Center Manifold Theorem for Integral Equations

Hideaki Matsunaga¹, Satoru Murakami², Yutaka Nagabuchi³, and Minh Van Nguyen⁴

¹Department of Mathematical Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
 ²Department of Applied Mathematics, Okayama University of Science, Okayama 700-0005, Japan
 ³Department of Applied Science, Okayama University of Science, Okayama 700-0005, Japan
 ⁴Department of Mathematics and Philosophy, Columbus State University, 4225 University Avenue, Columbus GA 31907, USA

1 Introduction

In this paper we are concerned with the integral equation (with infinite delay)

$$x(t) = \int_{-\infty}^{t} K(t - s)x(s)ds + f(x_t),$$
 (E)

where K is a measurable $m \times m$ matrix valued function with complex components satisfying the condition $\int_0^\infty \|K(t)\| e^{\rho t} dt < \infty$ and ess $\sup\{\|K(t)\| e^{\rho t} : t \geq 0\} < \infty$, and f is a nonlinear term belonging to the space $C^1(X; \mathbb{C}^m)$, the set of all continuously (Fréchet) differentiable functions mapping X into \mathbb{C}^m , with the property that f(0) = 0 and Df(0) = 0; here, ρ is a positive constant which is fixed throughout the paper, and $X := L^1_{\rho}(\mathbb{R}^-; \mathbb{C}^m)$, $\mathbb{R}^- := (-\infty, 0]$, is a Banach space (employed throughout the paper as the phase space for Eq. (E)) equipped with norm $\|\phi\|_X := \int_{-\infty}^0 |\phi(\theta)| e^{\rho\theta} d\theta$ ($\forall \phi \in X$), and x_t is an element in X defined as $x_t(\theta) = x(t+\theta)$ for $\theta \in \mathbb{R}^-$. The linearized equation of Eq. (E) (around the equilibrium point 0) is given by

$$x(t) = \int_{-\infty}^{t} K(t-s)x(s)ds,$$
(1)

which possesses the characteristic matrix $\Delta(\lambda) := E_m - \int_0^\infty K(t)e^{-\lambda t}dt$ (Re $\lambda > -\rho$); here E_m is the $m \times m$ unit matrix. Recently, Diekmann and Gyllenberg [3] have treated Eq. (E), and established the principle of linearized stability for integral equations. In the paper, as a further development in the stability problem of Eq. (E), we treat the case that the equilibrium point zero is nonhyperbolic (that is, the set $\{\lambda \in \mathbb{C} : \det \Delta(\lambda) = 0 \text{ & Re } \lambda = 0\}$ is nonempty), and establish center manifold theorem for Eq. (E); and then we will investigate stability properties of the zero solution of Eq. (E) in the critical case.

E-mail addresses: hideaki@ms.osakafu-u.ac.jp (H. Matsunaga), murakami@youhei.xmath.ous.ac.jp (S. Murakami), nagabuti@das.ous.ac.jp (Y. Nagabuchi), nguyen_minh2@columbusstate.edu (N.V. Minh)

2 Several preparatory results for integral equations

In this section, following [6] we summarize several preliminary results necessary for our later arguments. Eq.(E) can be formulated as an abstract equation on the space X of the form

$$x(t) = L(x_t) + f(x_t),$$

where $L: X \to \mathbb{C}^m$ is a bounded linear operator defined by $L(\phi) := \int_{-\infty}^0 K(-\theta)\phi(\theta)d\theta$ for $\phi \in X$. Let us consider Eq.(E) with the initial condition

$$x_{\sigma} = \phi$$
, that is, $x(\sigma + \theta) = \phi(\theta)$ for $\theta \in \mathbb{R}^{-}$, (2)

where $(\sigma, \phi) \in \mathbb{R} \times X$ is given arbitrarily. A function $x : (-\infty, a) \to \mathbb{C}^m$ is said to be a solution of the initial value problem (E)-(2) on the interval (σ, a) if x satisfies the following conditions: (i) $x_{\sigma} = \phi$, that is, $x(\sigma + \theta) = \phi(\theta)$ for $\theta \in \mathbb{R}^-$; (ii) $x \in L^1_{loc}[\sigma, a)$, x is locally integrable on $[\sigma, a)$; (iii) $x(t) = L(x_t) + f(x_t)$ for $t \in (\sigma, a)$.

By virtue of [6, Proposition 1], the initial value problem (E)-(2) has a unique (local) solution which is denoted by $x(t;\sigma,\phi,f)$; in fact, $x(t;\sigma,\phi,f)$ is defined globally if, in particular, $f(\phi)$ is globally Lipschitz continuous in ϕ . Moreover we remark that if x(t) is a solution of Eq.(E) on (σ,a) , then x_t is an X-valued continuous function on $[\sigma,a)$. Now suppose that $\phi = \psi$ in X, that is, $\phi(\theta) = \psi(\theta)$ a.e. $\theta \in \mathbb{R}^-$. Then by the uniqueness of solutions of (E)-(2) it follows that $x(t;\sigma,\phi,f) = x(t;\sigma,\psi,f)$ for $t \in (\sigma,a)$, so that $x_t(\sigma,\phi,f) = x_t(\sigma,\psi,f)$ in X for $t \in [\sigma,a)$. In particular, given $\sigma \in \mathbb{R}$, $x_t(\sigma,\cdot,f)$ induces a transformation on X for each $t \in [\sigma,a)$ provided that $x(t;\sigma,\phi,f)$ is the solution of (E)-(2) on (σ,a) .

For any $t \geq 0$ and $\phi \in X$, we define $T(t)\phi \in X$ by

$$[T(t)\phi](\theta) := x_t(\theta; 0, \phi, 0) = \begin{cases} x(t+\theta; 0, \phi, 0), & -t < \theta \le 0, \\ \phi(t+\theta), & \theta \le -t. \end{cases}$$

Then T(t) defines a bounded linear operator on X. In fact, $\{T(t)\}_{t\geq 0}$ is a strongly continuous semigroup of bounded linear operators on X, called the solution semigroup for Eq.(1). Denote by A the generator of $\{T(t)\}_{t\geq 0}$, and let $\sigma(A)$ and $P_{\sigma}(A)$ be the spectrum and the point spectrum of the generator A, respectively. Between the spectrum of A and the characteristic roots of Eq.(1), the relation $\sigma(A) \cap \mathbb{C}_{-\rho} = P_{\sigma}(A) \cap \mathbb{C}_{-\rho} = \{\lambda \in \mathbb{C}_{-\rho} : \det \Delta(\lambda) = 0\} (=: \Sigma)$ holds, where $\mathbb{C}_{-\rho} := \{z \in \mathbb{C} : \operatorname{Re} z > -\rho\}$. Moreover, for ess A, the essential spectrum of A, we have the estimate A suppose A s

Proposition 1. Let $\{T(t)\}_{t\geq 0}$ be the solution semigroup of Eq.(1). Then X is decomposed as a direct sum of closed subspaces E^u , E^c , and E^s

$$X = E^u \oplus E^c \oplus E^s$$

with the following properties:

- (i) dim $(E^u \oplus E^c) < \infty$,
- (ii) $T(t)E^u \subset E^u$, $T(t)E^c \subset E^c$, and $T(t)E^s \subset E^s$ for $t \in \mathbb{R}^+ := [0, \infty)$,
- (iii) $\sigma(A|_{E^u}) = \Sigma^u$, $\sigma(A|_{E^c}) = \Sigma^c$ and $\sigma(A|_{E^s \cap \mathcal{D}(A)}) = \Sigma^s$,
- (iv) $T^u(t) := T(t)|_{E^u}$ and $T^c(t) := T(t)|_{E^c}$ are extendable for $t \in \mathbb{R} := (-\infty, \infty)$ as groups of bounded linear operators on E^u and E^c , respectively,
- (v) $T^s(t) := T(t)|_{E^s}$ is a strongly continuous semigroup of bounded linear operators on E^s , and its generator is identical with $A|_{E^s \cap \mathcal{D}(A)}$,
- (vi) there exist positive constants α , ε with $\alpha > \varepsilon$ and a constant $C \ge 1$ such that

$$||T^{s}(t)||_{\mathcal{L}(X)} \leq Ce^{-\alpha t}, \quad t \in \mathbb{R}^{+},$$

$$||T^{u}(t)||_{\mathcal{L}(X)} \leq Ce^{\alpha t}, \quad t \in \mathbb{R}^{-},$$

$$||T^{c}(t)||_{\mathcal{L}(X)} \leq Ce^{\varepsilon |t|}, \quad t \in \mathbb{R}.$$

In (vi) we note that C is a constant depending only on α and ε , and that the value of $\varepsilon > 0$ can be taken arbitrarily small. Also, we will use the notations $E^{cu} = E^c \oplus E^u$, $E^{su} = E^s \oplus E^u$ etc, and denote by Π^s the projection from X onto E^s along E^{cu} , and similarly for Π^u , Π^{cu} etc.

We now introduce a continuous function $\Gamma^n: \mathbb{R}^- \to \mathbb{R}^+$ for each natural number n which is of compact support with support $\Gamma^n \subset [-1/n, 0]$ and satisfies $\int_{-\infty}^0 \Gamma^n(\theta) d\theta = 1$. Notice that $\Gamma^n \beta \in X$ for any $\beta \in \mathbb{C}^m$. Let us recall that $x(\cdot; \sigma, \varphi, p)$ is the (unique) solution of the integral equation

$$x(t) = \int_{-\infty}^{t} K(t-s)x(s)ds + p(t), \quad t > \sigma$$
 (3)

through (σ, φ) ; here $\varphi \in X$. The following result ([6, Theorem 3]), which will often be referred to as VCF for short, gives a representation formula for $x_t(\sigma, \varphi, p)$ in the space X by using T(t), φ and p.

Proposition 2. Let $p \in C([\sigma, \infty); \mathbb{C}^m)$. Then

$$x_t(\sigma, \varphi, p) = T(t - \sigma)\varphi + \lim_{n \to \infty} \int_{\sigma}^{t} T(t - s)(\Gamma^n p(s)) ds, \quad \forall t \ge \sigma$$
 (4)

in X.

Let us consider a subset \bar{X} consisting of all elements $\phi \in X$ which are continuous on $[-\varepsilon_{\phi}, 0]$ for some $\varepsilon_{\phi} > 0$, and set

$$X_0 = \{ \varphi \in X \mid \varphi = \phi \text{ a.e. on } \mathbb{R}^- \text{ for some } \phi \in \bar{X} \}.$$

For any $\varphi \in X_0$, we define the value of φ at zero by $\varphi[0] = \varphi(0)$, where φ is an element belonging to \bar{X} satisfying $\varphi = \varphi$ a.e. on \mathbb{R}^- . We note that the value $\varphi[0]$ is well-defined; that is, it does not depend on the particular choice of φ since $\varphi(0) = \psi(0)$ for any other $\psi \in \bar{X}$ such that $\varphi = \psi$ a.e. on \mathbb{R}^- . It is clear that X_0 is a normed space equipped with norm

$$\|\varphi\|_{X_0} := \|\varphi\|_X + |\varphi[0]|, \quad \forall \varphi \in X_0.$$

We note that the solution $x(\cdot; \sigma, \psi, p)$ of Eq. (3) through $(\sigma, \psi) \in \mathbb{R} \times X$ satisfies the relation $x_t(\sigma, \psi, p) \in X_0$ with $(x_t(\sigma, \psi, p))[0] = x(t; \sigma, \psi, p)$ whenever $t > \sigma$.

The following lemma can be established by applying Proposition 2 and [6, Theorem 4]. We omit the proof.

