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1 Introduction

In this paper we are concerned with the integral equation (with infinite delay)

2(t) = / K(t — s)a(s)ds + f(z2), ()

where K is a measurable m x m matrix valued function with complex components satis-
fying the condition [ || K(¢)[|e”'dt < oo and ess sup{|| K (t)|e” : ¢ > 0} < 0o, and f is a
nonlinear term belonging to the space C1(X; C™), the set of all continuously (Fréchet) dif-
ferentiable functions mapping X into C™, with the property that f(0) = 0 and Df(0) = 0;
here, p is a positive constant which is fixed throughout the paper, and X := L},(IR"; Cc™),
R~ := (—00, 0], is a Banach space (employed throughout the paper as the phase space for
Eq. (F)) equipped with norm ||¢||x := ffoo |#(6)|e”°db (V¢ € X), and z; is an element in
X defined as z:(6) = z(t + ) for § € R™. The linearized equation of Eq. (E) (around the
equilibrium point 0) is given by

o(t) = /_ ; K(t — s)z(s)ds, (1)

which possesses the characteristic matrix A(\) := En — [~ K(t)e~dt (Re A > —p); here
E,, is the m x m unit matrix. Recently, Diekmann and Gyllenberg [3] have treated Eq.
(E), and established the principle of linearized stability for integral equations. In the
paper, as a further development in the stability problem of Eq.(FE), we treat the case
that the equilibrium point zero is nonhyperbolic (that is, the set {\ € C : det A()\) =
0 & Re A = 0} is nonempty), and establish center manifold theorem for Eq. (F); and then
we will investigate stability properties of the zero solution of Eq. (E) in the critical case.
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2 Several preparatory results for integral equations

In this section, following [6] we summarize several preliminary results necessary for our
later arguments. Eq.(E) can be formulated as an abstract equation on the space X of the

form
z(t) = L(z:) + f(=y),

where L : X — C™ is a bounded linear operator defined by L(¢ f K(-0)¢(6)d6
for ¢ € X. Let us consider Eq.(E) with the initial condition

T, = ¢, thatis, z(c+68)=¢(0) for R, (2)

where (0,¢) € R x X is given arbitrarily. A function z : (—o0,a) — C™ is said to be a
solution of the initial value problem (E)-(2) on the interval (o, a) if = satisfies the following
conditions: (i) z, = ¢, that is, (0 + 0) = ¢() for § € R~; (ii) = € LL [0, a), z is locally
integrable on [0, a); (i) z(t) = L(z;) + f(z;) for t € (o, a).

By virtue of [6, Proposition 1], the initial value problem (E)-(2) has a unique (local)
solution which is denoted by z(t;0, ¢, f); in fact, z(t;0, ¢, f) is defined globally if, in
particular, f(¢) is globally Lipschitz continuous in ¢. Moreover we remark that if z(t) is
a solution of Eq.(E) on (o, a), then z, is an X-valued continuous function on [, a). Now
suppose that ¢ = 9 in X, that is, #(§) = 9(0) a.e. § € R™. Then by the uniqueness
of solutions of (E)-(2) it follows that z(t;0, ¢, f) = z(t; 0,9, f) for t € (0,a), so that
zi(0, 8, f) = x4(0,9, f) in X for t € [0,a). In particular, given o € R, z¢(o, -, f) induces a
transformation on X for each t € [0, a) provided that z(t; o, ¢, f) is the solution of (E)-(2)
on (o, a).

For any t > 0 and ¢ € X, we define T'(t)¢ € X by

z(t + 6;0,6,0), —t<8<0,

[T(£)8](8) := (60, 4,0) = { $(t+9), 6 < —t.

Then T(t) defines a bounded linear operator on X. In fact, {T(t)}:»o is a strongly
continuous semigroup of bounded linear operators on X, called the solution semigroup
for Eq.(1). Denote by A the generator of {T'(t)}:>0, and let o(A) and P,(A) be the
spectrum and the point spectrum of the generator A, respectively. Between the spectrum
of A and the characteristic roots of Eq.(1), the relation o(4)NC_, = P,(A)NC_, =
{A € C_, : det A(X) = 0}(=: E) holds, where C_, := {z € C : Rez > —p}. Moreover,

for ess (A), the essential spectrum of A, we have the estimate sup Re) < —p. Now set
A€ess(A)

Tv:i={A€0(A):ReX >0}, £°:= {A € 0(A) : ReX = 0}, and ¥° := o(4)\(T° U T¥).
Then these observations, combined with the analyticity of det A(\) on the domain C_,,
yield the following result ([6, Theorem 2]):
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Proposition 1. Let {T(t)}>o be the solution semigroup of Eq.(1). Then X is decomposed
as a direct sum of closed subspaces E*, E¢, and E°

X=F'®@E°®FE°
with the following properties:
(i) dim (E* @ E°) < o0,
(i) T(t)E* C E*, T(t)E° C E°, and T(t)E® C E® fort € R* :=[0,0),
(iii) o(A|gs) = ZY, o(A|g:) = Z° and 0(A|gnp(a)) = £°,
(iv) T*(t) := T(t)|g« and T°(t) := T(t)|g- are extendable for t € R := (—00,00) as
groups of bounded linear operators on E* and E°, respectively,

(v) T(t) :== T(t)|gs is a strongly continuous semigroup of bounded linear operators on

E?, and its generator is identical with A|gsnp(a),

(vi) there ezist positive constants a, € with o > € and a constant C > 1 such that

1T ()]l o) < Ce™, teRT,
IT*#)|cx) < Ce™, teRT,
IT*(t)l|cxy < CeM, teR.

In (vi) we note that C is a constant depending only on o and ¢, and that the value
of € > 0 can be taken arbitrarily small. Also, we will use the notations E** = E° & E*,
E** = E* @ E* etc, and denote by II® the projection from X onto E*® along E**, and
similarly for IT%, II® etc.

We now introduce a continuous function I'* : R~ — R™* for each natural number n
which is of compact support with support I'* C [—1/n,0] and satisfies ffoo I(6)df = 1.
Notice that T3 € X for any 3 € C™. Let us recall that z(-;0,¢,p) is the (unique)
solution of the integral equation

z(t) = /_t K(t - s)z(s)ds+p(t), t>0o (3)

through (o, ¢); here ¢ € X. The following result ([6, Theorem 3]), which will often be
referred to as VCF for short, gives a representation formula for z:(o, ¢, p) in the space X
by using T'(t), ¢ and p.

