}$ with $(B+C)/2<A<(B+3C)/4,$
$d_{2}$ sufficiently small with $(B+3C)/4<A.$

4 Multi-dimensional problem
We have done various numerical computations for the case $\Omega$ is rectangles in 2-

dimensional space. It seems that the structure of stable stationary solutions is essentially

very similar to 1-dimensional case, though there are much varieties of shape of solutions
in 2-dimensional case than in one-dimensional case.

Figure 4.1: $2D$ global
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Now, we will state some mathematical results. We prepare notations. Let

$\lambda_{0}=0<\lambda_{1}\leq\lambda_{2}\leq\cdots$

$\varphi_{0}=$ const.
$,$

$\varphi_{1},$ $\varphi_{2},$ $\cdots$

be eigen values and corresponding eigen functions of-$A$ in $\Omega\subset R^{N}$ with Neumann
boundary.

Theorem 4.1 Suppose that $N\leq 3$ and $\lambda_{1}$ be a simple eigen values with an eigen
function $\varphi_{1}$ . Then, there exists exactly two positive non-constant solutions $(v_{-}, \tau_{-})$ and
$(v_{+}, \tau_{+})$ of (2.2) for $d_{2}$ sufficiently close to $a_{2}/\lambda_{1}$ with $d_{2}<a_{2}/\lambda_{1}$

Moreover,

$\tauarrow 0,$

$\frac{\tau_{\pm}(d_{2})}{v_{\pm}(x;d_{2})}arrow\frac{a_{2}}{b_{2}}\cdot\frac{1}{1+\mu\pm\varphi_{1}(x)}$

as $d_{2}\uparrow a_{2}/\lambda_{1}$ , where $\mu-,$ $\mu+(\mu_{-}<0<\mu_{+})$ are solutions of

$\frac{\int_{\Omega}(1+\mu\varphi_{1}(x))^{-2}dx}{\int_{\Omega}(1+\mu\varphi_{1}(x))^{-1}dx}=\frac{A}{B}.$

Remark. The set $\{(v_{-}, \tau_{-}), (v_{+}, \tau_{+})\}$ is uniquely determined though there is a freedom
to pick up $\varphi_{1}$ . The condition $N\leq 3$ comes from Harnack’s inequality in our proof.

Remark. For $N=1,$ $\Omega=(0,1)$ , it is easy to see that

$\lambda_{1}=\pi^{2}, \varphi_{1}(x)=\cos\pi x, \frac{1}{1-\mu^{2}}=\frac{A}{B}, \mu\pm=\pm\sqrt{1-\frac{B}{A}}.$

Remark. For $N=2,$ $\Omega=(0,1)\cross(0, \ell)$ with $0<\ell<1$ , it is easy to see that

$\lambda_{1}=\pi^{2}, \varphi_{1}(x, y)=\cos\pi x, \frac{1}{1-\mu^{2}}=\frac{A}{B}, \mu\pm=\pm\sqrt{1-\frac{B}{A}}.$

Remark. $A$ similar theorem holds for the equation (1.3) with sufficiently large $r.$

Remark. Suppose that $N\leq 3$ and $\lambda_{1}$ be a simple eigen values. Then, $(v_{-}, \tau_{-})$ and
$(v_{+}, \tau_{+})$ defined by Theorem 4.1 are asymptotically stable for $d_{2}$ sufficiently close to
$a_{2}/\lambda_{1}$ with $d_{2}<a_{2}/\lambda_{1}.$

The following general lemma plays crucial role to prove Theorems 4.1.
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Lemma 4.2 Suppose that $N\geq 1$ and $\varphi_{1}$ be eigen values corresponding to $\lambda_{1}$ . Let $g(\mu)$

be defined by
$g( \mu):=\frac{\int_{\Omega}(1+\mu\varphi_{1}(x))^{-2}dx}{\int_{\Omega}(1+\mu\varphi_{1}(x))^{-1}dx}$

$for \mu\in(-1/\max_{\overline{\Omega}}\varphi_{1}, -1/\min_{\overline{\Omega}}\varphi_{1})$ . Then

$\frac{dg(\mu)}{d\mu}=\{\begin{array}{ll}+ for \mu>0,0 for \mu=0,- f\sigma r\mu<0.\end{array}$

Moreover, for $N\leq 4,$

$\{\begin{array}{l}g(\mu)arrow\infty as \mu\uparrow-1/\min_{\overline{\Omega}}\varphi_{1},g(\mu)arrow\infty as \mu\downarrow-1/\max_{\overline{\Omega}}\varphi_{1}.\end{array}$

Idea of a proof of Theorem 4.1.

Step 1: $\{\tau(d_{2})\}$ is bounded, and $\{v(x;d_{2})\}$ is $L^{\infty}$-bounded as $d_{2}\uparrow a_{2}/\lambda_{1}.$

Step 2: There exists a sequence $\{d_{2,j}\}$ such that $\tau(d_{2,j})arrow\hat{\tau}$ and $v(x;d_{2,j})arrow\hat{v}(x)$ .

Step 3: $\hat{v}(x)\equiv 0$ and $\hat{\tau}=0.$

Step 4: $\{\tau(d_{2})/v(x;d_{2})\}$ is $L^{2}$-bounded. $\{v(x;d_{2})/\tau(d_{2})\}$ is $L^{\infty}$-bounded. We use the

assumption $N\leq 3$ to apply Harnach’s inequality to $\{v(x;d_{2})/\tau(d_{2})\}.$

Step 5: There exists a sequence $\{d_{2,j}\}$ such that $v(x;d_{2,j})/\tau(d_{2,j})arrow w(x)$ , and $w(x)=$

$a_{2}^{-1}b_{2}\cdot(1+\mu\varphi_{1}(x))$ for some $\mu$ . Moreover, $w(x)>0.$

Step 6: Substitute $w(x)$ into the first equation, we obtain the equation for $\mu.$

Step 7: Apply the implicit function theorem to $w:=v/\tau$ as follows. Let us take $p$ with

$p>N$ . Define
$F:W_{\nu}^{2,p}\cross R^{1}\cross(0, \infty)arrow L^{p}\cross R^{1}$

by
$F(w, \tau, d_{2}):=(d_{2}\Delta w+w(a_{2}-c_{2}\tau w)-b_{2}, \int_{\Omega}\frac{1}{w}(a_{1}-\frac{b_{1}}{w})dx-c_{1}\tau|\Omega|)$

We see that

$F( \frac{a_{2}}{b_{2}}\cdot(1+\mu\pm\varphi_{1}(x)), 0, \frac{a_{2}}{\lambda})=(0,0)$ ,

and
$Ker$ of $DF_{(w,\tau)}( \frac{a_{2}}{b_{2}}\cdot(1+\mu\pm\varphi_{1}(x)),$ $0,$ $\frac{a_{2}}{\lambda_{1}})=(0,0)$ .

Thus we can apply the implicit function theorem. Moreover, we obtain

$\tau’(\frac{a_{2}}{\lambda_{1}})<0, \tau(\frac{a_{2}}{\lambda_{1}})=0.$
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