Lemma 1. Let $f_* \in C(X; \mathbb{C}^m)$, and consider the equation

$$x(t) = \int_{-\infty}^{t} K(t-s)x(s)ds + f_*(x_t). \tag{E_*}$$

Moreover, let $\psi \in E^c$, and η be a constant such that $\varepsilon < \eta < \alpha$. Then we have:

(i) If x(t) is a solution of Eq. (E_*) defined on $\mathbb R$ with the properties that $\Pi^c x_0 = \psi$, $\sup_{t \in \mathbb R} \|x_t\|_X e^{-\eta|t|} < \infty$ and $\sup_{t \in \mathbb R} |f_*(x_t)| < \infty$, then the X-valued function $u(t) := x_t$ satisfies

$$u(t) = T^{c}(t)\psi + \lim_{n \to \infty} \int_{0}^{t} T^{c}(t-s)\Pi^{c}\Gamma^{n}f_{*}(u(s))ds$$
$$-\lim_{n \to \infty} \int_{t}^{\infty} T^{u}(t-s)\Pi^{u}\Gamma^{n}f_{*}(u(s))ds + \lim_{n \to \infty} \int_{-\infty}^{t} T^{s}(t-s)\Pi^{s}\Gamma^{n}f_{*}(u(s))ds$$

for $t \in \mathbb{R}$, and moreover u belongs to $C(\mathbb{R}; X_0)$.

(ii) Conversely, if $y \in C(\mathbb{R}; X)$ with $\sup_{t \in \mathbb{R}} \|y(t)\|_X e^{-\eta |t|} < \infty$ and $\sup_{t \in \mathbb{R}} |f_*(y(t))| < \infty$ satisfies

$$y(t) = T^{c}(t)\psi + \lim_{n \to \infty} \int_{0}^{t} T^{c}(t-s)\Pi^{c}\Gamma^{n}f_{*}(y(s))d\tau$$
$$-\lim_{n \to \infty} \int_{t}^{\infty} T^{u}(t-s)\Pi^{u}\Gamma^{n}f_{*}(y(s))ds + \lim_{n \to \infty} \int_{-\infty}^{t} T^{s}(t-s)\Pi^{s}\Gamma^{n}f_{*}(y(s))ds$$

for $t \in \mathbb{R}$, then y belongs to $C(\mathbb{R}; X_0)$ and the function $\xi(t)$ defined by

$$\xi(t) := (y(t))[0], \quad t \in \mathbb{R}$$

is a solution of Eq.(E*) on \mathbb{R} satisfying $\Pi^c \xi_0 = \psi$, $\sup_{t \in \mathbb{R}} \|\xi_t\|_X e^{-\eta|t|} < \infty$ and $\xi_t = y(t)$ for $t \in \mathbb{R}$.

3 Center manifold and its exponential attractivity

In what follows we assume that $f \in C^1(X; \mathbb{C}^m)$ satisfies f(0) = 0 and Df(0) = 0. In this section we will establish the existence of local center manifolds of the equilibrium point 0 of Eq.(E) and study their properties. To do so, in parallel with Eq.(E), we will consider a modified equation of (E) of the form

$$x(t) = \int_{-\infty}^{t} K(t - s)x(s)ds + f_{\delta}(x_t), \qquad (E_{\delta})$$

where f_{δ} with $\delta > 0$ is a modification of the original nonlinear term f; more precisely let $\chi : \mathbb{R} \to [0,1]$ be a C^{∞} -function such that $\chi(t) = 1$ ($|t| \leq 2$) and $\chi(t) = 0$ ($|t| \geq 3$), and define

$$f_{\delta}(\phi) := \chi(\|\Pi^{su}\phi\|_X/\delta)\chi(\|\Pi^c\phi\|_X/\delta)f(\phi), \quad \phi \in X.$$

The function $f_{\delta}: X \to \mathbb{C}^m$ is continuous on X, and is of class C^1 when restricted to the open set $S_{\delta} := \{ \phi \in X : \|\Pi^{su}\phi\|_X < \delta \}$ since we may assume that $\|\Pi^c\phi\|_X$ is of class C^1 for $\phi \neq 0$ because of dim $E^c < \infty$. Moreover, by the assumption f(0) = Df(0) = 0, there exist a $\delta_1 > 0$ and a nondecreasing continuous function $\zeta_*: (0, \delta_1] \to \mathbb{R}^+$ such that $\zeta_*(+0) = 0$,

$$||f_{\delta}(\phi)||_{X} \le \delta \zeta_{\star}(\delta) \quad \text{and} \quad ||f_{\delta}(\phi) - f_{\delta}(\psi)||_{X} \le \zeta_{\star}(\delta)||\phi - \psi||_{X}$$
 (5)

for $\phi, \psi \in X$ and $\delta \in (0, \delta_1]$. Indeed, we may put

$$\zeta_{\star}(\delta) = \left(\sup_{\|\phi\|_{X} \le 3\delta} \|Df(\phi)\|_{\mathcal{L}(X;\mathbb{C}^{m})}\right) \cdot \left(1 + 3\sup_{0 \le t \le 3} |\chi'(t)|\right)$$

(cf. [2, Lemma 4.1]). Taking $\delta_1 > 0$ small, we may also assume that there exists a positive number $M_1(\delta_1) =: M_1$ such that

$$||Df_{\delta}(\phi)||_{\mathcal{L}(X;\mathbb{C}^m)} \le M_1, \quad \phi \in S_{\delta}$$
 (6)

for any $\delta \in (0, \delta_1]$. Fix a positive number η such that

$$\varepsilon < \eta < \alpha$$
,

where ε and α are the constants in Proposition 1.

For the existence of center manifold for Eq.(E_{δ}) and its exponential attractivity, we have the following:

Theorem 1. There exist a positive number δ and a C^1 -map $F_{*,\delta}: E^c \to E^{su}$ with $F_{*,\delta}(0) = 0$ such that the following properties hold:

(i) $W_{\delta}^c := \operatorname{graph} F_{*,\delta}$ is tangent to E^c at zero,

- (ii) W_{δ}^c is invariant for Eq. (E_{δ}) , that is, if $\xi \in W_{\delta}^c$, then $x_t(0, \xi, f) \in W_{\delta}^c$ for $t \in \mathbb{R}$.
- (iii) Assume moreover that $\Sigma^u = \emptyset$. Then there exists a positive constant β_0 with the property that if x is a solution of $Eq.(E_\delta)$ on an interval $J = [t_0, t_1]$, then the inequality

$$\|\Pi^s x_t - F_{*,\delta}(\Pi^c x_t)\|_X \le C \|\Pi^s x_{t_0} - F_{*,\delta}(\Pi^c x_{t_0})\|_X e^{-\beta_0(t-t_0)}, \quad t \in J$$

holds true. In particular, if x is a solution on an interval $[t_0, \infty)$, x_t tends to W^c_{δ} exponentially as $t \to \infty$.

As will be shown in Proposition 4 given later, the map $F_{*,\delta}: E^c \to E^{su}$ in Theorem 1 is globally Lipschitz continuous with the Lipschitz constant $L(\delta) = 4C^2C_1\zeta_*(\delta)/(\alpha-\eta)$. Noticing that $L(\delta) \to 0$ as $\delta \to 0$, one can assume that the number δ satisfies $\delta \in (0, \delta_1]$ together with $L(\delta) \le 1$. Let us take a small $r \in (0, \delta)$ so that $||F_{*,\delta}(\psi)||_X < \delta$ for any $\psi \in B_{E^c}(r) := \{\phi \in E^c : ||\phi||_X < r\}$. Such a choice of r is possible by the continuity of $F_{*,\delta}$. Set $F_* := F_{*,\delta}|_{B_{E^c}(r)}$ and consider an open neighborhood Ω_0 of 0 in X defined by

$$\Omega_0 := \{ \phi \in X : \|\Pi^{su}\phi\|_X < \delta, \|\Pi^c\phi\|_X < r \}.$$

Observe that $f \equiv f_{\delta}$ on Ω_0 . Then the following theorem which yields a local center manifold for Eq. (E) as the graph of F_* immediately follows from Theorem 1.

Theorem 2. Assume that $f \in C^1(X; \mathbb{C}^m)$ with f(0) = Df(0) = 0. Then there exist positive numbers r, δ , and a C^1 -map $F_*: B_{E^c}(r) \to E^{su}$ with $F_*(0) = 0$, together with an open neighborhood Ω_0 of 0 in X, such that the following properties hold:

- (i) $W_{loc}^c(r, \delta) := \operatorname{graph} F_*$ is tangent to E^c at zero,
- (ii) $W_{loc}^c(r,\delta)$ is locally invariant for Eq. (E), that is,
 - (a) for any $\xi \in W_{loc}^c(r, \delta)$ there exists a $t_{\xi} > 0$ such that $x_t(0, \xi, f) \in W_{loc}^c(r, \delta)$ for $|t| \leq t_{\xi}$,
 - (b) if $\xi \in W^c_{loc}(r, \delta)$ and $x_t(0, \xi, f) \in \Omega_0$ for $0 \le t \le T$, then $x_t(0, \xi, f) \in W^c_{loc}(r, \delta)$ for $0 \le t \le T$.
- (iii) Assume moreover that $\Sigma^u = \emptyset$. Then there exists a positive constant β_0 with the property that if x is a solution of Eq.(E) on an interval $J = [t_0, t_1]$ satisfying $x_t \in \Omega_0$ on J, then the inequality

$$\|\Pi^s x_t - F_*(\Pi^c x_t)\|_X \le C \|\Pi^s x_{t_0} - F_*(\Pi^c x_{t_0})\|_X e^{-\beta_0(t-t_0)}, \quad t \in J$$

holds true. In particular, if the solution x(t) is defined on $[t_0, \infty)$ satisfying $x_t \in \Omega_0$ on $[t_0, \infty)$, then x_t tends to $W_{loc}^c(r, \delta)$ exponentially as $t \to \infty$.

In what follows, we will prove Theorem 1 by establishing several propositions. We now take a $\delta_1 > 0$ sufficiently small so that

$$\zeta_{\star}(\delta_1)CC_1\left(\frac{1}{\eta-\varepsilon} + \frac{2}{\alpha+\eta} + \frac{2}{\alpha-\eta}\right) < \frac{1}{2}$$
 (7)

holds, and let $\delta \in (0, \delta_1]$. Also, let us consider the Banach space Y_n defined by

$$Y_{\eta} := \left\{ y \in C(\mathbb{R}; X) : \sup_{t \in \mathbb{R}} \|y(t)\|_{X} e^{-\eta |t|} < \infty \right\}$$

with norm $\|y\|_{Y_{\eta}} := \sup_{t \in \mathbb{R}} \|y(t)\|_X e^{-\eta|t|}, \ y \in Y_{\eta}.$ For any $(\psi, y) \in E^c \times Y_{\eta}$, we set

$$\mathcal{F}_{\delta}(\psi, y)(t) := T^{c}(t)\psi + \lim_{n \to \infty} \int_{0}^{t} T^{c}(t - s)\Pi^{c}\Gamma^{n}f_{\delta}(y(s))ds$$

$$- \lim_{n \to \infty} \int_{t}^{\infty} T^{u}(t - s)\Pi^{u}\Gamma^{n}f_{\delta}(y(s))ds$$

$$+ \lim_{n \to \infty} \int_{-\infty}^{t} T^{s}(t - s)\Pi^{s}\Gamma^{n}f_{\delta}(y(s))ds$$
(8)

for $t \in \mathbb{R}$. Notice that the right-hand side is well-defined and that $\mathcal{F}_{\delta}(\psi, y)$ is an X-valued function on \mathbb{R} for each $(\psi, y) \in E^c \times Y_{\eta}$. It is straightforward to certify that $\mathcal{F}_{\delta}(\psi, y) \in Y_{\eta}$ by virtue of Proposition 1 and (5); in other words, \mathcal{F}_{δ} defines a map from $E^c \times Y_{\eta}$ to Y_{η} . In fact, for each $\psi \in E^c$, $\mathcal{F}_{\delta}(\psi, \cdot)$ is a contraction map from Y_{η} into itself with Lipschitz constant 1/2, because of the inequality