Proposition 2. Let p € C([o,0);C™). Then

z(0,0,p) =T(t - 0)p + lim / T(t — s)(I"p(s))ds, Vizo (4)

in X.



Let us consider a subset X consisting of all elements ¢ € X which are continuous on
[—€g,0] for some €4 > 0, and set

Xo={peX|p=¢ae onR" for some ¢ € X}.

For any ¢ € X, we define the value of ¢ at zero by ¢[0] = ¢(0), where ¢ is an element
belonging to X satisfying ¢ = ¢ a.e. on R~. We note that the value ©[0] is well-defined;
that is, it does not depend on the particular choice of ¢ since $(0) = 1(0) for any other
¥ € X such that ¢ =1 a.e. on R™. It is clear that X is a normed space equipped with
norm
lellxo = llellx + lo[0]l, Ve € Xo.

We note that the solution z(-;0,%,p) of Eq. (3) through (5,%) € R x X satisfies the
relation z:(0, 9, p) € Xo with (z:(c, %, p))[0] = z(t; 0, %, p) whenever ¢t > o.

The following lemma can be established by applying Proposition 2 and [6, Theorem 4].
We omit the proof.

Lemma 1. Let f, € C(X;C™), and consider the equation

t
o) = [ Kt s)a(s)ds + fulz) (E.)
Moreover, let ) € E°, and 1 be a constant such that e <1 < a.. Then we have:

(i) If 2(t) is a solution of Eq. (E,) defined on R with the properties that Mzy = 1,
SuPser ||l x €™M < 00 and sup,eg | fu(1)] < 00, then the X -valued function u(t) =
x: satisfies

u(t) = T°(t)y + lim tTc(t — )IIT™ fu(u(s))ds
n—00 0

— lim T(t — s)II"T™ f.(u(s))ds + Jl)r{olo /t T2(t — s)II°T™ f.(u(s))ds

n—o0 t
for t € R, and moreover u belongs to C(R; Xy).

(ii) Conversely, if y € C(R; X) with sup,eg [|y(t)||x ™ < oo and sup,eg | fu(y(t))] <
0o satisfies

V) = T + lim OtT%t _ IET™, (y(s))dr

— lim ” T*(t — s)IIT™ f.(y(s))ds + nlgrolo /t T°(t — s)II°’T™ fu(y(s))ds

n—00 t

fort € R, then y belongs to C(R; Xo) and the function £(t) defined by

£@) = (y®))[0], teR
is a solution of Egq.(E,) on R satisfying II°, = 1, sup,g ||é:llx e < oo and
& =y(t) fort e R.
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3 Center manifold and its exponential attractivity

In what follows we assume that f € C1(X;C™) satisfies f(0) = 0 and Df(0) = 0. In this
section we will establish the existence of local center manifolds of the equilibrium point 0
of Eq.(E) and study their properties. To do so, in parallel with Eq.(E), we will consider
a modified equation of (E) of the form

2= [ Kt~ o)als)ds + fu(a0) (5)

where fs with § > 0 is a modification of the original nonlinear term f; more precisely let
X : R — [0, 1] be a C™-function such that x(¢t) =1 (Jt| < 2) and x(¢t) = 0 (|t| > 3), and
define

£5(8) == x(IT**¢llx/8) x (IT°¢l|x /6) f(8), &€ X.

The function f5 : X — C™ is continuous on X, and is of class C* when restricted to the
open set S5 := {¢ € X : ||I*“¢||x < &} since we may assume that ||II°§||x is of class
C! for ¢ # 0 because of dim E° < co. Moreover, by the assumption f(0) = Df(0) = 0,
there exist a §; > 0 and a nondecreasing continuous function ¢, : (0,4;] — R* such that
G:(+0) =0,

1f6(P)llx <8¢.(6) and [ |fs(¢) — fo(¥)llx < C(O)lid - ¥llx (5)

for ¢, € X and 6 € (0,44]. Indeed, we may put

¢() = ( sup [IDf()llcexiem)) - (143 sup [x'(t)])
llpilx <36 0<t<3

(cf. [2, Lemma 4.1]). Taking é; > 0 small, we may also assume that there exists a positive
number M;(8;) =: M; such that

IDfs(®)lcexicmy < My, ¢ € S5 (6)
for any 0 € (0, 4;]. Fix a positive number 7 such that
e<n<a,

where € and «a are the constants in Proposition 1.
For the existence of center manifold for Eq.(Ej) and its exponential attractivity, we
have the following;:

Theorem 1. There exist a positive number § and a C*-map F, 5 : E — E** with F, 5(0) =
0 such that the following properties hold:

(i) W§ := graph F, 5 is tangent to E° at zero,



(ii) Wy is invariant for Eq. (Ej), that is, if £ € Wy, then z:(0,&, f) € W§ fort € R.

(iii) Assume moreover that £* = (). Then there ezists a positive constant By with the
property that if x is a solution of Eq.(Es) on an interval J = [to,t1], then the
inequality

Iz, — Fys(I1°74)||x < C||T%xs — Fo 5(IT°z4, )| xe P¢ %), t e g

holds true. In particular, if z is a solution on an interval [ty, 00), z; tends to W
exponentially as t — oo.

As will be shown in Proposition 4 given later, the map F, 4 : E° — E** in Theorem 1
is globally Lipschitz continuous with the Lipschitz constant L(§) = 4C2C1¢.(8)/(a — n).
Noticing that L(6) — 0 as § — 0, one can assume that the number § satisfies § € (0, 61]
together with L(6) < 1. Let us take a small r € (0,8) so that ||F,s(s)||x < & for any
¥ € Bpe(r) :== {¢ € E°: ||¢||x < r}. Such a choice of r is possible by the continuity of
Fis. Set Fy := Fl s|p,.(r) and consider an open neighborhood Qg of 0 in X defined by

Qo :={p € X :|II*|x <6 ||IG|x <}
Observe that f = f; on Q. Then the following theorem which yields a local center
manifold for Eq. (E) as the graph of F, immediately follows from Theorem 1.

