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Logic characterized by Boolean algebras with conjugate
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1 Introduction

In [1], Jarvinen and Kortelainen considered properties of lower (upper) approximation operators in rough
set theory by use of the algebras with conjugate pair of maps. Let B be any Boolean algebra. A pair
(f,g) of maps f,g: B — B is called conjugate ([2]) if, for all z,y € B, the following condition is satisfied:

gAfly) =0 <= yAg(z)=0

Moreover if a pair (f, f) is conjugate, then f is called self-conjugate. If a Boolean algebra has a pair of
conjugate maps, then we say simply a Boolean algebra with conjugate.

By B we mean the class of all Boolean algebras with conjugate. In this short note we show that B
characterizes a ceratin kind of tense logic K, that is, for the class ® of all formulas of K},

For any Be Band amap {: ® -+ B, we have {(4) =1 = F} A

2 tense logic K}

We define a certain kind of tense logic named K;' here. The logic is obtained from the minimal tense
logic K; by removing the axioms (sym): A -+ GPA, A— HF A and (cl) : GA - GGA, HA - HHA.
Let &, be a countable set p,,p1,ps,--- of propositional variables and A,V,—,—,G, H are logical
symbols. A formula of K} is defined as follows:
(1) Every propositional variable is a formula;
(2) If A and B are formulas, then so are AAB,AV B,A— B,-A,GA,HA.

Let ® be the set of all formulas of K. We define symbols F and P respectively by
FA= —|G—'A, PA =-H-A.
A logical system K has the following axioms and rules of inference ([3]):
Axioms :
(1) A—= (B - A)
2 (A->B-2C)>((A—=B)=>(A=0))
(3) (~A—-B) > (B A)
(4) G(A—- B)—> (GA—-GB), HLA—» B) » (HA - HB)
Rule of Inference :

(MP) Deduce B from A and A — B;
(Nec) Deduce GA and HA from A.

We list typical axioms which chracterize some properties of conjugate:
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(ext) : GA— A/ HA— A
(sym): A— GPA, A— HFA
(c]): GA— GGA, HA— HHA

A well-known tense logic K is an axiomatic extension of K}, which has extra axioms (sym) and (cl),

that is,
K, = K} + (sym) + (cl)

A formula A is called provable when there is a finite sequence Aj, Az, -+, An(= A) (n > 1) of formulas
such that, for every i (1 < ¢ < n),

(1) A; is an axiom;

(2) A; is deduced from A;, Ax (5, k < i) by (MP);

(3) A; is done from A; (j < i) by (Nec).

We denote that A is provable by
Fxy A (or simply F A).

A relational structure (W, R) is called a Kripke frame, where W is a non-empty set and R is a binary
relation on it. A valuation v is a map from ®¢ to P(W), that is, v : &y — P(W). It is easy to show that
a valuation v can be extended uniquely to the set ® of all formulas:

(1) v(AAB) =v(4)Nv(B)

(2) v(AV B) =v(4A)Uv(B)

(3) v(A— B) =v(A)°Uu(B)

(4) v(-4) =v(4)°

(5) v(GA) ={z e W|Vy((z,y) € R=>y € v(4))}
(6) v(HA) ={zeW|Vy((y,z) € R =y € v(4))}

Thus we call the extended valuation above simply a valuation and denote it by the same symbol v.
Since, for all formulas A and B

I—K;A/\—'A%B/\—-B, Fxy AV-A— BV -B,

We define symbols L and T respectively by
L=AA-A, T=AV-A

Then for every formula A € ®, we have
I’“K: 1A, I—K: A->T.

A structure M = (W, R,v) is called a Kripke model, where (W, R) is a Kripke frame and v is a
valuation on it. Given a Kripke model M = (W, R, v), we can interpret the formulas on it as follows: For
x € W, a formula A is said to be true at z on the Kripke model M if

z € v(4),

and denoted by
M, A

If v(A) = W, that is, A is true at ever z € W on the Kripke model M, then A is called true on M and

denoted by
ME A

Moreover A is called valid if A is true on every Kripke model M and denoted by

= A

It is easy to show the next result ([3]):
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Theorem 1. (Completeness Theorem) For every formula A, we have
Fr; A <= A:valid
We can get the next result by use of filtration method ([3]):
Theorem 2. For every formula A, we have

Fx; A <= A:true for any finite Kripke model M.