$$\begin{split} \|\mathcal{F}_{\delta}(\psi, y_{1}) - \mathcal{F}_{\delta}(\psi, y_{2})\|_{Y_{\eta}} &\leq \sup_{t \in \mathbb{R}} e^{-\eta |t|} \left| \int_{0}^{t} CC_{1} \zeta_{*}(\delta) e^{-\varepsilon(t-s)} \|y_{1} - y_{2}\|_{Y_{\eta}} e^{\eta |s|} ds \right| \\ &+ \sup_{t \in \mathbb{R}} e^{-\eta |t|} \int_{t}^{\infty} CC_{1} \zeta_{*}(\delta) e^{\alpha(t-s)} \|y_{1} - y_{2}\|_{Y_{\eta}} e^{\eta |s|} ds \\ &+ \sup_{t \in \mathbb{R}} e^{-\eta |t|} \int_{-\infty}^{t} CC_{1} \zeta_{*}(\delta) e^{-\alpha(t-s)} \|y_{1} - y_{2}\|_{Y_{\eta}} e^{\eta |s|} ds \\ &\leq \zeta_{*}(\delta_{1}) CC_{1} \left(\frac{1}{\eta - \varepsilon} + \frac{2}{\alpha + \eta} + \frac{2}{\alpha - \eta} \right) \|y_{1} - y_{2}\|_{Y_{\eta}} \\ &\leq (1/2) \|y_{1} - y_{2}\|_{Y_{\eta}} \end{split}$$

for $y_1, y_2 \in Y_\eta$. Thus, the map $\mathcal{F}_{\delta}(\psi, \cdot)$ has a unique fixed point for each $\psi \in E^c$, say $\Lambda_{*,\delta}(\psi) \in Y_\eta$, i.e., we have

$$\Lambda_{*,\delta}(\psi)(t) = T^{c}(t)\psi + \lim_{n \to \infty} \int_{0}^{t} T^{c}(t-s)\Pi^{c}\Gamma^{n}f_{\delta}(\Lambda_{*,\delta}(\psi)(s))ds
- \lim_{n \to \infty} \int_{t}^{\infty} T^{u}(t-s)\Pi^{u}\Gamma^{n}f_{\delta}(\Lambda_{*,\delta}(\psi)(s))ds
+ \lim_{n \to \infty} \int_{-\infty}^{t} T^{s}(t-s)\Pi^{s}\Gamma^{n}f_{\delta}(\Lambda_{*,\delta}(\psi)(s))ds$$
(9)

for $t \in \mathbb{R}$, whenever $0 < \delta \leq \delta_1$.

Proposition 3. $\Lambda_{*,\delta}(\psi)$ satisfies the following:

(i)
$$\|\Lambda_{*,\delta}(\psi_1) - \Lambda_{*,\delta}(\psi_2)\|_{Y_{\eta}} \le 2C\|\psi_1 - \psi_2\|_X \text{ for } \psi_1, \psi_2 \in E^c.$$

(ii)
$$\Lambda_{*,\delta}(\psi)(t+\tau) = \Lambda_{*,\delta}(\Pi^c(\Lambda_{*,\delta}(\psi)(\tau)))(t)$$
 holds for $t,\tau \in \mathbb{R}$.

Proof. Since $\varepsilon < \eta$, (i) immediately follows from the estimate

$$\begin{split} \|\Lambda_{*}(\psi_{1}) - \Lambda_{*}(\psi_{2})\|_{Y_{\eta}} &= \|\mathcal{F}_{\delta}(\psi_{1}, \Lambda_{*,\delta}(\psi_{1})) - \mathcal{F}_{\delta}(\psi_{2}, \Lambda_{*,\delta}(\psi_{2}))\|_{Y_{\eta}} \\ &\leq \|\mathcal{F}_{\delta}(\psi_{1}, \Lambda_{*,\delta}(\psi_{1})) - \mathcal{F}_{\delta}(\psi_{1}, \Lambda_{*,\delta}(\psi_{2}))\|_{Y_{\eta}} \\ &+ \|\mathcal{F}_{\delta}(\psi_{1}, \Lambda_{*,\delta}(\psi_{2})) - \mathcal{F}_{\delta}(\psi_{2}, \Lambda_{*,\delta}(\psi_{2}))\|_{Y_{\eta}} \\ &\leq (1/2)\|\Lambda_{*,\delta}(\psi_{1}) - \Lambda_{*,\delta}(\psi_{2})\|_{Y_{\eta}} + \|T^{c}(\cdot)(\psi_{1} - \psi_{2})\|_{Y_{\eta}} \\ &\leq (1/2)\|\Lambda_{*,\delta}(\psi_{1}) - \Lambda_{*,\delta}(\psi_{2})\|_{Y_{\eta}} + \sup_{t \in \mathbb{R}} \left(Ce^{\varepsilon|t|}\|\psi_{1} - \psi_{2}\|_{X}e^{-\eta|t|}\right). \end{split}$$

Next, given $\tau \in \mathbb{R}$, let us consider the function $\tilde{\Lambda}(t)$ defined by $\tilde{\Lambda}(t) := \Lambda_{*,\delta}(\psi)(t+\tau), \ t \in \mathbb{R}$. Obviously, $\tilde{\Lambda}(\cdot) \in Y_{\eta}$. Also, it is easy to check that $\tilde{\Lambda}(t) = \mathcal{F}_{\delta}(\Pi^{c}(\Lambda_{*,\delta}(\psi)(\tau)), \tilde{\Lambda})(t)$ for all $t \in \mathbb{R}$; that is, $\tilde{\Lambda}$ is a fixed point of $\mathcal{F}_{\delta}(\Pi^{c}(\Lambda_{*,\delta}(\psi)(\tau)), \cdot)$. The uniqueness of the fixed points yields $\tilde{\Lambda} = \Lambda_{*,\delta}(\Pi^{c}(\Lambda_{*,\delta}(\psi)(\tau)))$, and hence

$$\Lambda_{*,\delta}(\psi)(t+\tau) = \tilde{\Lambda}(t) = \Lambda_{*,\delta}(\Pi^c(\Lambda_{*,\delta}(\psi)(\tau)))(t), \quad t \in \mathbb{R},$$

which shows (ii).

For $\delta \in (0, \delta_1]$ let $F_{*,\delta} : E^c \to E^{su}$ be the map defined by $F_{*,\delta}(\psi) := \Pi^{su} \circ \operatorname{ev}_0 \circ \Lambda_{*,\delta}(\psi)$ for $\psi \in E^c$, where ev_0 is the evaluation map: $\operatorname{ev}_0(y) := y(0)$ for $y \in C(\mathbb{R}; X)$. Then

$$F_{*,\delta}(\psi) = -\lim_{n \to \infty} \int_0^\infty T^u(-s) \Pi^u \Gamma^n f_{\delta}(\Lambda_{*,\delta}(\psi)(s)) ds + \lim_{n \to \infty} \int_{-\infty}^0 T^s(-s) \Pi^s \Gamma^n f_{\delta}(\Lambda_{*,\delta}(\psi)(s)) ds, \quad \psi \in E^c;$$
(10)

and in particular $\Lambda_{*,\delta}(\psi)(0) = \psi + F_{*,\delta}(\psi)$ for $\psi \in E^c$. Let us set

$$W^c_\delta := \operatorname{graph} F_{*,\delta} = \big\{ \psi + F_{*,\delta}(\psi) : \psi \in E^c \big\}.$$

Proposition 4. The map $F_{*,\delta}$ and its graph W^c_{δ} have the following properties:

(i) $F_{*,\delta}$ is (globally) Lipschitz continuous, i.e.,

$$||F_{*,\delta}(\psi_1) - F_{*,\delta}(\psi_2)||_X \le L(\delta)||\psi_1 - \psi_2||_X, \quad \psi_1, \psi_2 \in E^c,$$

where $L(\delta) := 4C^2C_1\zeta_*(\delta)/(\alpha - \eta)$.

(ii) Let $\hat{\phi} \in W_{\delta}^c$ and $\tau \in \mathbb{R}$. Then the solution of (E_{δ}) through $(\tau, \hat{\phi})$, $x(t; \tau, \hat{\phi}, f_{\delta})$, exists on \mathbb{R} and

$$x_t(\tau, \hat{\phi}, f_{\delta}) = \Lambda_{*,\delta}(\hat{\psi})(t - \tau), \quad t \in \mathbb{R},$$

where $\hat{\psi} = \Pi^c \hat{\phi}$.

(iii) Moreover for $\hat{\phi} \in W^c_{\delta}$ and $\tau \in \mathbb{R}$,

$$\Pi^{su}x_t(\tau,\hat{\phi},f_{\delta}) = F_{*,\delta}(\Pi^c x_t(\tau,\hat{\phi},f_{\delta})), \quad t \in \mathbb{R}.$$

In particular W_{δ}^c is invariant for (E_{δ}) , that is, $x_t(\tau, \hat{\phi}, f_{\delta}) \in W_{\delta}^c$ for $t \in \mathbb{R}$, provided that $\hat{\phi} \in W_{\delta}^c$.

Proof. (i) By (10) and Proposition 3 (i), we get

$$\begin{split} \left\| F_{*,\delta}(\psi_1) - F_{*,\delta}(\psi_2) \right\|_X & \leq \int_0^\infty C C_1 e^{-\alpha s} \zeta_*(\delta) \| \Lambda_{*,\delta}(\psi_1)(s) - \Lambda_{*,\delta}(\psi_2)(s) \|_X ds \\ & + \int_{-\infty}^0 C C_1 e^{\alpha s} \zeta_*(\delta) \| \Lambda_{*,\delta}(\psi_1)(s) - \Lambda_{*,\delta}(\psi_2)(s) \|_X ds \\ & \leq \frac{2C C_1 \zeta_*(\delta)}{\alpha - \eta} \times 2C \| \psi_1 - \psi_2 \|_X = L(\delta) \| \psi_1 - \psi_2 \|_X, \end{split}$$

as required.

(ii) Applying Lemma 1 (i), we deduce that $\Lambda_{*,\delta}(\hat{\psi}) \in C(\mathbb{R}; X_0)$ and that the X-valued function $\xi(t) := (\Lambda_{*,\delta}(\hat{\psi})(t))[0]$ $(t \in \mathbb{R})$ satisfies $\xi_t = \Lambda_{*,\delta}(\hat{\psi})(t)$ for $t \in \mathbb{R}$ and is a solution of (E_{δ}) on \mathbb{R} with $\xi_0 = \Lambda_{*,\delta}(\hat{\psi})(0) = \hat{\psi} + F_{*,\delta}(\hat{\psi}) = \hat{\phi}$. Let $x(t) := \xi(t-\tau)$. Then x(t) is a solution of (E_{δ}) on \mathbb{R} with $x_{\tau} = \hat{\phi}$, so that $x(t) = x(t; \tau, \hat{\phi}, f_{\delta})$ for $t \in \mathbb{R}$. Consequently,

$$x_t(\tau, \hat{\phi}, f_{\delta}) = \xi_{t-\tau} = \Lambda_{*,\delta}(\hat{\psi})(t-\tau), \quad t \in \mathbb{R}.$$

(iii) Notice from Proposition 3 (ii) that $\Lambda_{*,\delta}(\hat{\psi})(t-\tau) = \Lambda_{*,\delta}(\Pi^c(\Lambda_{*,\delta}(\hat{\psi})(t-\tau)))(0)$ for $\hat{\psi} := \Pi^c \hat{\phi}$, which, combined with (ii), yields that

$$\Pi^{su}x_t(\tau,\hat{\phi},f_{\delta}) = \Pi^{su}\left(\Lambda_{*,\delta}\left(\Pi^c(\Lambda_{*,\delta}(\hat{\psi})(t-\tau))\right)(0)\right)
= \Pi^{su}\left(\Lambda_{*,\delta}\left(\Pi^cx_t(\tau,\hat{\phi},f_{\delta})\right)(0)\right) = F_{*,\delta}\left(\Pi^cx_t(\tau,\hat{\phi},f_{\delta})\right);$$

which is the desired one. The latter part of (iii) is obvious.