Theorem 2. Assume that f € CY(X;C™) with f(0) = Df(0) = 0. Then there exist
positive numbers r, §, and a C'-map F, : Bpe(r) — E** with F,(0) = 0, together with an
open neighborhood Qg of 0 in X, such that the following properties hold:

(i) Wi (r,6) := graph F, is tangent to E° at zero,
(i) Wie(r,d) is locally invariant for Eq. (E), that is,

(a) for any & € W (r,0) there exists a te > 0 such that 2,(0,¢, f) € Wg_(r,8) for
It < t,

(b) if & € Wi (r,0) and z:(0,€, f) € Qo for 0 <t < T, then z,(0,, f) € WE.(r,6)
for0<t<T.

(iii) Assume moreover that =% = (). Then there exists a positive constant By with the
property that if z is a solution of Eq.(E) on an interval J = [to, t;] satisfying xs € Qg
on J, then the inequality

Pz, — F.(I1°)||x < C|| x4 — Fo(I°z4, ) ||xe Pt %), teJ

holds true. In particular, if the solution z(t) is defined on [ty, 00) satisfying z, € Qo
on [to, 00), then z; tends to W< (r,d) ezponentially as t — oo.
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In what follows, we will prove Theorem 1 by establishing several propositions. We
now take a 4; > 0 sufficiently small so that

1 2 2 1
(,(61)001(77_6+a+n+a_n><§ (7
holds, and let § € (0, ;). Also, let us consider the Banach space Y, defined by
Y, :={y € C(R; X) : sup ||ly(t)||lx e ™ < 00}
teR
with norm ||y|ly, := sup,eg [|y(t)||x e, y € Y;. For any (%,y) € E° x Y;, we set
A0 =Ty + f, [ 7 - T itu(onas
— lim T“(t — §)II*T™ fs(y(s))ds (8)
n—00 t

t

+ lim T*(t — s)II°T" f5(y(s))ds

n—oo J_

for t € R. Notice that the right-hand side is well-defined and that Fs(?, y) is an X-valued
function on R for each (v, y) € E°xY,,. It is straightforward to certify that Fs(¢,y) € Y,
by virtue of Proposition 1 and (5); in other words, F; defines a map from E° x Y, to Y,
In fact, for each 9 € E°, Fs5(¢,-) is a contraction map from Y, into itself with Lipschitz
constant 1/2, because of the inequality

t
/ CCLG(6)e )y — yally, e"lds
0

175(%, 11) = Fs( )l < sup e~

o0
+ sup e'"ltl/ CCl(*(J)e"(t_‘)”yl =~ y2||yne"|“’|ds
teR t

t
+sup e~ / COL(6)e*Ijyy — yally, ™ds
teR —00

1 2 2
< (.(6,)CC,
_C(l) l(n—s+a+n+a-—n

< (1/2)ln - w2lly,

for y1, y2 € Y;. Thus, the map F5(v,-) has a unique fixed point for each ¢ € E°, say
As(¥) €Yy, ie., we have

) llvr — yz“Y,,

Aus(¥)(®) = T + lim / Tt — S)TET™ fs(Aws()(5))ds
= Jim [T = T (A () (9)ds (9)

n—oo t

+ lim t T(t — s)II’T™ f5(A. 5(¥)(s))ds

n—oo J_

for t € R, whenever 0 < 6 < 6;.



Proposition 3. A, 5(¢) satisfies the following:
1) NAxs(th1) = Avs(W2)lly, < 2C|101 — thallx for 11,40 € E°.
(i) As(P)(t+7) = Ass (TI°(Au 5 () (7'))) (t) holds for t,7 € R.
Proof. Since € < 7, (i) immediately follows from the estimate
[Ax(¥1) = Au(¥2)lly;, = || F5 (1, Aus(¥1)) — Fs(th2, Aus(¥2))lly,
< 1 Fs(vr, Aus (1)) — Fs(hr, Ass(w2))lly,
+ 1 Fs (%1, Aus(2)) — Fo(2, Aws(¥2)) Iy,

< (1/2)[1A5(%1) = Aws(W2)llvs, + 1T°C) (w01 — o) Iy,
< (1/2)1A05(1) = Aus(W2)ly, +sup (Celhr — al]xe™M).

Next, given 7 € R, let us consider the function A(t) defined by A(t) := A, 5(¥)(t +7), te
R. Obviously, A(-) € Y;,. Also, it is easy to check that A(t) = F5(1°(Av s(x)(7)), A (@)
for all ¢ € R; that is, A is a fixed point of F; (TI°(Axs(¥)(7)), ). The uniqueness of the
fixed points yields A = A, 5 (II°(Avs(v)(7))), and hence

Aus@)(t+7) = At) = Aus (TI°(AL5($)())) (1), tER,

which shows (ii). O

For ¢ € (0,01] let Fi.5: E° — E** be the map defined by F.5(¢) =" oevyo A, s(v)
for 1) € E°, where evy is the evaluation map: evq(y) := y(0) for y € C(R; X). Then

Fuos() = — lim [ T%(—s)IT"T™ f5(Au 5(6)(5))ds

n—ro0 0
0
+lm [ T(—s)IT"f5(Aus(¥)(s))ds, o € E° (10)

n—oo f_

and in particular A, 5(¢)(0) = ¢ + F. 5(v) for ¢ € E°. Let us set
W5 = graph F, 5 = {4 + Fus(¢) : ¢ € E}.
Proposition 4. The map F.,; and its graph W have the following properties:

(i) Fis is (globally) Lipschitz continuous, i.e.,

1 Fes(¥1) = Fus(@2)llx < L(O)I1¥1 — ¥llx, 1,42 € E°,

where L(6) := 4C?C1¢.(8)/(a — 7).
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(ii) Letd3 € W¢ and 7 € R. Then the solution of (Es) through (T, qAﬁ), z(t; T, &, fs), exists
on R and
z(1, 6, f5) = Mus()(t = 7), tER,

where 1[) = H%f).
(iii) Moreover for <23 € W§ and T €R,

Haumt(T) $7 f&) = F#,G (cht(Ta (g) fé))’ te R.

In particular W§ is invariant for (E;), that is, (T, qg, fs) € W§ fort € R, provided
that ¢ € W§.

Proof. (i) By (10) and Proposition 3 (i), we get
(| Fes (1) — Fus(¥2)||x < /0 CCre™Cu(0) | Avs(th1)(5) — Aus(2)(s)l|xds

0
+ / CC1e™ Cu(0) | Aws(91)(5) = Aus(th2) (5| xdls
< 2001(*(5)
-n

X 2C||1 — allx = L(8)||¥1 — Y2l x»

[o%

as required.

