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1 Introduction

In this note, we mainly consider about the Dunkl-Williams constant. In particular, we
describe some recent results obtained in [19].

Throughout this note, the term “normed linear space” always means a real normed
linear space which has two or more dimension. For a normed linear space X, let By
and Sx denote the unit ball and the unit sphere of X, respectively. In 1964, Dunkl and
Williams [7] showed the following simple inequalities: Let X be a normed linear space.
Then the inequality
Ty 4llz — yll
Nzl Myl — Nl + llyll

holds for all z,y € X \ {0}, and if X is an inner product space, the stronger inequality

H 2llz — yll
Hmll Iyl = Tl + Tyl
holds for all z,y € X\ {0}. These inequalities are so called the Dunkl-Williams inequality.

In the same paper, it was also proved that for any € > 0 there exist z,y € (R?,||-||1) such
that

NN R Cd’l lz -yl
el llyll llzll + llyll”

This means that the constant 4 is the best possible choice for the Dunkl-Williams inequal-
ity in the space (R2,|| - ||1). There are many result related to this inequality (cf. [1, 4, 5,
6, 16, 17, 20, 21, 22, 23, 24], and so on).




2 The Dunkl-Williams inequality

In this section, we list some results related to the Dunkl-Williams inequality. First, we
see the original proof of the inequality.

Theorem 2.1 (The Dunkl-Williams inequality). Let X be a normed linear space. Then,
the inequality

Ty 4flz -yl

el Myl = =l + llyll

holds for all z,y € X \ {0}, and if X is an inner product space, the stronger inequality

Ty 2|z ~ v
Tl ~ Tl = Tel+ 1ol

holds for all z,y € X \ {0}.

Proof. Let z and y be two nonzero elements of X. Then we have

< Il | 2 - 7o | + e
EINET

= |l = yll + [llz]| = |ly]l|
<2z -yl

vall Tyl H

[E lIyH

Replacing x with y, we also have

Iyl

EINTH U
Tl nyn“sz” vl
: oy | 4lz—yl

Izl Myl = Nzl + iyl
Next, we assume that X is an inner product space. Then, for each nonzero elements

z,y € X, we obtain
2
r Yy
=2 —2Re <—, —>
el llyll

1
= o Gl ~ 2Rez, 1)

Therefore we obtain

z Y
=l vl

Hence we have

2

1 2 zll — 2
= Tallol (lz = wl* = (ll=ll = llyl)?) -
Y

o — (Nl Dl
|z -yl ( 9 ) lzl Iyl

_ (=l =1l o s 1y e
= 1zl (=l + lyl)* = [lz — ylI*) > 0

and so the inequality
E __“ 2|z -y
el Ayl = llzl + lyl

holds. O
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Dunkl and Williams asked in their paper [7] whether the second inequality in Theo-
rem 2.1 characterizes inner product spaces. A bit later, Kirk and Smiley [14] solved this
problem affirmatively. They used the following result of Lorch [15].

Lemma 2.2 (Lorch, 1948). Let X be a normed linear space. Then, X is an inner product
space if and only if z,y € X and ||z|| = ||ly|| implies |az +a~ty|| > ||z +yl| for alla > 0.

Now, we show the result of Kirk and Smiley.

Theorem 2.3 (Kirk-Smiley, 1964). Let X be a normed linear space. Then, X is an inner
product space if the inequality

H 2llz -yl

||$|| gl Tl + Tl

holds for all z,y € X \ {0}.

Proof. Let z and y be nonzero elements of X such that ||z|| = ||y|, and let o > 0.