Now assume that $\Sigma^u = \emptyset$, i.e., $E^u = \{0\}$. Fix a $\delta \in (0, \delta_1]$ and let

$$K := CC_1\zeta_*(\delta), \quad \mu := K + \varepsilon.$$

Proposition 5. Let x(t) be a solution of (E_{δ}) on an interval $J := [t_0, t_1]$. Given $\tau \in J$, put $\hat{\phi} := \Pi^c x_{\tau} + F_{*,\delta}(\Pi^c x_{\tau})$. Then the following inequalities hold:

(i) For $t_0 < t < \tau$

$$\|\Pi^{c} x_{t} - \Pi^{c} x_{t}(\tau, \hat{\phi}, f_{\delta})\|_{X} \leq K \int_{t}^{\tau} e^{\mu(s-t)} \|\Pi^{s} x_{s} - \Pi^{s} x_{s}(\tau, \hat{\phi}, f_{\delta})\|_{X} ds.$$

(ii) Moreover for $t_0 \leq t \leq \tau$

$$\|\Pi^{c}x_{t} - \Pi^{c}x_{t}(\tau, \hat{\phi}, f_{\delta})\|_{X} \leq K \int_{t}^{\tau} e^{\mu'(s-t)} \|\xi(s)\|_{X} ds,$$

where
$$\mu' := \mu + KL(\delta)$$
 and $\xi(t) := \Pi^s x_t - F_{*,\delta}(\Pi^c x_t)$ for $t \in \mathbb{R}$.

Proof. By virtue of Proposition 4 (ii) and (iii), the solution $x(t; \tau, \hat{\phi}, f_{\delta})$ exists on \mathbb{R} and $\Pi^{s}x_{t}(\tau, \hat{\phi}, f_{\delta}) = F_{*,\delta}(\Pi^{c}x_{t}(\tau, \hat{\phi}, f_{\delta}))$ for $t \in \mathbb{R}$. Let $t_{0} \leq t \leq \tau$. VCF gives

$$x_{\tau}(\tau, \hat{\phi}, f_{\delta}) = T(\tau - t)x_{t}(\tau, \hat{\phi}, f_{\delta}) + \lim_{n \to \infty} \int_{t}^{\tau} T(\tau - s)\Gamma^{n} f_{\delta}(x_{s}(\tau, \hat{\phi}, f_{\delta}))ds,$$

in particular

$$\Pi^c x_{\tau}(\tau, \hat{\phi}, f_{\delta}) = T^c(\tau - t)\Pi^c x_t(\tau, \hat{\phi}, f_{\delta}) + \lim_{n \to \infty} \int_t^{\tau} T^c(\tau - s)\Pi^c \Gamma^n f_{\delta}(x_s(\tau, \hat{\phi}, f_{\delta})) ds.$$

By the group property of $\{T^c(t)\}_{t\in\mathbb{R}}$, we get

$$\Pi^{c}x_{t}(\tau,\hat{\phi},f_{\delta}) = T^{c}(t-\tau)\Pi^{c}x_{\tau}(\tau,\hat{\phi},f_{\delta}) - \lim_{n \to \infty} \int_{t}^{\tau} T^{c}(t-s)\Pi^{c}\Gamma^{n}f_{\delta}(x_{s}(\tau,\hat{\phi},f_{\delta}))ds. \quad (11)$$

Similarly for the solution x(t)

$$\Pi^{c} x_{t} = T^{c}(t-\tau)\Pi^{c} x_{\tau} - \lim_{n \to \infty} \int_{t}^{\tau} T^{c}(t-s)\Pi^{c}\Gamma^{n} f_{\delta}(x_{s}) ds.$$

Then, since $\Pi^c x_{\tau}(\tau, \hat{\phi}, f_{\delta}) = \Pi^c \hat{\phi} = \Pi^c x_{\tau}$, it follows that

$$e^{\varepsilon t} \|\Pi^{c} x_{t} - \Pi^{c} x_{t}(\tau, \hat{\phi}, f_{\delta})\|_{X} \leq \int_{t}^{\tau} K e^{\varepsilon s} \|\Pi^{s} x_{s} - \Pi^{s} x_{s}(\tau, \hat{\phi}, f_{\delta})\|_{X} ds$$
$$+ \int_{t}^{\tau} K e^{\varepsilon s} \|\Pi^{c} x_{s} - \Pi^{c} x_{s}(\tau, \hat{\phi}, f_{\delta})\|_{X} ds$$

for $t_0 \le t \le \tau$. Hence we get

$$e^{\varepsilon t} \|\Pi^c x_t - \Pi^c x_t(\tau, \hat{\phi}, f_{\delta})\|_X \leq \int_t^{\tau} K e^{K(s-t)} e^{\varepsilon s} \|\Pi^s x_s - \Pi^s x_s(\tau, \hat{\phi}, f_{\delta})\|_X ds,$$

which implies (i).

Next we will verify (ii). By Proposition 4 (iii) and (i), we get $\|\Pi^s x_s - \Pi^s x_s(\tau, \hat{\phi}, f_{\delta})\|_X \le \|\xi(s)\|_X + L(\delta)\|\Pi^c x_s - \Pi^c x_s(\tau, \hat{\phi}, f_{\delta})\|_X$ for $s \in J$. Hence it follows from (i) that

$$e^{\mu t} \|\Pi^{c} x_{t} - \Pi^{c} x_{t}(\tau, \hat{\phi}, f_{\delta})\|_{X} \leq \int_{t}^{\tau} K e^{\mu s} \|\xi(s)\|_{X} ds + \int_{t}^{\tau} K L(\delta) e^{\mu s} \|\Pi^{c} x_{s} - \Pi^{c} x_{s}(\tau, \hat{\phi}, f_{\delta})\|_{X} ds;$$

then

$$e^{\mu t} \|\Pi^c x_t - \Pi^c x_t(\tau, \hat{\phi}, f_{\delta})\|_X \le \int_t^{\tau} K e^{KL(\delta)(s-t)} e^{\mu s} \|\xi(s)\|_X ds,$$

which implies (ii).

Recall that

$$K := CC_1\zeta_*(\delta), \quad \mu := K + \varepsilon, \quad \mu' := \mu + KL(\delta) = K(1 + L(\delta)) + \varepsilon. \tag{12}$$

Proposition 6. Assume that $\Sigma^u = \emptyset$ and x(t) is a solution of (E_δ) on $J = [t_0, t_1]$. Define $\hat{x}_t \in W^c_\delta$ by $\hat{x}_t := \Pi^c x_t + F_{*,\delta}(\Pi^c x_t)$ for $t \in J$, and set $y(s;t) := \Pi^c x_s(t, \hat{x}_t, f_\delta)$ for $t \in J$ and $s \leq t$. Then the following inequality holds:

$$||y(s;t) - y(s;t_0)||_X \le K \int_{t_0}^t e^{\mu'(\theta-s)} ||\xi(\theta)||_X d\theta, \quad s \le t_0,$$

where $\xi(\theta) := \Pi^s x_{\theta} - F_{*,\delta}(\Pi^c x_{\theta})$ for $\theta \in [t_0, t]$.

Proof. Suppose that $s \leq t_0$. By the same reasoning as (11)

$$\Pi^{c}x_{s}(t,\hat{x}_{t},f_{\delta}) = T^{c}(s-t)\Pi^{c}\hat{x}_{t} - \lim_{n \to \infty} \int_{s}^{t} T^{c}(s-\sigma)\Pi^{c}\Gamma^{n}f_{\delta}(x_{\sigma}(t,\hat{x}_{t},f_{\delta}))d\sigma.$$
 (13)

Applying VCF to x_t and using $\Pi^c \hat{x}_{\tau} = \Pi^c x_{\tau}$ $(\tau \in J)$, we deduce that

$$\Pi^c \hat{x}_t = T^c(t-t_0)\Pi^c \hat{x}_{t_0} + \lim_{n \to \infty} \int_{t_0}^t T^c(t-\sigma)\Pi^c \Gamma^n f_{\delta}(x_{\sigma}) d\sigma,$$

and thus, (13) becomes

$$\Pi^{c}x_{s}(t,\hat{x}_{t},f_{\delta}) = T^{c}(s-t_{0})\Pi^{c}\hat{x}_{t_{0}} + \lim_{n \to \infty} \int_{t_{0}}^{t} T^{c}(s-\sigma)\Pi^{c}\Gamma^{n}f_{\delta}(x_{\sigma})d\sigma$$
$$-\lim_{n \to \infty} \int_{s}^{t} T^{c}(s-\sigma)\Pi^{c}\Gamma^{n}f_{\delta}(x_{\sigma}(t,\hat{x}_{t},f_{\delta}))d\sigma, \quad t \in J.$$

Therefore

$$||y(s;t) - y(s;t_{0})||_{X} = ||\Pi^{c}x_{s}(t,\hat{x}_{t},f_{\delta}) - \Pi^{c}x_{s}(t_{0},\hat{x}_{t_{0}},f_{\delta})||_{X}$$

$$= \left\|\lim_{n \to \infty} \int_{t_{0}}^{t} T^{c}(s-\sigma)\Pi^{c}\Gamma^{n}f_{\delta}(x_{\sigma})d\sigma$$

$$-\lim_{n \to \infty} \int_{s}^{t} T^{c}(s-\sigma)\Pi^{c}\Gamma^{n}f_{\delta}(x_{\sigma}(t,\hat{x}_{t},f_{\delta}))d\sigma$$

$$+\lim_{n \to \infty} \int_{s}^{t_{0}} T^{c}(s-\sigma)\Pi^{c}\Gamma^{n}f_{\delta}(x_{\sigma}(t_{0},\hat{x}_{t_{0}},f_{\delta}))d\sigma\right\|_{X}$$

$$\leq \int_{t_{0}}^{t} CC_{1}e^{\varepsilon|s-\sigma|}\zeta_{*}(\delta)||x_{\sigma} - x_{\sigma}(t,\hat{x}_{t},f_{\delta})||_{X}d\sigma$$

$$+\int_{s}^{t_{0}} CC_{1}e^{\varepsilon|s-\sigma|}\zeta_{*}(\delta)||x_{\sigma}(t_{0},\hat{x}_{t_{0}},f_{\delta}) - x_{\sigma}(t,\hat{x}_{t},f_{\delta})||_{X}d\sigma. \tag{14}$$

Observe that

$$||x_{\sigma} - x_{\sigma}(t, \hat{x}_{t}, f_{\delta})||_{X} \leq ||\Pi^{s} x_{\sigma} - F_{*, \delta}(\Pi^{c} x_{\sigma})||_{X} + ||F_{*, \delta}(\Pi^{c} x_{\sigma}) - F_{*, \delta}(\Pi^{c} x_{\sigma}(t, \hat{x}_{t}, f_{\delta}))||_{X} + ||\Pi^{c} x_{\sigma} - \Pi^{c} x_{\sigma}(t, \hat{x}_{t}, f_{\delta})||_{X} \leq ||\xi(\sigma)||_{X} + (1 + L(\delta))||\Pi^{c} x_{\sigma} - \Pi^{c} x_{\sigma}(t, \hat{x}_{t}, f_{\delta})||_{X},$$
(15)

where we used Proposition 4 (i) and (iii). Note also that

$$||x_{\sigma}(t_{0}, \hat{x}_{t_{0}}, f_{\delta}) - x_{\sigma}(t, \hat{x}_{t}, f_{\delta})||_{X} \leq ||F_{*,\delta}(\Pi^{c}x_{\sigma}(t_{0}, \hat{x}_{t_{0}}, f_{\delta})) - F_{*,\delta}(\Pi^{c}x_{\sigma}(t, \hat{x}_{t}, f_{\delta}))||_{X} + ||\Pi^{c}x_{\sigma}(t_{0}, \hat{x}_{t_{0}}, f_{\delta}) - \Pi^{c}x_{\sigma}(t, \hat{x}_{t}, f_{\delta})||_{X} \leq (1 + L(\delta))||y(\sigma; t) - y(\sigma; t_{0})||_{X}.$$
(16)