(ii) Applying Lemma 1 (i), we deduce that A, s(1)) € C(R; Xo) and that the X-valued
function £(t) := (A.5(4)(t))[0] (¢ € R) satisfies & = A, 5(%)(¢) for ¢ € R and is a solution
of (E5) on R with & = A, 5(%)(0) = ¢ + F, 5(3b) = ¢. Let z(t) := £(t — 7). Then z(t) is
a solution of (Es) on R with z, = , so that z(t) = z(¢; T, , fs) for t € R. Consequently,

xt(T, Q‘g, f&) = {t—‘r = A*,&('I,Z;)(t - 7'), t e R.

(iii) Notice from Proposition 3 (i) that A,s()(t — 7) = A,z (HC(A*,J(@z)(t —7)))(0) for
3 := II°}, which, combined with (ii), yields that

Izy(7, , f5) = I1** (As s (TT°(Au 5(4) (t — 7))) (0))
=TI (Aus (T2 (7, &, £5)) (0)) = Fus(Tze(7, B, f5));

which is the desired one. The latter part of (iii) is obvious. a
Now assume that % = 0, i.e., E¥* = {0}. Fix a § € (0, 4;] and let
K :=CCi(5), p=K+e

Proposition 5. Let z(t) be a solution of (Es) on an interval J := [to, t;]. Given T € J,
put ¢ == Iz, + F.s(II°z,). Then the following inequalities hold:



(i) Forto<t<r
M2, ~0,(r, 6, i) < K [ 4000, - Wa,(r, o).
(ii) Moreover forty <t <r
Iz~ T2,(r, 6, )l < K [ e¥)(s)Lxds,

where p' == p+ KL(6) and &(t) := I°x; — F, 5(II°x;) for t € R.

Proof. By virtue of Proposition 4 (ii) and (iii), the solution z(t;, b, fs) exists on R and
°xi(1,$, fs5) = Fus(I°z4(7, @, f5)) for t € R. Let to < t < 7. VCF gives

IE.,-(T, éa f5) = T(T - t)xt(Ta é;’ f5) + lim TT(T - ’S)Pan(xs(Ta é;) f5))d8,

n-»00 t

in particular
D, (7,, fs) = T°(r — t)[I°zy(7, $, f5) + Jim /t ' T(r — )T f5(zs(7, $, f5))ds.
By the group property of {7T°(¢)}:cr, we get
(6, ) = T¥(0 = )7 .9)~ Jim, [ T = T St f)ds. (1)
Similarly for the solution z(t)
Iz, = T°(t — 7)[I°z, — 7}1)11010 tT Te(t — s)II°T™ f5(z5)ds.
Then, since II°z, (7, ¢, f5) = II° = [I°z,, it follows that
|z, — °zy(7, 8, fo)lx < /tT Ke*|I°z, — II°z,(T, 6, f5)||xds
+ [ Kems, — a,(r, 4, £ xds
for to <t < 7. Hence we get

eEt“cht - Hcmt(f) é’ f5)||X S / KeK(s_t)eE's”sts - stS(T; flg, f&)“dev
’ t

which implies (i).
Next we will verify (ii). By Proposition 4 (iii) and (i), we get ||[I*z,—II*z,(T, ¢, f)||x <
16(8)llx + L(8)| Iz, — I°xs(7, $, f5)||x for s € J. Hence it follows from (i) that

(| Tz, — Tz, &, fs)llx < / Kem||¢(s) | xds
t

+/ KL(8)e" |T°x, — I°z,(T, $, f5)|| xds;
t
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then i
e ||l°z, — M°zy(r, , fis)llx < / KeKLOE=ters|l¢(5)|| xds,
t

which implies (ii).

Recall that
K :=CCy(.(8), pn=K+e, u:=p+KL(O) =K(Q+L(6)+e.
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(12)

Proposition 6. Assume that =% = () and z(t) is a solution of (Es) on J = [to,t1]. Define
& € W§ by & = Oz + F, s(II°z,) fort € J, and set y(s;t) := °z,(t, &4, f5) fort € J

and s < t. Then the following inequality holds:
¢
ly(sit) - slsitollx <K [ #OINe@)lxdb, s <t
to

where £(0) := I°xy — F. 5(1I°z4) for 0 € [to, t].

Proof. Suppose that s < ty. By the same reasoning as (11)
t

¢z,(t, &y, f5) = T°(s — t)[I°%, — lim [ T°(s — o)II°T™ f5(z, (2, &¢, fs5))do.

n—o0 8

Applying VCF to z; and using I[I°Z, = II°z, (7 € J), we deduce that
t
[, = T(t — to) T, + lim. / Te(t — o)TI°T™ f5(x0 )do,
n tO
and thus, (13) becomes

t
ICx,(t, 24, f5) = T°(s — to)1I°%4, + nll*m / T¢(s — o)II°T™ f5(z, ) do
% Jto

t
— lim [ T°(s — o)I°T" fs(z,(t, &4, f5))do, te€J

n—oo 8

Therefore
Hy(37 t) - y(s7 tO)”X = ”chs(t, :i:t, f&) - Hcms(th ﬁ’to, f&)”X

lim /t T¢(s — o)IIT™ f5(z,)do

n—oo to

— lim tTc(s — o)IIT™ f5(z, (¢, &4, f5))do

n—oo [,
to

+ lim [ T(s = )T fs(o (b, 3, fo))do |

n—00 s

t
< / CCLe*1C.(8) 120 — zo(t, 24, f)||xdo
to

to
+/ CC1e771¢,(8) |0 (o, Zto» f5) — To(t, 22, f5)|| xdo.

