Logic characterized by Boolean algebras with conjugate

東京電機大学 情報環境学部 近藤通朗 (Michiro Kondo) School of Information Environment Tokyo Denki University

1 Introduction

In [1], Jarvinen and Kortelainen considered properties of lower (upper) approximation operators in rough set theory by use of the algebras with conjugate pair of maps. Let B be any Boolean algebra. A pair (f,g) of maps $f,g:B\to B$ is called *conjugate* ([2]) if, for all $x,y\in B$, the following condition is satisfied:

$$x \wedge f(y) = 0 \iff y \wedge g(x) = 0$$

Moreover if a pair (f, f) is conjugate, then f is called *self-conjugate*. If a Boolean algebra has a pair of conjugate maps, then we say simply a Boolean algebra with conjugate.

By **B** we mean the class of all Boolean algebras with conjugate. In this short note we show that **B** characterizes a ceratin kind of *tense logic* K_t^* , that is, for the class Φ of all formulas of K_t^* ,

For any
$$B \in \mathbf{B}$$
 and a map $\xi : \Phi \to B$, we have $\xi(A) = 1 \iff \vdash_{K_*}^* A$

2 tense logic K_t^*

We define a certain kind of tense logic named K_t^* here. The logic is obtained from the minimal tense logic K_t by removing the axioms $(sym): A \to GPA, A \to HFA$ and $(cl): GA \to GGA, HA \to HHA$.

Let Φ_0 be a countable set p_0, p_1, p_2, \cdots of propositional variables and $\wedge, \vee, \rightarrow, \neg, G, H$ are logical symbols. A formula of K_t^* is defined as follows:

- (1) Every propositional variable is a formula;
- (2) If A and B are formulas, then so are $A \wedge B$, $A \vee B$, $A \rightarrow B$, $\neg A$, GA, HA.

Let Φ be the set of all formulas of K_t^* . We define symbols F and P respectively by

$$FA \equiv \neg G \neg A, \ PA \equiv \neg H \neg A.$$

A logical system K_t^* has the following axioms and rules of inference ([3]): Axioms :

- (1) $A \rightarrow (B \rightarrow A)$
- $(2) (A \to (B \to C)) \to ((A \to B) \to (A \to C))$
- $(3) (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$
- (4) $G(A \to B) \to (GA \to GB), H(A \to B) \to (HA \to HB)$

Rule of Inference:

- (MP) Deduce B from A and $A \rightarrow B$;
- (Nec) Deduce GA and HA from A.

We list typical axioms which chracterize some properties of conjugate:

(ext): $GA \rightarrow A, HA \rightarrow A$ (sym): $A \rightarrow GPA, A \rightarrow HFA$ (cl): $GA \rightarrow GGA, HA \rightarrow HHA$

A well-known tense logic K_t is an axiomatic extension of K_t^* , which has extra axioms (sym) and (cl), that is,

$$K_t = K_t^* + (sym) + (cl)$$

A formula A is called *provable* when there is a finite sequence $A_1, A_2, \dots, A_n (=A)$ $(n \ge 1)$ of formulas such that, for every i $(1 \le i \le n)$,

- (1) A_i is an axiom;
- (2) A_i is deduced from A_j , A_k (j, k < i) by (MP);
- (3) A_i is done from A_i (j < i) by (Nec).

We denote that A is provable by

$$\vdash_{K_*^*} A$$
 (or simply $\vdash A$).

A relational structure (W, R) is called a *Kripke frame*, where W is a non-empty set and R is a binary relation on it. A valuation v is a map from Φ_0 to $\mathcal{P}(W)$, that is, $v:\Phi_0\to\mathcal{P}(W)$. It is easy to show that a valuation v can be extended uniquely to the set Φ of all formulas:

- (1) $v(A \wedge B) = v(A) \cap v(B)$
- (2) $v(A \lor B) = v(A) \cup v(B)$
- (3) $v(A \rightarrow B) = v(A)^c \cup v(B)$
- (4) $v(\neg A) = v(A)^c$
- (5) $v(GA) = \{x \in W \mid \forall y((x,y) \in R \Longrightarrow y \in v(A))\}$
- (6) $v(HA) = \{x \in W \mid \forall y((y, x) \in R \Longrightarrow y \in v(A))\}$