Applying the inequality for oz and o'y, we have
llez|| + [l y]|
2

a+a 1
= lz +yll

laz + oMyl >

I|w|| [ H

> ||z + yll-
Thus, X is an inner product space by Lemma 2.2. a

As a consequence of Theorems 2.1 and 2.3, it turns out that a normed linear space X
is an inner product space if and only if the inequality
z oyl 2lz—yl
=l Ayl = izl + llyll
holds for all z,y € X \ {0}. Thus, the best possible choice for the Dunkl-Williams in-
equality measures “how much” the space is close (or far) to be an inner product space.
Motivated by this fact, Jiménez-Melado et al. [13] defined the Dunkl-Williams constant

DW (X) of a normed linear space X as the best constant for the Dunkl-Williams inequal-
ity, that is,

o {ll + Dl . )
DW(x) = p{ e =l ||Tal uynH v e XA\ {0 ’”’}

As was mentioned in Section 1, DW ((RZ%, || - ||1)) = 4, and Theorems 2.1 and 2.3 are
restated as follows: Let X be a normed linear space. Then,

(i) 2 < DW(X) < 4.

(i) X is an inner product space if and only if DW (X) = 2.

Furthermore, it is known that DW(X) = 4 if and only if the space X is not uniformly
non-square. Recall that a normed linear space X is said to be uniformly non-square if
there exists & > 0 such that z,y € Sx and ||z —y|| > 2(1 — §) implies ||z +y|| < 2(1 —4).
However, the Dunkl-Williams constant is very hard to calculate. In fact, except the case
of DW(X) = 2 or 4, there have been probably no other example of the space X for which
DW (X) is determined precisely.
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3 A calculation method for DW(X)

In [19], we constructed a new calculation method for the Dunkl-Williams constant. In
this section, we describe the calculation method. As an application, we determine the
precise value of DW ({y-£,), where £3-£, is the Day-James space defined as the space R?
endowed with the norm || - ||z, given by

I(a,b)ll2  if ab >0,
12, B)llz.00 = { I(a, 5“00 if ab < 0.

for all (a,b) € R2.

When constructing a method, the notion of Birkhoff orthogonality plays an important
role. We recall that for two elements z,y of a normed linear space X, z is said to be
Birkhoft orthogonal to y, denoted by = Lp y, if || + Ay|| > ||z|| for all X € R. Obviously,
Birkhoff orthogonality is always homogeneous, that is, * Lp y implies axz 1p By for
all a,8 € R. More details about Birkhoff orthogonality can be found in Birkhoff [3],
Day (8, 9] and James [10, 11, 12].

To construct a calculation method, we introduce some notations. Suppose that X
is a normed linear space. For each z € Sy, let V(z) be a subset of X defined by
V(z) ={y € X : z L y}. For each z € Sx and each y € V(x), we define I'(z,y) and

m(z,y) by
te) = {252 a0 o0l = Io + sl
and m(z,y) = sup{||z + vy| : v € T(z,y)}, respectively. Furthermore, let
M(z) = sup{m(z,y) : y € V(z)}.
Using these notions, we obtain a new calculation method for the Dunkl-Williams constant.
Theorem 3.1 ([19]). Let X be a normed linear space. Then,
DW(X) =2sup{M(z) : z € Sx}.
If dim X = 2, we have the following improvement of the preceding theorem.
Theorem 3.2 ([19]). Let X be a normed linear space with dim X = 2. Then,
DW(X) = 2sup{M(z) : z € ext(Bx)},
where ext(Bx) denotes the set of all extreme points of Bx.
When we put this theory into practice, the following results are needed.

Proposition 3.3. Let X be a normed linear space. Suppose that x € Sx and y € V(x).
Then, the following hold:

(i) 0 e V{(z).
(il) ay € V(z) for all « € R.

(iii) m(z,0) =1 < m(z,y).
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(iv) m(z,ay) = m(z,y) for all a € R\ {0}.

Proposition 3.4. Let X,Y be normed linear spaces and let x € Sx and y € V(z).
Suppose that T is an isometric isomorphism from X onto Y. Then, the following hold:

(i) m(Tz, Ty) = m(z,y).
(i) M(Tz) = M(z).

Proposition 3.5. Let X be a normed linear space and let z € Sx and y € V(z) \ {0}.
Then, T'(z,y) is a bounded subset of R. Furthermore, m(z,y) = max{||z+ay||, ||z+Byl|},
where a = inf I'(z,y) and B = supI'(z,y), respectively.