(13)

(14)
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Observe that

”Z‘a- - xd(tv i‘t, ftS)”X S ||H8330' - F*,J(cha)“X + ”F*,J(cha) - F*,(S(cha(t; :it, fJ))”X
+ |2, — T2, (8, 24, f5)||x
< @)x + (L + L) Tzy — Mo, (t, &, f5)] x, (15)

where we used Proposition 4 (i) and (iii). Note also that

on(th :Eto, f&) - Z'g(t, j}t’ f&)”X S ”F*,J(cha‘(t()v "Etoa fts)) - F*,5(Hcm0'(t’ i't, f5))“X
+ “HC‘/L‘U(tO’ :ito’ f5) - cha(t) *’%ta f5)|lX
< 1+ L(9))lly(a5t) — y(osto)llx- (16)

In view of (14), (15) and (16), combined with Proposition 5 (ii), we deduce
ly(s;8) — y(s;t0)llx < /t: Ke=([l¢(0)l1x + (1 + L(8)I0°zy — %, (2, d¢, f5)l|x)do
+ [ K4 L) - vl oo
< [ Kt lg(o)lxr
0
+ tt Keo=9(1 + L(5)) (K / t e~’<f-v>;|g(¢)||xd~r) do
0 -
+ [ keI 1 L@)ly(o:0) - ot (17
Notice that the second term of the right-hand side becomes
K [ (ertomtomto _ oe-0) (o) o
to
because of (12). So we see from (17) that for s < ¢,
e”lly(s;t) — y(s;to)llx < K/tt eI (5) | xdor
0
+ K(1+L(8) / © e ly(0:) — y(o: to) | xdo.
By Gronwall’s inequality and (12)
s 0) ~ ulsit)llx < (K [ €m0 (o) dr) KO+

to

t
=K6_(“'_E)s/ 47 ¢(0) | xdo,

to

which yields the the desired one. a



138

Proposition 7. Assume that B¢ = 0, and let § € (0,6] be a sufficiently small number

satisfying
K(a—¢)
max (u’, ——a—_-u—,") <a. (18)

If z(t) is a solution of (Ej) on J = [to,t1], then the function §(t) := II°z, — Fi(Il°z;)
satisfies the inequality
@) 1x < Cllé(to)llxe > ®), te,

where By := o — K(a —€)/(e — ) > 0. If in particular J = [to, 00), dist (z;, W5) tends
to 0 exponentially as t — oo.

Proof. By applying VCF, one can easily deduce the relation

0
§(t) = T*(t — to)é(to) = lim T*(=s)IIT™ (fo(zost) = fo(Aso(TI°z2)(5))) ds

n—=00 Jyo 4
to—t

+ lim . T*(—s)II°T" (f5(Axs(IT°24) (t — to + 5))
— fs(Aus(MI°z)(s)))ds, te€J
If we set &, := II°z, + F, s(II°z;) for ¢t € J, by Proposition 4 (ii)
A 5(IT°2) (8) = 24(0, &4, f5) = Toqe(t, Tt, f5)

and
Ah&(nc-’zto)(t - tO + S) = xt—to+8(07 éto} fls) = x8+t(t0) fitoa f&)

in particular for s € R™. So

0
£(t) = T*°(t — to)é(to) + 7}1_{1010‘/;4 T°(—s)II°T" (f3(zase) — fo(Tors(t, 21, f5)))ds

to—t

+ lim Ta(_s)HBIm (fé(za+t(t0, :%to’ fJ)) - f5(z8+t(ta :i;t’ fé)))dsa

n—oo J_

and thus

t
le@)lx < Cele(uo)lx + [ Ke*Ilfag - mo(t, 2, )Lt
to
to
+ / Ke®0||zy(to, 10, £3) — wolts &1, f5) | x0.
—00

Since z4(t, Z:, f5) (t € J, 6 € R) can be written as

-’Ee(t, jt, fJ) = cho(t$ i"ta f5) + Haxe(t, ‘/it, f5)
= chﬁ(ta i‘tv f5) + F*,J(chg(t, jt’ f5))
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by Proposition 4 (iii), it follows from Proposition 4 (i) and Proposition 6 that for 6 < ¢,

“‘779<t0’ :Eto’ f5) - :Eo(t, j‘:ta fJ)”X < ”Hcl‘()(to, :%to’ f&) - chG(t, it, fé)“X
+ ”F*,5(Hc$t9(t0’ "I‘A‘to’ f5)) - F*,J(cho(t> 4, f&))”X
< (1 + L(9)lly(8;t) — y(6; to)llx

t
<1+ L(5))K/ ¥ =90 1¢(7) | x dr,
to
where y(6;t) (¢t € J) is the one in Proposition 6. On the other hand, for t; <9<t

lzo — z6(t, 24, f5)||x < ||°zg — Fus(I1°z4)||x + | Fys(II°zg) — Fy s(IT°zg(t, 24, f5)) | x
+ “HC‘TO - che(t) iﬂta f&)”X
< €@ x + (1 + L(3)) 1Tz — M°xo(t, £, f5)||x

t
<6O)x + 1+ LENK [ e Oe(o)]xdor
where we used Proposition 4 (i), (iii) and Proposition 5 (ii). Thus we have

€@ Ix < Cet)|1¢(to)]|x
+ / Koo (||€(9)llx+(1+L(5))K / e“’@-"’ns(a)||xda)de

+ / e Kea<0-t>(1+L(5))K( / t e”I(T_o)Hf(T)”XdT)dQ
—00 to

2 t
= el + (K + U EZ) [ et xas

so that .
el x < Ce®|¢(to)||x + K/t e**[1&(o) || xdo,

where K := K + K2(1 + L(6))/(a — ). An application of Gronwall’s inequality gives
e |lE(t)||x < Ce®||€(to) || xe %), and hence

l®lix < Clléto)|xe~ @Bt ¢ e,

which is the desired one because of K = K (o — ¢)/ (a— ) =a-f.
The latter part of the proposition is evident. This completes the proof. O

Proof of Theorem 1. The properties (ii) and (iii) of Theorem 1 are now immediate con-
sequences of Propositions 4 and 7, respectively. We verify the property (i). Observe that
Y, is a subspace of Y, if < 7/ < o, and denote the inclusion map by J:Y, = Y,. By
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almost the same reasoning as in [8], we see that JA. s is C' smooth as a map from E° to
Y,; and hence F, 5 = II** o evg 0 J A, is also C?! smooth. Moreover, since

[([DITALOIB]Y =T(t)), veE teR
holds by virtue of D f5(0) = Df(0) = 0, it follows that
DF.5(0)¢ = D(II** 0 evg 0 T Ay g) (0)) = IT°(0)y = Iy =0, 4 € E;

hence DF, 5(0) = 0, which implies (i). a

4 Stability analysis of integral equations via central

equations

Center manifolds play a crucial role in the stability analysis of systems around non-
hyperbolic equilibria. Indeed, center manifolds for several kinds of equations allow us
to reduce the stability analysis of an original system to that of its restriction to a center
manifold; see e.g., [1, 4, 5, 9]. In this section, introducing an ordinary differential equation
(called the ”central equation” of Eq. (F)) which is expressed by using the explicit formula
of the projection II¢, we will establish the reduction principle for integral equations that
the stability properties for the central equation imply those of Eq. (E) in the neighborhood
of its zero solution.