In view of (14), (15) and (16), combined with Proposition 5 (ii), we deduce

$$||y(s;t) - y(s;t_0)||_X \le \int_{t_0}^t Ke^{\varepsilon(\sigma-s)} (||\xi(\sigma)||_X + (1+L(\delta))||\Pi^c x_\sigma - \Pi^c x_\sigma(t, \hat{x}_t, f_\delta)||_X) d\sigma$$

$$+ \int_s^{t_0} Ke^{\varepsilon(\sigma-s)} (1+L(\delta))||y(\sigma;t) - y(\sigma;t_0)||_X d\sigma$$

$$\le \int_{t_0}^t Ke^{\varepsilon(\sigma-s)} ||\xi(\sigma)||_X d\sigma$$

$$+ \int_{t_0}^t Ke^{\varepsilon(\sigma-s)} (1+L(\delta)) \Big(K \int_\sigma^t e^{\mu'(\tau-\sigma)} ||\xi(\tau)||_X d\tau\Big) d\sigma$$

$$+ \int_s^{t_0} Ke^{\varepsilon(\sigma-s)} (1+L(\delta))||y(\sigma;t) - y(\sigma;t_0)||_X d\sigma. \tag{17}$$

Notice that the second term of the right-hand side becomes

$$K \int_{t_0}^t \left(e^{\varepsilon(t_0 - s) + \mu'(\sigma - t_0)} - e^{\varepsilon(\sigma - s)} \right) \|\xi(\sigma)\|_X d\sigma$$

because of (12). So we see from (17) that for $s \leq t_0$

$$e^{\varepsilon s} \|y(s;t) - y(s;t_0)\|_{X} \le K \int_{t_0}^{t} e^{(\varepsilon - \mu')t_0 + \mu'\sigma} \|\xi(\sigma)\|_{X} d\sigma + K(1 + L(\delta)) \int_{s}^{t_0} e^{\varepsilon \sigma} \|y(\sigma;t) - y(\sigma;t_0)\|_{X} d\sigma.$$

By Gronwall's inequality and (12)

$$\begin{split} e^{\varepsilon s} \|y(s;t) - y(s;t_0)\|_X &\leq \Big(K \int_{t_0}^t e^{(\varepsilon - \mu')t_0 + \mu'\sigma} \|\xi(\sigma)\|_X d\sigma \Big) e^{K(1 + L(\delta))(t_0 - s)} \\ &= K e^{-(\mu' - \varepsilon)s} \int_{t_0}^t e^{\mu'\sigma} \|\xi(\sigma)\|_X d\sigma, \end{split}$$

which yields the the desired one.

Proposition 7. Assume that $\Sigma^{u} = \emptyset$, and let $\delta \in (0, \delta_{1}]$ be a sufficiently small number satisfying

$$\max\left(\mu', \frac{K(\alpha - \varepsilon)}{\alpha - \mu'}\right) < \alpha. \tag{18}$$

If x(t) is a solution of (E_{δ}) on $J = [t_0, t_1]$, then the function $\xi(t) := \Pi^s x_t - F_{*,\delta}(\Pi^c x_t)$ satisfies the inequality

$$\|\xi(t)\|_X \le C \|\xi(t_0)\|_X e^{-\beta_0(t-t_0)}, \quad t \in J,$$

where $\beta_0 := \alpha - K(\alpha - \varepsilon)/(\alpha - \mu') > 0$. If in particular $J = [t_0, \infty)$, dist (x_t, W_{δ}^c) tends to 0 exponentially as $t \to \infty$.

Proof. By applying VCF, one can easily deduce the relation

$$\xi(t) - T^{s}(t - t_{0})\xi(t_{0}) = \lim_{n \to \infty} \int_{t_{0} - t}^{0} T^{s}(-s)\Pi^{s}\Gamma^{n}(f_{\delta}(x_{s+t}) - f_{\delta}(\Lambda_{*,\delta}(\Pi^{c}x_{t})(s)))ds + \lim_{n \to \infty} \int_{-\infty}^{t_{0} - t} T^{s}(-s)\Pi^{s}\Gamma^{n}(f_{\delta}(\Lambda_{*,\delta}(\Pi^{c}x_{t_{0}})(t - t_{0} + s)) - f_{\delta}(\Lambda_{*,\delta}(\Pi^{c}x_{t})(s)))ds, \qquad t \in J.$$

If we set $\hat{x}_t := \Pi^c x_t + F_{*,\delta}(\Pi^c x_t)$ for $t \in J$, by Proposition 4 (ii)

$$\Lambda_{\star,\delta}(\Pi^c x_t)(s) = x_s(0,\hat{x}_t,f_\delta) = x_{s+t}(t,\hat{x}_t,f_\delta)$$

and

$$\Lambda_{\star,\delta}(\Pi^{c}x_{t_{0}})(t-t_{0}+s)=x_{t-t_{0}+s}(0,\hat{x}_{t_{0}},f_{\delta})=x_{s+t}(t_{0},\hat{x}_{t_{0}},f_{\delta})$$

in particular for $s \in \mathbb{R}^-$. So

$$\xi(t) = T^{s}(t - t_{0})\xi(t_{0}) + \lim_{n \to \infty} \int_{t_{0} - t}^{0} T^{s}(-s)\Pi^{s}\Gamma^{n}(f_{\delta}(x_{s+t}) - f_{\delta}(x_{s+t}(t, \hat{x}_{t}, f_{\delta})))ds$$
$$+ \lim_{n \to \infty} \int_{-\infty}^{t_{0} - t} T^{s}(-s)\Pi^{s}\Gamma^{n}(f_{\delta}(x_{s+t}(t_{0}, \hat{x}_{t_{0}}, f_{\delta})) - f_{\delta}(x_{s+t}(t, \hat{x}_{t}, f_{\delta})))ds,$$

and thus

$$\|\xi(t)\|_{X} \leq Ce^{-\alpha(t-t_{0})} \|\xi(t_{0})\|_{X} + \int_{t_{0}}^{t} Ke^{\alpha(\theta-t)} \|x_{\theta} - x_{\theta}(t, \hat{x}_{t}, f_{\delta})\|_{X} d\theta$$
$$+ \int_{-\infty}^{t_{0}} Ke^{\alpha(\theta-t)} \|x_{\theta}(t_{0}, \hat{x}_{t_{0}}, f_{\delta}) - x_{\theta}(t, \hat{x}_{t}, f_{\delta})\|_{X} d\theta.$$

Since $x_{\theta}(t, \hat{x}_t, f_{\delta})$ $(t \in J, \ \theta \in \mathbb{R})$ can be written as

$$x_{\theta}(t, \hat{x}_t, f_{\delta}) = \Pi^c x_{\theta}(t, \hat{x}_t, f_{\delta}) + \Pi^s x_{\theta}(t, \hat{x}_t, f_{\delta})$$
$$= \Pi^c x_{\theta}(t, \hat{x}_t, f_{\delta}) + F_{*,\delta}(\Pi^c x_{\theta}(t, \hat{x}_t, f_{\delta}))$$

by Proposition 4 (iii), it follows from Proposition 4 (i) and Proposition 6 that for $\theta \leq t_0$

$$||x_{\theta}(t_{0}, \hat{x}_{t_{0}}, f_{\delta}) - x_{\theta}(t, \hat{x}_{t}, f_{\delta})||_{X} \leq ||\Pi^{c}x_{\theta}(t_{0}, \hat{x}_{t_{0}}, f_{\delta}) - \Pi^{c}x_{\theta}(t, \hat{x}_{t}, f_{\delta})||_{X} + ||F_{*,\delta}(\Pi^{c}x_{\theta}(t_{0}, \hat{x}_{t_{0}}, f_{\delta})) - F_{*,\delta}(\Pi^{c}x_{\theta}(t, \hat{x}_{t}, f_{\delta}))||_{X} \leq (1 + L(\delta))||y(\theta; t) - y(\theta; t_{0})||_{X} \leq (1 + L(\delta))K \int_{t_{0}}^{t} e^{\mu'(\tau - \theta)}||\xi(\tau)||_{X} d\tau,$$

where $y(\theta;t)$ $(t \in J)$ is the one in Proposition 6. On the other hand, for $t_0 \le \theta \le t$

$$||x_{\theta} - x_{\theta}(t, \hat{x}_{t}, f_{\delta})||_{X} \leq ||\Pi^{s} x_{\theta} - F_{*, \delta}(\Pi^{c} x_{\theta})||_{X} + ||F_{*, \delta}(\Pi^{c} x_{\theta}) - F_{*, \delta}(\Pi^{c} x_{\theta}(t, \hat{x}_{t}, f_{\delta}))||_{X} + ||\Pi^{c} x_{\theta} - \Pi^{c} x_{\theta}(t, \hat{x}_{t}, f_{\delta})||_{X} \leq ||\xi(\theta)||_{X} + (1 + L(\delta))||\Pi^{c} x_{\theta} - \Pi^{c} x_{\theta}(t, \hat{x}_{t}, f_{\delta})||_{X} \leq ||\xi(\theta)||_{X} + (1 + L(\delta))K \int_{\theta}^{t} e^{\mu'(\sigma - \theta)} ||\xi(\sigma)||_{X} d\sigma,$$

where we used Proposition 4 (i), (iii) and Proposition 5 (ii). Thus we have

$$\begin{split} \|\xi(t)\|_{X} &\leq Ce^{-\alpha(t-t_{0})}\|\xi(t_{0})\|_{X} \\ &+ \int_{t_{0}}^{t} Ke^{\alpha(\theta-t)} \bigg(\|\xi(\theta)\|_{X} + (1+L(\delta))K \int_{\theta}^{t} e^{\mu'(\sigma-\theta)}\|\xi(\sigma)\|_{X} d\sigma \bigg) d\theta \\ &+ \int_{-\infty}^{t_{0}} Ke^{\alpha(\theta-t)} (1+L(\delta))K \bigg(\int_{t_{0}}^{t} e^{\mu'(\tau-\theta)}\|\xi(\tau)\|_{X} d\tau \bigg) d\theta \\ &= Ce^{-\alpha(t-t_{0})} \|\xi(t_{0})\|_{X} + \bigg(K + \frac{K^{2}(1+L(\delta))}{\alpha-\mu'} \bigg) \int_{t_{0}}^{t} e^{\alpha(\sigma-t)} \|\xi(\sigma)\|_{X} d\sigma, \end{split}$$

so that

$$e^{\alpha t} \|\xi(t)\|_{X} \le C e^{\alpha t_0} \|\xi(t_0)\|_{X} + \hat{K} \int_{t_0}^{t} e^{\alpha \sigma} \|\xi(\sigma)\|_{X} d\sigma,$$

where $\hat{K} := K + K^2(1 + L(\delta))/(\alpha - \mu')$. An application of Gronwall's inequality gives $e^{\alpha t} \|\xi(t)\|_X \leq C e^{\alpha t_0} \|\xi(t_0)\|_X e^{\hat{K}(t-t_0)}$, and hence

$$\|\xi(t)\|_X \le C \|\xi(t_0)\|_X e^{-(\alpha-\hat{K})(t-t_0)}, \quad t \in J,$$

which is the desired one because of $\hat{K} = K(\alpha - \varepsilon)/(\alpha - \mu') = \alpha - \beta_0$. The latter part of the proposition is evident. This completes the proof.