3 Boolean algebra with conjugate pair

Let B = (B,A,V,',0,1) be a Boolean algebra. A pair (p,1) of maps p,% : B — B is called a conjugate
pair if | for all z,y € B,
zAp(y) =0 < yAY(z)=0.

We define some properties about a map ¢ : B — B as follows:
@ : extensive <= z < ¢(z) (Vz € B)

@ : symmetric <= z < p(y) implies y < p(z) (Vz,y € B)
p:closed <= y < p(z) implies p(y) < p(z) (Vz,y € B)

It is clear that the following holds for a conjugate pair (,%) ([1]):

@ : extensive <> 1 : extensive
¢ : symmetric <= ¢ : self — conjugate
@ :closed <= o :closed

We introduce two operators (2, 1? for the sake of simplicity
©°(z) = (p(z")', ¥°(z) = ¥(z))' (= € B).

A conjugate pair (i, %) can be represented by

plz) <y <= z<¢¥°(y) (z,y€B).
It is obvious from definition that
Proposition 1. For every z € B we have

¢ : extensive <= %(z) <=z

¢ : symmetric <= 2z < ¢%(p(z))

p:closed <= ¢%(z) < ¥(°(2))

Let B be a Boolean algebra with conjugate and £ : & — B be a map. Each formula of K is interpreted
on the algebra as follows:

(1) &(AAB)=¢(A) AE(B)

(2) §(AV B) =¢(A) VE(B)

(3) &(A - B)=(4(4))' v&(B)

(4) £(-4) = (€(4))

(5) £(GA) = (p((6(4)) = ¥°(§(4)
(6) E(HA) = (¥(£(4))) =4°(£(4)



Lemma 1. For every formula A, we have
Frr A = E(A)=1forall{:® - B

Proof. 1t is sufficient to verify that each axiom « of K} has a value £(a) = 1 and each rule of inference
is preserved, that is, for the case of (MP),

£(A) =¢(A— B) =1imply ¢(B) =1

and for the case of (Nec)
£(A) =1 implies £(GA) = £E(HA) = 1.

We omit their proof. . O

We can show the converse direction of the above. In order to do that we prepare some lemmas. At
first we define a relation = on the set @ of formulas of K} : For 4, B € ®,
A=B 4=>+-K;A——>Band |"K: B— A

As to the relation = we can prove that

Lemma 2. = is a congruence on ®, that is, it is an equivalence relation and satisfies the compatible
property : If A= B and C = D, then

ANC=BAD, AvVC=BVD,
A->D=B—-D,

-1A'="—|B,

GA=GB, HA=HB

Proof. We only prove that if A = B then GA = GB. It follows from assumption that H A — B. From
(Nec) we get

F G(A —= B).
On the other hand, since - G(A — B) — (GA — GB), we have from (MP)

+FGA - GB.
Similarly, by - B — A, we get

FGB — GA.
This means that

GA =GB.
O
Since = is the congruence, we can define operations on ®/ = : For A, B € ®, we define

[AJn(B] =[AAB],
[A]U(B]=[AV B,
[A]" = [-4],
o([4]) = [-G~4] = [FA],
¥([4]) = [~H-A] = [PA],
0=[Ll], 1=[T]

Lemma 3. (®/ =,MN,,*,0,1) is a Boolean algebra with (v,v) as a conjugate pair.
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Proof. We show that (p, ) is the conjugate pair. Let [A],[B] € ®/ =. We have to prove
[AINe([B]) =0 <= [B]Ny([4]) =0,

that is,
[ANFB]=0 <= [BAPA]=0.

Suppose that [AA FB] = 0. Since -+ AAFB — L, we have - FB — -A. From (Nec) we get
FHFB — H-A. Since - B -+ HFB, we also have - B - H-A. Thus we obtain

F ~(B A PA),

that is,
[BAPA]=0.

It is similar the converse. a
Lemma 4. For any formula A € &,

Fk; A <= [A]=1in &/ =
Proof.

I—K'A1=H-K,A—-)Tand }‘K‘T—)A
& [A]=[T]=1

From the above, we can prove the next theorem.
Theorem 3. Let A € &.