Assume that ¢ # 0. Let {¢1,...,¢d.} be a basis for E°, where d. is the dimension
of E°. Then based on the formal adjoint theory for Eq. (1) developed in [7], one can
consider its dual basis as elements in the Banach space

X¥:= LY(R*;(C*)™) = { : RY — (C*)™: ¢(7)e™*" is integrable on R* }

with norm

il = / W(r)le""dr, e XY,

where (C*)™ is the space of m-dimensional row vectors with complex components equipped
with the norm which is compatible with the one in C™, that is, |2*z| < |2*]|z| for 2* €
(C*)™ and z € C™. To be more precise, if we set

0 0
woy= [ ([ vte- e)m—e)qs(odz) &, (,6)€ Xt x X,
then this pairing defines a bounded bilinear form on X* x X with the property

(%, )| < 1K lleopll¥lixsllgllx, (¥,¢) € X* x X;



here we recall that ||K||o, = ess sup{||K(t)|le”* : t > 0}. Then there exist {t1,...,%4.},
elements of X*, such that (1;, ¢;) = 1if i = j and 0 otherwise, and (1;, ¢) = 0 for ¢ € E°
andi=1,2,...,d; we call {¢1,...,14,} the dual basis of {¢1, ..., da_}; see [7] for details.
Denote by ®. and Y., (¢1,...,44,) and *(¢1,...,%q,), the transpose of (¢1,...,%q,),
respectively. Then, for any ¢ € X the coordinate of its E°-component with respest to the

basis {¢1,...,¢q4.}, or . for short, is given by (¥,, ¢) := t((zpl,cp), el (¢dc,¢)) € Cé,
and therefore the projection II¢ is expressed, in terms of the basis ®. and its dual basis

¥, by
Hc¢ = ®c<\1’cv ¢>’ ¢ € X (19)

Since {T(t)}+>0 is a strongly continuous semigroup on the finite dimensional space
E°, there exists a d. x d, matrix G, such that

Te(t)®, = ®.C, t >0, (20)

and o(G,), the spectrum of G, is identical with £°. The E°-components of solutions of
Eq.(Es) can be described by a certain ordinary differential equation in C%. More precisely,
let z(t) be a solution of Eq.(Es) through (o, ¢), that is, z(t) = z(¢; 0, ¢, f). If we denote
by 2.(t) the component of II°z; with respect to the basis ®,, that is, ®.2.(t) := II°z;, or
2o(t) := (¥, z¢), then by virtue of [6, Theorem 7] z.(t) satisfies the ordinary differential
equation

Ze(t) = Geze(t) + Ho f5(Pe2(t) + MT°¥zy), (21)

where H, is the d. X m matrix such that H,z := lim, 0o (¥., "z) for z € C™.
In connection with Eq. (21), let us consider the ordinary differential equations on C%

2(t) = Gez(t) + Hefs(Pcoz(t) + Fus(®c2(t))) (CEs)
and
2(t) = Gez(t) + Hof (De2(t) + Fu(Pe2(t))). (CE)

We call Eq. (CE) (resp. Eq. (CEs)) the central equation of (E) (resp. (Es)). Apply-
ing Proposition 4 (iii), one can easily derive the following result on relationships among
solutions of Eq.(Ej5) (resp. Eq.(E)) and (CEjs) (resp. (CE)).

Proposition 8. The following statements hold true:

(i) Let = be a solution of Eq.(Es) on an interval J such that z; € W§ (t € J). Then
the function z,(t) := (¥, z;) satisfies the equation (CEs) on J.
Conversely, if z(t) satisfies the equation (CEs) on an interval J, then there ezists
a unique solution x of Eq.(Es) on J such that z; € W§ and II°z; = ®.2(t) on J.

141



142

(ii) Let x be a solution of Eq.(E) on an interval J such that z, € W (r,0) (t € J).
Then the function z.(t) := (¥, ;) satisfies the equation (CE) on J, together with
the inequality sup,¢ s [|®c2.(t)||x < 7.
Conversely, if z(t) satisfies the equation (CE) on an interval J together with the
inequality sup,c s ||®cz(t)||x < r, then there exists a unique solution z of Eq.(E) on
J such that z, € WS (r,d) and IT°z, = ®.2(t) on J.

Since f(0) = f5(0) = 0, both equations (CE) and (CE;) (as well as (E) and (FE;))
possess the zero solution. Notice that the zero solution of (CE) (resp. (E)) is uniformly
asymptotically stable if and only if the zero solution of (CEs) (resp. (Es)) is uniformly
asymptotically stable. Likewise, the zero solution of (CF) (resp. (E)) is unstable if and
only if the zero solution of (CE;s) (resp. (Ej)) is unstable. Here, for the definition of
several stability properties utilized in this paper, we refer readers to the books [10, 5].

Now suppose that £* = @. Then the dynamics near the zero solution of (E) is
determined by the dynamics near z, = 0 of (CE) in the following sense.

Theorem 3. Assume that X% = (0. If the zero solution of (CE) is uniformly asymptoti-
cally stable (resp. unstable), then the zero solution of (E) is also uniformly asymptotically
stable (resp. unstable).

Proof. By the fact stated in the preceding paragraph of the theorem, it is sufficient to
establish that the uniform asymptotic stability (resp. instability) of the zero solution of
(CE;) implies the uniform asymptotic stability (resp. instability) of the zero solution of
(Es).

If the zero solution of (CEs) is unstable, the instability of the zero solution of (Ej)
immediately follows from the invariance of W§ (Proposition 4 (iii)). In what follows,
under the assumption that the the zero solution of (CEj) is uniformly asymptotically
stable, we will establish the uniform asymptotic stability of the zero solution of (Ej). By
virtue of [5, Theorem 4.2.1], there exist positive constants a, K and a Liapunov function
V defined on S, := {y € C?% : |y| < a} satisfying the following properties:

(1) There exists a b € C(R*;R*) which is strictly increasing with 5(0) = 0 and
b(lyl) £ V(y) < ly| for yeS..

(i) V() - V()| < Rly— 2| for y,2€ S,

(iii) V(2) £ =V(2) for z € S,, where V(2) := limsup,,_,,(1/h){V (y(h)) — V(2)}, and
y(h) is the solution of (CE;s) with y(0) = z.