Proof of Theorem 1. The properties (ii) and (iii) of Theorem 1 are now immediate consequences of Propositions 4 and 7, respectively. We verify the property (i). Observe that Y_{η} is a subspace of $Y_{\eta'}$ if $\eta < \eta' < \alpha$, and denote the inclusion map by $\mathcal{J}: Y_{\eta} \to Y_{\eta'}$. By

almost the same reasoning as in [8], we see that $\mathcal{J}\Lambda_{*,\delta}$ is C^1 smooth as a map from E^c to $Y_{\eta'}$; and hence $F_{*,\delta} = \Pi^{su} \circ \text{ev}_0 \circ \mathcal{J}\Lambda_{*,\delta}$ is also C^1 smooth. Moreover, since

$$[[D(\mathcal{J}\Lambda_{\star,\delta})(0)](t)]\psi = T^{c}(t)\psi, \quad \psi \in E^{c}, \ t \in \mathbb{R}$$

holds by virtue of $Df_{\delta}(0) = Df(0) = 0$, it follows that

$$DF_{\star,\delta}(0)\psi = D(\Pi^{su} \circ \text{ev}_0 \circ \mathcal{J}\Lambda_{\star,\delta})(0)\psi = \Pi^{su}T^c(0)\psi = \Pi^{su}\psi = 0, \quad \psi \in E^c;$$

hence
$$DF_{*,\delta}(0) = 0$$
, which implies (i).

4 Stability analysis of integral equations via central equations

Center manifolds play a crucial role in the stability analysis of systems around non-hyperbolic equilibria. Indeed, center manifolds for several kinds of equations allow us to reduce the stability analysis of an original system to that of its restriction to a center manifold; see e.g., [1, 4, 5, 9]. In this section, introducing an ordinary differential equation (called the "central equation" of Eq. (E)) which is expressed by using the explicit formula of the projection Π^c , we will establish the reduction principle for integral equations that the stability properties for the central equation imply those of Eq. (E) in the neighborhood of its zero solution.

Assume that $\Sigma^c \neq \emptyset$. Let $\{\phi_1, \ldots, \phi_{d_c}\}$ be a basis for E^c , where d_c is the dimension of E^c . Then based on the formal adjoint theory for Eq. (1) developed in [7], one can consider its dual basis as elements in the Banach space

$$X^{\sharp} := L^1_o(\mathbb{R}^+; (\mathbb{C}^*)^m) = \{ \psi : \mathbb{R}^+ \to (\mathbb{C}^*)^m : \psi(\tau)e^{-\rho\tau} \text{ is integrable on } \mathbb{R}^+ \}$$

with norm

$$\|\psi\|_{X^{\sharp}} := \int_0^{\infty} |\psi(\tau)| e^{-\rho \tau} d\tau, \quad \psi \in X^{\sharp},$$

where $(\mathbb{C}^*)^m$ is the space of *m*-dimensional row vectors with complex components equipped with the norm which is compatible with the one in \mathbb{C}^m , that is, $|z^*z| \leq |z^*| |z|$ for $z^* \in (\mathbb{C}^*)^m$ and $z \in \mathbb{C}^m$. To be more precise, if we set

$$\langle \psi, \phi \rangle := \int_{-\infty}^{0} \left(\int_{\theta}^{0} \psi(\xi - \theta) K(-\theta) \phi(\xi) d\xi \right) d\theta, \quad (\psi, \phi) \in X^{\sharp} \times X,$$

then this pairing defines a bounded bilinear form on $X^{\sharp} \times X$ with the property

$$|\langle \psi, \phi \rangle| \le ||K||_{\infty, \rho} ||\psi||_{X^{\sharp}} ||\phi||_{X}, \quad (\psi, \phi) \in X^{\sharp} \times X;$$

here we recall that $||K||_{\infty,\rho} = \text{ess sup}\{||K(t)||e^{\rho t}: t \geq 0\}$. Then there exist $\{\psi_1, \ldots, \psi_{d_c}\}$, elements of X^{\sharp} , such that $\langle \psi_i, \phi_j \rangle = 1$ if i = j and 0 otherwise, and $\langle \psi_i, \phi \rangle = 0$ for $\phi \in E^s$ and $i = 1, 2, \ldots, d_c$; we call $\{\psi_1, \ldots, \psi_{d_c}\}$ the dual basis of $\{\phi_1, \ldots, \phi_{d_c}\}$; see [7] for details. Denote by Φ_c and Ψ_c , $(\phi_1, \ldots, \phi_{d_c})$ and ${}^t(\psi_1, \ldots, \psi_{d_c})$, the transpose of $(\psi_1, \ldots, \psi_{d_c})$, respectively. Then, for any $\phi \in X$ the coordinate of its E^c -component with respect to the basis $\{\phi_1, \ldots, \phi_{d_c}\}$, or Φ_c for short, is given by $\langle \Psi_c, \phi \rangle := {}^t(\langle \psi_1, \phi \rangle, \ldots, \langle \psi_{d_c}, \phi \rangle) \in \mathbb{C}^{d_c}$, and therefore the projection Π^c is expressed, in terms of the basis Φ_c and its dual basis Ψ_c , by

$$\Pi^c \phi = \Phi_c \langle \Psi_c, \phi \rangle, \quad \phi \in X. \tag{19}$$

Since $\{T^c(t)\}_{t\geq 0}$ is a strongly continuous semigroup on the finite dimensional space E^c , there exists a $d_c \times d_c$ matrix G_c such that

$$T^{c}(t)\Phi_{c} = \Phi_{c}e^{tG_{c}}, \quad t \ge 0, \tag{20}$$

and $\sigma(G_c)$, the spectrum of G_c , is identical with Σ^c . The E^c -components of solutions of Eq. (E_δ) can be described by a certain ordinary differential equation in \mathbb{C}^{d_c} . More precisely, let x(t) be a solution of Eq. (E_δ) through (σ,ϕ) , that is, $x(t) = x(t;\sigma,\phi,f)$. If we denote by $z_c(t)$ the component of $\Pi^c x_t$ with respect to the basis Φ_c , that is, $\Phi_c z_c(t) := \Pi^c x_t$, or $z_c(t) := \langle \Psi_c, x_t \rangle$, then by virtue of [6, Theorem 7] $z_c(t)$ satisfies the ordinary differential equation

$$\dot{z}_c(t) = G_c z_c(t) + H_c f_\delta(\Phi_c z_c(t) + \Pi^{su} x_t), \tag{21}$$

where H_c is the $d_c \times m$ matrix such that $H_c x := \lim_{n \to \infty} \langle \Psi_c, \Gamma^n x \rangle$ for $x \in \mathbb{C}^m$.

In connection with Eq. (21), let us consider the ordinary differential equations on \mathbb{C}^{d_c}

$$\dot{z}(t) = G_c z(t) + H_c f_{\delta}(\Phi_c z(t) + F_{*,\delta}(\Phi_c z(t))) \tag{CE_{\delta}}$$

and

$$\dot{z}(t) = G_c z(t) + H_c f(\Phi_c z(t) + F_*(\Phi_c z(t))). \tag{CE}$$

We call Eq. (CE) (resp. Eq. (CE_{δ})) the central equation of (E) (resp. (E_{δ})). Applying Proposition 4 (iii), one can easily derive the following result on relationships among solutions of Eq. (E_{δ}) (resp. Eq.(E)) and (CE_{δ}) (resp. (CE)).

Proposition 8. The following statements hold true:

(i) Let x be a solution of Eq.(E_δ) on an interval J such that x_t ∈ W^c_δ (t ∈ J). Then the function z_c(t) := ⟨Ψ_c, x_t⟩ satisfies the equation (CE_δ) on J.
Conversely, if z(t) satisfies the equation (CE_δ) on an interval J, then there exists a unique solution x of Eq.(E_δ) on J such that x_t ∈ W^c_δ and Π^cx_t = Φ_cz(t) on J.

(ii) Let x be a solution of Eq.(E) on an interval J such that x_t ∈ W^c_{loc}(r, δ) (t ∈ J). Then the function z_c(t) := ⟨Ψ_c, x_t⟩ satisfies the equation (CE) on J, together with the inequality sup_{t∈J} ||Φ_cz_c(t)||_X ≤ r.
Conversely, if z(t) satisfies the equation (CE) on an interval J together with the inequality sup_{t∈J} ||Φ_cz(t)||_X ≤ r, then there exists a unique solution x of Eq.(E) on J such that x_t ∈ W^c_{loc}(r, δ) and Π^cx_t = Φ_cz(t) on J.

Since $f(0) = f_{\delta}(0) = 0$, both equations (CE) and (CE_{δ}) (as well as (E) and (E_{δ})) possess the zero solution. Notice that the zero solution of (CE) (resp. (E)) is uniformly asymptotically stable if and only if the zero solution of (CE_{δ}) (resp. (E_{δ})) is uniformly asymptotically stable. Likewise, the zero solution of (CE) (resp. (E)) is unstable if and only if the zero solution of (CE_{δ}) (resp. (E_{δ})) is unstable. Here, for the definition of several stability properties utilized in this paper, we refer readers to the books [10, 5].

Now suppose that $\Sigma^u = \emptyset$. Then the dynamics near the zero solution of (E) is determined by the dynamics near $z_c = 0$ of (CE) in the following sense.

Theorem 3. Assume that $\Sigma^u = \emptyset$. If the zero solution of (CE) is uniformly asymptotically stable (resp. unstable), then the zero solution of (E) is also uniformly asymptotically stable (resp. unstable).

Proof. By the fact stated in the preceding paragraph of the theorem, it is sufficient to establish that the uniform asymptotic stability (resp. instability) of the zero solution of (CE_{δ}) implies the uniform asymptotic stability (resp. instability) of the zero solution of (E_{δ}) .

If the zero solution of (CE_{δ}) is unstable, the instability of the zero solution of (E_{δ}) immediately follows from the invariance of W_{δ}^{c} (Proposition 4 (iii)). In what follows, under the assumption that the the zero solution of (CE_{δ}) is uniformly asymptotically stable, we will establish the uniform asymptotic stability of the zero solution of (E_{δ}) . By virtue of [5, Theorem 4.2.1], there exist positive constants a, \bar{K} and a Liapunov function V defined on $S_{a} := \{y \in \mathbb{C}^{d_{c}} : |y| \leq a\}$ satisfying the following properties:

(i) There exists a $b \in C(\mathbb{R}^+; \mathbb{R}^+)$ which is strictly increasing with b(0) = 0 and

$$b(|y|) \le V(y) \le |y|$$
 for $y \in S_a$.

- (ii) $|V(y) V(z)| \le \bar{K}|y z|$ for $y, z \in S_a$.
- (iii) $\dot{V}(z) \leq -V(z)$ for $z \in S_a$, where $\dot{V}(z) := \limsup_{h \to +0} (1/h) \{V(y(h)) V(z)\}$, and y(h) is the solution of (CE_{δ}) with y(0) = z.