For any Boolean algebra B with conjugate and a map £ : & — B, we have £(A4) = 1
— t_K,‘ A

Proof. We have already proved if part. To show the only if part, we assume that Yk A. Since ®/ = is
the Boolean algebra with conjugate, if we take a map
£:9— /=, {(A) =[4],
then on ¢/ = we get
£(4)#1
by Vk; A. O
We can characterize some logics by Boolean algebras with conjugate.

Theorem 4. Logical systems K} + (ext), K} + (sym), K} + (cl) are characterized respectively by the
Boolean algebras with extensive, symmetric, closed conjugate, that is, for any formula A € &

(1) for any Boolean algebra B with eztensive conjugate and a map € : ® — B, we have
€(A)=1 <= Fgri(ear) A

(2) for any Boolean algebra B with symmetric conjugate and a map £ : & — B, we have
§(A) =1 <= |_K,‘—4-(.~33,:m) A

(8) for any Boolean algebra B with closed conjugate and a map £ : ® - B, we have £(A) =1
= Frre@ 4
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Proof. We only show that, in any Boolean algebra with typical property, £ (A) =1 for the correspondent
typical axioms A in respective cases. Suppose that £(A) = z € B.
(1) For an extensive conjugate (,1), we have to prove that £(GA — A) = 1. Since
§(GA - A) =1+ €(GA) < £(4)
= (p(@'))' <z
= ' < p(a')

and ¢ is extensive, we have £{(GA — A) = 1.
(2) Let (p,%) be a symmetric conjugate. Since ¢ = v by assumption, we have

§(A = GPA) =1 <= £(A) < £(GPA)
= 7 < PO (P(2))
=z <Y (P(z))
<= p(z) < Y(z)
= ¢(z) < p(z).

Thus, £(A - GPA) = 1.
(3) Suppose that (p,%) is a closed conjugate. It follows from the assumption that (z) <
0% (p?(z)) (z € B) and hence that

£(GA - GGA) = 1 <> £(GA) < E(GGA)
= ©%(z) < ¥?(¢%(x)).

This means that (A - GPA) = 1. O

4 Decidability

It is well-known that the minimal tense logic K; can be characterized by the class of finite Kripke models.
Similarly we can show that K} is characterized by the class B* of finite Boolean algebras with conjugate.

Suppose that l/kx; A. There is a finite Kripke model M* = (W, R,v) such that z ¢ v(A) for some
z € W, that is, v(A) # W. We construct a finite Boolean algebra B* with conjugate from the finite
Kripke model M* as follows:

B* =P(W)
,% : B — B are defined respectively by

¢(X) = {z € B|R(z) N X # 0}
Y(X) ={z € B|R™ (z) N X # 0},
where R(z), R™!(z) are defined by
R(z) ={y € B|(z,y) € R}, R™'(z) = {y € B|(y,2) € R}

We can prove the fundamental result.
Lemma 5. B* is a finite Boolean algebra with a conjugate pair @, : B* — B*.

Proof. Tt is sufficient to prove that ¢, : B* — B* are conjugate. That is, we have to prove that for
X, Y CW (ie,X,Y € B*),
XNpY)=0 < YnyX)=0.

Suppose that Y N9(X) # 0. Since y € ¢(X) for some y € Y, it follows from definition of (X)) that
' 3z € X s.t. (z,y) € R.
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We also have (z,y) € R and y € Y. This implies that
R(x)NY #0
and z € p(Y). The fact that z € X means
z € XNp(Y), that is, X Np(Y) # 0.

The converse can be proved similarly. Thus B* is the finite Boolean algebra with the conjugate pair
o, : B* = B*.

Moreover if we take £* : & — B* as
€' (4) = v(4),

then we have £*(A) # 1 from v(4) # W. This means that l/x; A implies £*(A) # 1 for some finite
Boolean algebra with conjugate and ¢* : B* — B*. It is obvious the converse statement. We thus obtain

the next result.
Theorem 5. The logic K; can be characterized by the finite Boolean algebras with conjugate.
We can show the following similarly.

Theorem 6. The logics K; + (ext), K} + (sym), K} + (cl) are characterized by the class of all finite
Boolean algebras with extensive, symmetric, closed conjugate pair, respectively.

Thus we can conclude that our logical systems K} (+(ext), +(sym), +(cl)) are decidable, that is, we
can determine whether a given formula is provable or not by finite steps.
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