Choose a positive number 7, such that
1
2

where [y is the one in Proposition 7, and we may assume that By > 1/, taking § so small

e <= and CePm < (22)

|

if necessary. Put Ko, := ||K||o,, and take a positive number P in such a way that

P > max (1,

4C
KKKy|Y| ), 23
o KKKl (23)

and set ap := ae™" /(4C K ||¥,||), where ||T,]| := (ij__l ||z,bj[|§(§)l/2. Let Q be a neigh-
borhood of 0 in X such that

(‘IIC’¢> < Saa ”Hc¢||X S ag, and Q S b(a’)

for ¢ € §, where

KKyl U [|KC
Bo — 1/
and consider the function W(¢) on 2 defined by

Q= V(Lo d)) + (PC + ) (IT*6llx + | Fus(T0)]1x),

W(¢) :=V((¥e, 9)) + PIII°¢ — F, 5(I°)[|x, ¢ € Q.

W is continuous in 2 with W(0) = 0 and is positive in Q2\{0} because of (i) and (i).
We will first certify the following claim.

Claim 1. There ezists a positive number cy such that, for any to € R* and ¢ € X with
W () < co, the solution xz(t; to, @, f5) emists on [to,to + o] and satisfies xi(to, b, f5) € Q
for t € [to, to + To]; in particular, ||II°z4(to, &, f5)||lx < ag in this interval.

Indeed, suppose that z;(to, ¢, fs5) is defined on the interval [to, ty + t.) with ¢, < 7.
Applying VCF, we get

t
le(to, 6, f5)llx < Mllllx + / MC.(8)124(to, &, f5)lIxds

for t € [to, to + t.), where M := supyyc, [IT(t)]|cx). Then Gronwall’s inequality yields
that [|z:(to, 8, f5)lx < M||¢||xeM Ot < M|\ ¢ xeMé®Om for t € [to, to + t.); Which
means that z(%o, ¢, f5) can be defined on the interval [to, to+t,] and therefore on [to, to+70]
(cf. [6, Corollary 1]). Thus it turns out that if ||¢||x is small enough, z;(¢o, ¢, f5) exists on
[to, to + 7o) and moreover belongs to € in this interval. The claim readily follows from the
fact that inf{W(¢) : ¢ € Q, ||¢||x >} > 0 for small r > 0, together with the property of
Q.
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Now given t, € R* and ¢ € X with W(¢) < cp, let us consider the solution z(t) :=
z(t; to, ¢, f5). By Proposition 3 (i)

1A s (T2 (s)llx < Ass(Tae) y,e™ < e™™120|Mome]|x, s € R;

hence taking account of A, 5(II°z:)(s) = 44(t, ¢, f5) for s € R (Proposition 4 (ii)), we
get ||zeys(t, 2, f5)llx < €™2C|| 24| x for s € [—79,0], where 3, := I°z; + F, s(1I°z;).
Set y°(t + 57t) 1= (Ve, Tuts(t, 31, f5)). Then [y°(t + ;)| < Kool Velll|lzers (8, 2, fo)llx <
2CKoo|| ¥ le™ ||z ]| x < 2CKool|¥c|l€™ap = a/2 for s € [—7o,0]; hence y°(s;t) € Sy/2
and thus V' (y°(s;t)) is well-defined for s € [to, t] with ¢ € [to, to + 7o)

We next confirm:
Claim 2. sup{W(z;) : t € [to,to + 7o)} < Q and W (Zsysr, (to, b, f5)) < co/2.

Indeed, fix a t € [to,to + 7o) and set z(s) := y°(s;t) for s € [to,t]. Since y°(s;t) =
(We, z4(t, &1, f5)) = Ve, T2, (8, &4, f5)) for s € [to, 1], z(s) is a solution of (CE;) on [to, 1]
with 2(t) = y°(t;t) = (¥, [I°z,). By the property (i), we see that V(2(s)) < =V (2(s))
for s € [to, t], which implies that (d/ds)(e*~*V (2(s))) = e*~(V (2(s)) + V(2(s))) < 0, so
that

¢
V{(¥e, I%zs)) — €27V (y°(t0; 1) = V (2(t)) — €7V (2(to)) < /

to

d%(e"_tV(z(s)))ds <0;

consequently,
V((T, I2,)) < €07V (W, T4, )) + €978 (V (y°(t0; t)) — V((Te, T°xs,)))
< eV (U, I°24,)) + 27K |y° (to; £) — (W, I, ) |
< TV (T, I1°9)) + 07 K Koo | Ul [T (2, 25, f5) — T4, x

< TV (e, %)) + e K Koo|| Te|| K / t e 0=%)||£(8) | x4,
where the last inequality is due to Proposition 5 (ii). Therefotze, applying Proposition 7,
W (z:) = V({T., I%4)) + PlIE(t) |1 x
< V(W TT9) + KKK [ 09 Clto)llxe09) a0
+ PC||&(to) || xe™Pt=t) 0

< Y (T, TI°)) + cnf(to)nx(

In particular,
W KK K|, _. _
(Ztotro) < e VT, 1)) + C||€(to) || x (_ﬁrtgrﬂe ° 4 Pe am>

< (1/2)V((Te, II°6)) + (1/2) Pl (to)llx
= (1/2)W (z4) = (1/2)W(9) < (1/2)co.

KKoK|¥|

glo~t 4 Pe~Polt=to) | 24
Bo — 1/
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Since [|§(0)[lx < ||TI%¢|lx + | Fis(II°0)|| x, (24) implies also

KK K|V

Bo — W +P) =4

sup{W (z:) : t € [to, to + 7o)} < V({T,, II°F)) + CHf(to)Hx(

as required.

By Claim 2, combined with Claim 1, z(t) = z(t; to, @, f5) is defined on (to, to + 270),
and y°(s;t) € Sgs still holds for s € [ty, ] with ¢ € [to, to + 270). More generally, one can
deduce that z(t) = z(t; to, @, fs) is defined on [to, to + 7], and y°(s;t) € Sa/2 holds for
s € [to, t] with ¢ € [to, to + n7o] for any n € N, together with the relations

. Q co
sup{W(z:) : t € [to+ (n — 1)70,t0 +n7|} < 3T and W(ziyinn) < n
for n € N. This means that z(t) = z(t; to, ¢, f5) is actually defined on [to, 00) and that

V{(We,z1(to, ¢, £5))) + Pz, — F, 5(I1°z;)||x < Q27 ¢%)/™ ¢ ¢ [ty, 00).