Choose a positive number τ_0 such that

$$e^{-\tau_0} \le \frac{1}{2} \quad \text{and} \quad Ce^{-\beta_0 \tau_0} \le \frac{1}{4},$$
 (22)

where β_0 is the one in Proposition 7, and we may assume that $\beta_0 > \mu'$, taking δ so small if necessary. Put $K_{\infty} := ||K||_{\infty,\rho}$ and take a positive number P in such a way that

$$P > \max\left(1, \frac{4C}{\beta_0 - \mu'} \bar{K} K K_{\infty} \|\Psi_c\|\right), \tag{23}$$

and set $a_0 := ae^{-\eta\tau_0}/(4CK_{\infty}\|\Psi_c\|)$, where $\|\Psi_c\| := (\sum_{j=1}^{d_c} \|\psi_j\|_{X^{\sharp}}^2)^{1/2}$. Let Ω be a neighborhood of 0 in X such that

$$\langle \Psi_c, \phi \rangle \in S_a$$
, $\|\Pi^c \phi\|_X \le a_0$, and $Q \le b(a)$

for $\phi \in \Omega$, where

$$Q := V(\langle \Psi_c, \phi \rangle) + \left(PC + \frac{\bar{K}K_{\infty} \|\Psi_c\| KC}{\beta_0 - \mu'} \right) \left(\|\Pi^s \phi\|_X + \|F_{*,\delta}(\Pi^c \phi)\|_X \right),$$

and consider the function $W(\phi)$ on Ω defined by

$$W(\phi) := V(\langle \Psi_c, \phi \rangle) + P \|\Pi^s \phi - F_{*,\delta}(\Pi^c \phi)\|_X, \quad \phi \in \Omega.$$

W is continuous in Ω with W(0) = 0 and is positive in $\Omega \setminus \{0\}$ because of (i) and (ii). We will first certify the following claim.

Claim 1. There exists a positive number c_0 such that, for any $t_0 \in \mathbb{R}^+$ and $\phi \in X$ with $W(\phi) \leq c_0$, the solution $x(t; t_0, \phi, f_\delta)$ exists on $[t_0, t_0 + \tau_0]$ and satisfies $x_t(t_0, \phi, f_\delta) \in \Omega$ for $t \in [t_0, t_0 + \tau_0]$; in particular, $\|\Pi^c x_t(t_0, \phi, f_\delta)\|_X \leq a_0$ in this interval.

Indeed, suppose that $x_t(t_0, \phi, f_\delta)$ is defined on the interval $[t_0, t_0 + t_*)$ with $t_* \leq \tau_0$. Applying VCF, we get

$$||x_t(t_0, \phi, f_{\delta})||_X \le M ||\phi||_X + \int_{t_0}^t M\zeta_*(\delta) ||x_s(t_0, \phi, f_{\delta})||_X ds$$

for $t \in [t_0, t_0 + t_*)$, where $M := \sup_{0 \le t \le \tau_0} \|T(t)\|_{\mathcal{L}(X)}$. Then Gronwall's inequality yields that $\|x_t(t_0, \phi, f_\delta)\|_X \le M\|\phi\|_X e^{M\zeta_*(\delta)(t-t_0)} \le M\|\phi\|_X e^{M\zeta_*(\delta)\tau_0}$ for $t \in [t_0, t_0 + t_*)$; which means that $x_t(t_0, \phi, f_\delta)$ can be defined on the interval $[t_0, t_0 + t_*]$ and therefore on $[t_0, t_0 + \tau_0]$ (cf. [6, Corollary 1]). Thus it turns out that if $\|\phi\|_X$ is small enough, $x_t(t_0, \phi, f_\delta)$ exists on $[t_0, t_0 + \tau_0]$ and moreover belongs to Ω in this interval. The claim readily follows from the fact that $\inf\{W(\phi): \phi \in \Omega, \|\phi\|_X \ge r\} > 0$ for small r > 0, together with the property of Ω .

Now given $t_0 \in \mathbb{R}^+$ and $\phi \in X$ with $W(\phi) \leq c_0$, let us consider the solution $x(t) := x(t; t_0, \phi, f_\delta)$. By Proposition 3 (i)

$$\|\Lambda_{\star,\delta}(\Pi^c x_t)(s)\|_X \le \|\Lambda_{\star,\delta}(\Pi^c x_t)\|_{Y_n} e^{\eta|s|} \le e^{\eta|s|} 2C \|\Pi^c x_t\|_X, \quad s \in \mathbb{R};$$

hence taking account of $\Lambda_{*,\delta}(\Pi^c x_t)(s) = x_{t+s}(t,\hat{x}_t,f_{\delta})$ for $s \in \mathbb{R}$ (Proposition 4 (ii)), we get $||x_{t+s}(t,\hat{x}_t,f_{\delta})||_X \leq e^{\eta\tau_0}2C||\Pi^c x_t||_X$ for $s \in [-\tau_0,0]$, where $\hat{x}_t := \Pi^c x_t + F_{*,\delta}(\Pi^c x_t)$. Set $y^{\circ}(t+s;t) := \langle \Psi_c, x_{t+s}(t,\hat{x}_t,f_{\delta}) \rangle$. Then $|y^{\circ}(t+s;t)| \leq K_{\infty} ||\Psi_c|| ||x_{t+s}(t,\hat{x}_t,f_{\delta})||_X \leq 2CK_{\infty} ||\Psi_c|| e^{\eta\tau_0} ||\Pi^c x_t||_X \leq 2CK_{\infty} ||\Psi_c|| e^{\eta\tau_0} a_0 = a/2$ for $s \in [-\tau_0,0]$; hence $y^{\circ}(s;t) \in S_{a/2}$ and thus $V(y^{\circ}(s;t))$ is well-defined for $s \in [t_0,t]$ with $t \in [t_0,t_0+\tau_0]$.

We next confirm:

Claim 2.
$$\sup\{W(x_t): t \in [t_0, t_0 + \tau_0]\} \leq Q \text{ and } W(x_{t_0 + \tau_0}(t_0, \phi, f_\delta)) \leq c_0/2.$$

Indeed, fix a $t \in [t_0, t_0 + \tau_0]$ and set $z(s) := y^{\circ}(s; t)$ for $s \in [t_0, t]$. Since $y^{\circ}(s; t) = \langle \Psi_c, x_s(t, \hat{x}_t, f_{\delta}) \rangle = \langle \Psi_c, \Pi^c x_s(t, \hat{x}_t, f_{\delta}) \rangle$ for $s \in [t_0, t]$, z(s) is a solution of (CE_{δ}) on $[t_0, t]$ with $z(t) = y^{\circ}(t; t) = \langle \Psi_c, \Pi^c x_t \rangle$. By the property (i), we see that $\dot{V}(z(s)) \leq -V(z(s))$ for $s \in [t_0, t]$, which implies that $(d/ds)(e^{s-t}V(z(s))) = e^{s-t}(V(z(s)) + \dot{V}(z(s))) \leq 0$, so that

$$V(\langle \Psi_c, \Pi^c x_t \rangle) - e^{t_0 - t} V(y^{\circ}(t_0; t)) = V(z(t)) - e^{t_0 - t} V(z(t_0)) \le \int_{t_0}^t \frac{d}{ds} \left(e^{s - t} V(z(s)) \right) ds \le 0;$$
 consequently,

$$\begin{split} V(\langle \Psi_{c}, \Pi^{c} x_{t} \rangle) & \leq e^{t_{0} - t} V(\langle \Psi_{c}, \Pi^{c} x_{t_{0}} \rangle) + e^{t_{0} - t} \left(V(y^{\circ}(t_{0}; t)) - V(\langle \Psi_{c}, \Pi^{c} x_{t_{0}} \rangle) \right) \\ & \leq e^{t_{0} - t} V(\langle \Psi_{c}, \Pi^{c} x_{t_{0}} \rangle) + e^{t_{0} - t} \bar{K} \left| y^{\circ}(t_{0}; t) - \langle \Psi_{c}, \Pi^{c} x_{t_{0}} \rangle \right| \\ & \leq e^{t_{0} - t} V(\langle \Psi_{c}, \Pi^{c} \phi \rangle) + e^{t_{0} - t} \bar{K} K_{\infty} \|\Psi_{c}\| \|\Pi^{c} x_{t_{0}}(t, \hat{x}_{t}, f_{\delta}) - \Pi^{c} x_{t_{0}}\|_{X} \\ & \leq e^{t_{0} - t} V(\langle \Psi_{c}, \Pi^{c} \phi \rangle) + e^{t_{0} - t} \bar{K} K_{\infty} \|\Psi_{c}\| K \int_{t}^{t} e^{\mu'(\theta - t_{0})} \|\xi(\theta)\|_{X} d\theta, \end{split}$$

where the last inequality is due to Proposition 5 (ii). Therefore, applying Proposition 7,

$$W(x_{t}) = V(\langle \Psi_{c}, \Pi^{c} x_{t} \rangle) + P \| \xi(t) \|_{X}$$

$$\leq e^{t_{0} - t} V(\langle \Psi_{c}, \Pi^{c} \phi \rangle) + e^{t_{0} - t} \bar{K} K_{\infty} \| \Psi_{c} \| K \int_{t_{0}}^{t} e^{\mu'(\theta - t_{0})} \left(C \| \xi(t_{0}) \|_{X} e^{-\beta_{0}(\theta - t_{0})} \right) d\theta$$

$$+ P C \| \xi(t_{0}) \|_{X} e^{-\beta_{0}(t - t_{0})}$$

$$\leq e^{t_{0} - t} V(\langle \Psi_{c}, \Pi^{c} \phi \rangle) + C \| \xi(t_{0}) \|_{X} \left(\frac{\bar{K} K_{\infty} K \| \Psi_{c} \|}{\beta_{0} - \mu'} e^{t_{0} - t} + P e^{-\beta_{0}(t - t_{0})} \right). \tag{24}$$

In particular,

$$\begin{split} W(x_{t_0+\tau_0}) &\leq e^{-\tau_0} V(\langle \Psi_c, \Pi^c \phi \rangle) + C \|\xi(t_0)\|_X \left(\frac{\bar{K} K_\infty K \|\Psi_c\|}{\beta_0 - \mu'} e^{-\tau_0} + P e^{-\beta_0 \tau_0} \right) \\ &\leq (1/2) V(\langle \Psi_c, \Pi^c \phi \rangle) + (1/2) P \|\xi(t_0)\|_X \\ &= (1/2) W(x_{t_0}) = (1/2) W(\phi) \leq (1/2) c_0. \end{split}$$

Since $\|\xi(t_0)\|_X \le \|\Pi^s \phi\|_X + \|F_{*,\delta}(\Pi^c \phi)\|_X$, (24) implies also

$$\sup\{W(x_t): t \in [t_0, t_0 + \tau_0]\} \le V(\langle \Psi_c, \Pi^c \phi \rangle) + C \|\xi(t_0)\|_X \left(\frac{\bar{K}K_\infty K \|\Psi_c\|}{\beta_0 - \mu'} + P\right) \le Q,$$

as required.