Theorem 3.6. Let X be a normed linear space and let x € Sx andy € V(z). Suppose that
{z,} is a sequence in Sx which converges to x. If the sequence {y,} satisfies y, € V(z,)
for each n € N and converges to y, then

m(z,y) < liminf m(z,, yn).
n—oe

All of these results can be found in [19].

4 The Dunkl-Williams constant of the space /5-{

Applying Theorem 3.2, we obtain the following example.
Theorem 4.1 ([19]). DW (fy-£s,) = 21/2.
To prove Theorem 4.1, we need a lot of works. First, one can easily show that
ext(Bg,e.) = {(a,b) e R?:ab >0, a> +b* =1} U {(1,-1),(~1,1)}.

Now, let My = sup{M((a,b)) : 0 < b < a, a? + b* = 1}. Then, we have the following
lemma by Theorems 3.2 and 3.6, and Proposition 3.4.

Lemma 4.2. DW (€s-£o,) = 2 max{Mo, M((1,-1))}.

We remark that 0 < b < a and a® + b = 1 implies b < 1/v/2 < a. Next, to calculate
M(z), we find the set V(z) for each z.

Lemma 4.3. Suppose that 0 < b < a and a®> + b> = 1. Then,
V((a,b)) = {a(b, —a) € R?* : a € R}.
Lemma 4.4. V((1,-1)) = {(a,b) € R? : ab > 0}.
To reduce the amount of computation, we make use of Proposition 3.3.
Lemma 4.5. Suppose that 0 < b < a and a® +b?> = 1. Then,
M((a,b)) = m((a,b), (b, —a)).

Lemma 4.6. M((1,-1)) = sup{m((1,-1),(a,b)) : 0 < b < a, a® + b =1}.
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‘We need to determine the set I'(z,y) to calculate the value of m(z, y).

Lemma 4.7. Suppose that 0 < b < a and a® + b> = 1. Then,

[0,b/d] if a < 2b,
r 7b 3 ba - = .
((@5), (b, -a)) { [0, (a+b—2ab)/(a—b)] if a> 2b.
Lemma 4.8. Suppose that 0 < b < a and a? + b = 1. Then,
I((1, 1), (a,) = [b— a,0].

Now we prove Theorem 4.1. Proposition 3.5 is used in this phase.

Proof of Theorem 4.1. Suppose that 0 < b < a and a2 +b? = 1. First, we assume that
a < 2b. Then, by Proposition 3.5 and Lemma 4.7, we have
2,00}

M((a, b)) = m((a,b), (b, —a))
= max {Il(a,b)ﬂz,oo,

On the other hand, if 0 < b < a and a2 + b2 = 1, then a < 2b if and only if a < 2/\/_

Hence we obtain

(@) + 2(6,~a)

a .

{M(a,b):0<b<a<2b a®+b =1} ={1/a:1/V2 < a < 2/V5}

= [v5/2,v2).
Next, we suppose that a > 2b. Then we have
0< ————~a+2:b‘ 205 .

Since the function ¢ [|(a,b) + t(b, —a)|| is convex and increasing on [0, c0), we obtain

M((a, b)) = m((a,b), (b, —a))

H a+b ;)/Ea—( _a)

2,00

< [[(a, ) + (b, —a)|2,00
= [[(a+ 5,6 - a)|l2.00
=a+b<V2a+ )2 =2

by Proposition 3.5 and Lemma 4.7. Thus, we have

Mo = sup{M((a,b)) : 0 <b<a, a®> +b* =1} = V2.



48

Finally, by Proposition 3.5 and Lemma 4.8, we obtain

m((1,-1),(a,)) = [I(1,-1) + ( —a)(a, b)l2,00
l(a® + b2, —a% — b%) + (ab — a?,b* — ab)||2,00
l|(ab + b%, —a® — ab)||2,00
= (a +0)||(b, —a)ll2,00
=a(a+b) < V2.

This implies that M((1,-1)) < V2 = M,.
Thus, by Lemma 4.2, we have

DW (£5-£s) = 2max{ Mo, M((1,-1))} = 2Mp =2v2. O
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