In view of (i) and P > 1, it follows that b(|(¥,, z:(to, ¢, f5))|) < Q 2~ ¢t-t)/™ < b(a) and
IM°2s = F, 5(°z,) | x < Q27¢~%)/™. Since ||Tl°xy(to, ¢, f5)llx = |Bc(Te, z4(to, 6, f5))l|x <
19c]| 671 (Q 27 ¢~ with |18 = (352, l145]%) " and [|z(to, 6, fo)llx < [Tz, —
Fos(Il°ze) || x + || Fus(eze) || x < Q27¢~%)/0 4 [(§)||II°z4|x, we obtain that for any ¢ € Q
and t € [to, 00)

“mt(th ¢a .f5)”X < anxt(th ¢’ f5)“X + ”stt(to, ¢7 f5)”X
SQLUTP 4 (14 LE)l|e] b7 Q2 /m),

which shows that the zero solution of (E;) is uniformly asymptotically stable. O

Before concluding this section, we will provide an example to illustrate how our The-
orem 3 is available for stability analysis of some concrete equations. Let us consider
nonlinear (scalar) integral equation

¢
o) = [ P(t-9)als)ds + 1(z2), (25)
where P is a nonnegative continuous function on R* satisfying f0°° P(t)dt = 1 together
with the condition || P||1,, := [° P(t)ef*dt < 0o and || P||,, := ess sup{P(t)e® : t > 0} <
oo for some positive constant p, and f € C*(X;C), X := L(R~;C), satisfies f(0) =0
and Df(0) = 0. Eq. (25) is written as Eq. (E) with m = 1 and K = P. The characteristic
operator A(X) of Eq. (25) is given by A(X) = 1 — [ P(t)e"**dt. We thus get T* =

and £¢ = {0}. Indeed, in this case, 0 is a simple root of the equation A()) = 0, and E°
is 1-dimensional space with a basis {¢1}, ¢1 = 1, together with {¢;}, ¥ = 1/r (here
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r:= [°7P(r)dr), as the dual basis of {¢1}; see [7] for details. The projection II° is given
by the formula [1°¢ = ®.(¥., #), V¢ € X, and hence

[I° = ¢1(31,4) = ( / /11)15 )P )d)({)d{d())

o e ([ece))

Thus, for a solution z(t) of Eq. (25), the component 2.(t) of II°z; with respect to ®, is
given by

z:(t) = %/t P(t — s)z(s)ds

-0

with P(t) := [ P(r)dr, because of

rae(t) = f_ (; P(=8) ( /0 "ot + {)d{) i = /_ l P(-8) ( /t;a:(s)ds) d8
- /_ ; P(t—1) ( / tz(s)ds) dr = f_ ; ( : P(w)dw) 2(s)ds.

Observe that z.(t) satisfies the ordinary equation

t

r56(t) = P(0)z(t) +/_ (—P(t —s))z(s)ds = z(t) — / P(t — s)z(s)ds,

-0

that is, r2.(t) = f(x:) = f(Pc2c(t) + I°z;). In particular, if = is a solution of Eq. (25)
satisfying z; € Wi (r, §) on an interval J, then II°z, = F,(®.2.(t)) on J; hence we get

Ze(t) = (1/7) f(®c2e(t) + Ful@eze(t)))

on J. This observation leads to that G, = 0 and H, = 1/r in the central equation (CE);
in fact, by noticing that 3¢ = {0} and H.z = lim, . (¢1,I™z) = (1/r)z, Vr € C, one
can also certify this fact. Consequently, the central equation of Eq. (25) is identical with
the scalar equation 2 = H(z); here

H(w) := (1/7)f(®cw + Fy(®w)), (w€C and |w|is small).

In what follows, we will determine the function H for some special functions f.
Let us assume that f is of the form

£() = a( / Q(—9)¢(0)d9)m ro(@), VéeX, (26)

where m is a natural number such that m > 2, ¢ is a nonzero real number, Q is a
function satisfying ||Q[l1, < 0o and ||Q|lec,, < 00 and ¢ := ffoo Q(—60)dé > 0, and
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g9 € CY(X;C) satisfies |g(4)] = o(||4||2) as ||¢]|x — O (here, o means Landau’s notation
”small oh”). One can easily see that the function f given by (26) satisfies f € CY{(X;C)
and f(0) = Df(0) = 0. For any w with small |w|, we get

rea) =< [ a-o@uo 0) + gl

= 5‘(11) /~ ~ Q(—a)de) + o(w™) = e(cow)™ + o(w™);
hence,

rH(w) = f(®.w + F.(dcw))
= f(®cw) + {f(®w + F.(¢cw)) — f(@cw)}
= f(®cw) + & {[L1(Pew + Fu(pew))]™ — [L1(®cw)]™} + o(w™)

= c{eow)™ + ofw +ez( )@ (La(Pu @)y

here L, is a bounded linear functional on L} defined by L;(¢) := ffoo Q(—0)p(6)db.
Recall that L;(F,.(®.w)) = o(w) as w — 0; hence

m—1

Z (7:) {L1(®cw) } {Fu(®.w)}™ % = o(w™) as w— 0.

k=0
Thus rH(w) = e(cow)™ + o(w™) as w — 0. Hence it follows that
H(w) = (e/r)cfw™ + o(w™) as w — 0.

Consequently, one can easily see that the zero solution of the central equation of Eq. (25)
is uniformly asymptotically stable if € < 0 and if m is an odd natural number; while it
is unstable if ¢ > 0 and if m is an odd natural number, or if ¢ # 0 and if m is an even
natural number. Therefore, by virtue of Theorem 3, we get the following result:

Proposition 9. Assume that

f(¢)=6< / Q(—9)¢(9)d0)m+g(¢), Vo e X, @7)

here € is a nonzero constant, m is a natural number such that m > 2, Q is a function

satisfying [|Q|l1,, < 00, |Qlleo, < 00 and [5° Q(t)dt > 0 and g(¢) = o([|6[%) as [|4llx — 0
with g € CY(X;C). Then the following statements hold true;

(i) if m is odd and e < 0, then the zero solution of Eq. (25) is uniformly asymptotically
stable (in L3 );

(ii) 4f m is odd and € > 0, then the zero solution of Eq. (25) is unstable (in L} o);
(ili) if m 4s even and € # 0, then the zero solution of Eq. (25) is unstable (in L)
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