By Claim 2, combined with Claim 1, $x(t) = x(t; t_0, \phi, f_{\delta})$ is defined on $[t_0, t_0 + 2\tau_0]$, and $y^{\circ}(s;t) \in S_{a/2}$ still holds for $s \in [t_0, t]$ with $t \in [t_0, t_0 + 2\tau_0]$. More generally, one can deduce that $x(t) = x(t; t_0, \phi, f_{\delta})$ is defined on $[t_0, t_0 + n\tau_0]$, and $y^{\circ}(s;t) \in S_{a/2}$ holds for $s \in [t_0, t]$ with $t \in [t_0, t_0 + n\tau_0]$ for any $n \in \mathbb{N}$, together with the relations

$$\sup\{W(x_t): t \in [t_0 + (n-1)\tau_0, t_0 + n\tau_0]\} \le \frac{Q}{2^{n-1}} \quad \text{and} \quad W(x_{t_0 + n\tau_0}) \le \frac{c_0}{2^n}$$

for $n \in \mathbb{N}$. This means that $x(t) = x(t; t_0, \phi, f_{\delta})$ is actually defined on $[t_0, \infty)$ and that

$$V(\langle \Psi_c, x_t(t_0, \phi, f_\delta) \rangle) + P \|\Pi^s x_t - F_{*,\delta}(\Pi^c x_t)\|_X \le Q \, 2^{-(t-t_0)/\tau_0}, \quad t \in [t_0, \infty).$$

In view of (i) and P > 1, it follows that $b(|\langle \Psi_c, x_t(t_0, \phi, f_\delta) \rangle|) \leq Q \, 2^{-(t-t_0)/\tau_0} \leq b(a)$ and $\|\Pi^s x_t - F_{*,\delta}(\Pi^c x_t)\|_X \leq Q \, 2^{-(t-t_0)/\tau_0}$. Since $\|\Pi^c x_t(t_0, \phi, f_\delta)\|_X = \|\Phi_c \langle \Psi_c, x_t(t_0, \phi, f_\delta) \rangle\|_X \leq \|\Phi_c\| \, b^{-1} \big(Q \, 2^{-(t-t_0)/\tau_0}\big)$ with $\|\Phi_c\| := \big(\sum_{j=1}^{d_c} \|\phi_j\|_X^2\big)^{1/2}$ and $\|\Pi^s x_t(t_0, \phi, f_\delta)\|_X \leq \|\Pi^s x_t - F_{*,\delta}(\Pi^c x_t)\|_X + \|F_{*,\delta}(\Pi^c x_t)\|_X \leq Q \, 2^{-(t-t_0)/\tau_0} + L(\delta) \|\Pi^c x_t\|_X$, we obtain that for any $\phi \in \Omega$ and $t \in [t_0, \infty)$

$$||x_t(t_0, \phi, f_{\delta})||_X \le ||\Pi^c x_t(t_0, \phi, f_{\delta})||_X + ||\Pi^s x_t(t_0, \phi, f_{\delta})||_X$$

$$\le Q 2^{-(t-t_0)/\tau_0} + (1 + L(\delta))||\Phi_c|| b^{-1} (Q 2^{-(t-t_0)/\tau_0}),$$

which shows that the zero solution of (E_{δ}) is uniformly asymptotically stable.

Before concluding this section, we will provide an example to illustrate how our Theorem 3 is available for stability analysis of some concrete equations. Let us consider nonlinear (scalar) integral equation

$$x(t) = \int_{-\infty}^{t} P(t-s)x(s)ds + f(x_t), \qquad (25)$$

where P is a nonnegative continuous function on \mathbb{R}^+ satisfying $\int_0^\infty P(t)dt=1$ together with the condition $\|P\|_{1,\rho}:=\int_0^\infty P(t)e^{\rho t}dt<\infty$ and $\|P\|_{\infty,\rho}:=\mathrm{ess\ sup}\{P(t)e^{\rho t}:t\geq 0\}<\infty$ for some positive constant ρ , and $f\in C^1(X;\mathbb{C}), X:=L^1_{\rho}(\mathbb{R}^-;\mathbb{C}),$ satisfies f(0)=0 and Df(0)=0. Eq. (25) is written as Eq. (E) with m=1 and $K\equiv P$. The characteristic operator $\Delta(\lambda)$ of Eq. (25) is given by $\Delta(\lambda)=1-\int_0^\infty P(t)e^{-\lambda t}dt$. We thus get $\Sigma^u=\emptyset$ and $\Sigma^c=\{0\}$. Indeed, in this case, 0 is a simple root of the equation $\Delta(\lambda)=0$, and E^c is 1-dimensional space with a basis $\{\phi_1\}, \ \phi_1\equiv 1$, together with $\{\psi_1\}, \ \psi_1\equiv 1/r$ (here

 $r := \int_0^\infty \tau P(\tau) d\tau$), as the dual basis of $\{\phi_1\}$; see [7] for details. The projection Π^c is given by the formula $\Pi^c \phi = \Phi_c \langle \Psi_c, \phi \rangle$, $\forall \phi \in X$, and hence

$$\begin{split} \Pi^c \phi &= \phi_1 \langle \psi_1, \phi \rangle = \phi_1 \left(\int_{-\infty}^0 \int_{\theta}^0 \psi_1(\xi - \theta) P(-\theta) \phi(\xi) d\xi d\theta \right) \\ &= \Phi_c \left(\frac{1}{r} \int_{-\infty}^0 P(-\theta) \left(\int_{\theta}^0 \phi(\xi) d\xi \right) d\theta \right). \end{split}$$

Thus, for a solution x(t) of Eq. (25), the component $z_c(t)$ of $\Pi^c x_t$ with respect to Φ_c is given by

$$z_c(t) = \frac{1}{r} \int_{-\infty}^{t} \hat{P}(t-s)x(s)ds$$

with $\hat{P}(t) := \int_{t}^{\infty} P(\tau) d\tau$, because of

$$rz_{c}(t) = \int_{-\infty}^{0} P(-\theta) \left(\int_{\theta}^{0} x(t+\xi)d\xi \right) d\theta = \int_{-\infty}^{0} P(-\theta) \left(\int_{t+\theta}^{t} x(s)ds \right) d\theta$$
$$= \int_{-\infty}^{t} P(t-\tau) \left(\int_{\tau}^{t} x(s)ds \right) d\tau = \int_{-\infty}^{t} \left(\int_{t-s}^{\infty} P(w)dw \right) x(s)ds.$$

Observe that $z_c(t)$ satisfies the ordinary equation

$$r\dot{z}_c(t) = \hat{P}(0)x(t) + \int_{-\infty}^t (-P(t-s))x(s)ds = x(t) - \int_{-\infty}^t P(t-s)x(s)ds,$$

that is, $r\dot{z}_c(t) = f(x_t) = f(\Phi_c z_c(t) + \Pi^s x_t)$. In particular, if x is a solution of Eq. (25) satisfying $x_t \in W^c_{loc}(r,\delta)$ on an interval J, then $\Pi^s x_t = F_*(\Phi_c z_c(t))$ on J; hence we get

$$\dot{z}_c(t) = (1/r)f(\Phi_c z_c(t) + F_*(\Phi_c z_c(t)))$$

on J. This observation leads to that $G_c = 0$ and $H_c = 1/r$ in the central equation (CE); in fact, by noticing that $\Sigma^c = \{0\}$ and $H_c x = \lim_{n \to \infty} \langle \psi_1, \Gamma^n x \rangle = (1/r)x$, $\forall x \in \mathbb{C}$, one can also certify this fact. Consequently, the central equation of Eq. (25) is identical with the scalar equation $\dot{z} = H(z)$; here

$$H(w) := (1/r)f(\Phi_c w + F_*(\Phi_c w)), \quad (w \in \mathbb{C} \text{ and } |w| \text{ is small}).$$

In what follows, we will determine the function H for some special functions f. Let us assume that f is of the form

$$f(\phi) = \varepsilon \left(\int_{-\infty}^{0} Q(-\theta)\phi(\theta)d\theta \right)^{m} + g(\phi), \quad \forall \phi \in X,$$
 (26)

where m is a natural number such that $m \geq 2$, ε is a nonzero real number, Q is a function satisfying $\|Q\|_{1,\rho} < \infty$ and $\|Q\|_{\infty,\rho} < \infty$ and $c_0 := \int_{-\infty}^{0} Q(-\theta)d\theta > 0$, and

 $g \in C^1(X;\mathbb{C})$ satisfies $|g(\phi)| = o(\|\phi\|_X^m)$ as $\|\phi\|_X \to 0$ (here, o means Landau's notation "small oh"). One can easily see that the function f given by (26) satisfies $f \in C^1(X;\mathbb{C})$ and f(0) = Df(0) = 0. For any w with small |w|, we get

$$f(\Phi_c w) = \varepsilon \left(\int_{-\infty}^0 Q(-\theta)(\Phi_c w)(\theta) d\theta \right)^m + g(\Phi_c w)$$
$$= \varepsilon \left(w \int_{-\infty}^0 Q(-\theta) d\theta \right)^m + o(w^m) = \varepsilon (c_0 w)^m + o(w^m);$$

hence,

$$\begin{split} rH(w) &= f(\Phi_c w + F_*(\phi_c w)) \\ &= f(\Phi_c w) + \{f(\Phi_c w + F_*(\phi_c w)) - f(\Phi_c w)\} \\ &= f(\Phi_c w) + \varepsilon \{[L_1(\Phi_c w + F_*(\phi_c w))]^m - [L_1(\Phi_c w)]^m\} + o(w^m) \\ &= \varepsilon (c_0 w)^m + o(w^m) + \varepsilon \sum_{k=0}^{m-1} \binom{m}{k} \{L_1(\Phi_c w)\}^k \{L_1(F_*(\Phi_c w))\}^{m-k}, \end{split}$$

here L_1 is a bounded linear functional on L^1_{ρ} defined by $L_1(\phi) := \int_{-\infty}^0 Q(-\theta)\phi(\theta)d\theta$. Recall that $L_1(F_*(\Phi_c w)) = o(w)$ as $w \to 0$; hence

$$\sum_{k=0}^{m-1} {m \choose k} \{L_1(\Phi_c w)\}^k \{F_*(\Phi_c w)\}^{m-k} = o(w^m) \quad \text{as } w \to 0.$$

Thus $rH(w) = \varepsilon(c_0 w)^m + o(w^m)$ as $w \to 0$. Hence it follows that

$$H(w) = (\varepsilon/r)c_0^m w^m + o(w^m)$$
 as $w \to 0$.

Consequently, one can easily see that the zero solution of the central equation of Eq. (25) is uniformly asymptotically stable if $\varepsilon < 0$ and if m is an odd natural number; while it is unstable if $\varepsilon > 0$ and if m is an odd natural number, or if $\varepsilon \neq 0$ and if m is an even natural number. Therefore, by virtue of Theorem 3, we get the following result:

Proposition 9. Assume that

$$f(\phi) = \varepsilon \left(\int_{-\infty}^{0} Q(-\theta)\phi(\theta)d\theta \right)^{m} + g(\phi), \quad \forall \phi \in X,$$
 (27)

here ε is a nonzero constant, m is a natural number such that $m \geq 2$, Q is a function satisfying $||Q||_{1,\rho} < \infty$, $||Q||_{\infty,\rho} < \infty$ and $\int_0^\infty Q(t)dt > 0$ and $g(\phi) = o(||\phi||_X^m)$ as $||\phi||_X \to 0$ with $g \in C^1(X;\mathbb{C})$. Then the following statements hold true;

- (i) if m is odd and $\varepsilon < 0$, then the zero solution of Eq. (25) is uniformly asymptotically stable (in L_o^1);
- (ii) if m is odd and $\varepsilon > 0$, then the zero solution of Eq. (25) is unstable (in L_a^1);
- (iii) if m is even and $\varepsilon \neq 0$, then the zero solution of Eq. (25) is unstable (in L^1_{ρ}).

References

- [1] J. L. Carr, Applications of Centre Manifold Theory, Springer-Verlag, New York, 1981.
- [2] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, *Delay Equations*, Springer-Verlag, Berlin, New York, 1995.
- [3] O. Diekmann and M. Gyllenberg, Equations with infinite delay: blending the abstract and the concrete, *J. Differential Equations*, **252** (2012), 819–851.
- [4] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, Berlin/New York, 1993.
- [5] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin/New York, 1981.
- [6] H. Matsunaga, S. Murakami and Nguyen Van Minh, Decomposition of the phase space for integral equations and variation-of-constant formula in the phase space, Funkcial. Ekvac., 55 (2012), 479–520.
- [7] H. Matsunaga, S. Murakami and Y. Nagabuchi, Formal adjoint operators and asymptotic formula for solutions of autonomous linear integral equations, *submitted for publication*.
- [8] S. Murakami and Y. Nagabuchi, Invariant manifolds for abstract functional differential equations and related Volterra difference equation in a Banach space, Funkcial. Ekvac., 50 (2007), 133–170.
- [9] V. A. Pliss, A reduction principle in the theory of stability of motion, *Izv. Akad. Nauk SSSR Ser. Mat.*, **28:6** (1964), 1297–1324.
- [10] T. Yoshizawa, Stability Theory by Liapunov's Second Method, The Mathematical Society of Japan, Tokyo, 1966.