Thus we call the extended valuation above simply a valuation and denote it by the same symbol v. Since, for all formulas A and B

$$\vdash_{K_*^*} A \land \neg A \to B \land \neg B, \vdash_{K_*^*} A \lor \neg A \to B \lor \neg B,$$

We define symbols \perp and \top respectively by

$$\bot \equiv A \land \neg A, \ \top \equiv A \lor \neg A.$$

Then for every formula $A \in \Phi$, we have

$$\vdash_{K_{\cdot}^*} \bot \to A, \vdash_{K_{\cdot}^*} A \to \top.$$

A structure $\mathcal{M}=(W,R,v)$ is called a Kripke model, where (W,R) is a Kripke frame and v is a valuation on it. Given a Kripke model $\mathcal{M}=(W,R,v)$, we can interpret the formulas on it as follows: For $x\in W$, a formula A is said to be true at x on the Kripke model \mathcal{M} if

$$x \in v(A)$$
,

and denoted by

$$\mathcal{M} \models_x A$$
.

If v(A) = W, that is, A is true at ever $x \in W$ on the Kripke model \mathcal{M} , then A is called *true* on \mathcal{M} and denoted by

$$\mathcal{M} \models A$$
.

Moreover A is called valid if A is true on every Kripke model \mathcal{M} and denoted by

$$\models A$$
.

It is easy to show the next result ([3]):

Theorem 1. (Completeness Theorem) For every formula A, we have

$$\vdash_{K_*^*} A \iff A : \text{valid}$$

We can get the next result by use of filtration method ([3]):

Theorem 2. For every formula A, we have

 $\vdash_{K_{\bullet}^{\bullet}} A \iff A : true \text{ for any finite Kripke model } \mathcal{M}.$

3 Boolean algebra with conjugate pair

Let $\mathcal{B}=(B,\wedge,\vee,',0,1)$ be a Boolean algebra. A pair (φ,ψ) of maps $\varphi,\psi:B\to B$ is called a conjugate pair if, for all $x,y\in B$,

$$x \wedge \varphi(y) = 0 \iff y \wedge \psi(x) = 0.$$

We define some properties about a map $\varphi: B \to B$ as follows:

$$\begin{array}{ll} \varphi: \text{extensive} & \Longleftrightarrow & x \leq \varphi(x) \quad (\forall x \in B) \\ \varphi: \text{symmetric} & \Longleftrightarrow & x \leq \varphi(y) \text{ implies } y \leq \varphi(x) \quad (\forall x, y \in B) \\ \varphi: \text{closed} & \Longleftrightarrow & y \leq \varphi(x) \text{ implies } \varphi(y) \leq \varphi(x) \quad (\forall x, y \in B) \end{array}$$

It is clear that the following holds for a conjugate pair (φ, ψ) ([1]):

$$\varphi$$
: extensive $\iff \psi$: extensive φ : symmetric $\iff \varphi$: self – conjugate φ : closed $\iff \psi$: closed

We introduce two operators $\varphi^{\partial}, \psi^{\partial}$ for the sake of simplicity

$$\varphi^{\partial}(x) = (\varphi(x'))', \ \psi^{\partial}(x) = (\psi(x'))' \ (x \in B).$$

A conjugate pair (φ, ψ) can be represented by

$$\varphi(x) \leq y \iff x \leq \psi^{\partial}(y) \ (x,y \in B).$$

It is obvious from definition that

Proposition 1. For every $x \in B$ we have

$$\varphi$$
: extensive $\iff \varphi^{\partial}(x) \le x$

$$\varphi : \text{symmetric} \iff x \le \varphi^{\partial}(\varphi(x))$$

$$\varphi : \text{closed} \iff \varphi^{\partial}(x) \le \varphi^{\partial}(\varphi^{\partial}(x))$$

Let **B** be a Boolean algebra with conjugate and $\xi: \Phi \to B$ be a map. Each formula of K_t^* is interpreted on the algebra as follows:

- (1) $\xi(A \wedge B) = \xi(A) \wedge \xi(B)$
- (2) $\xi(A \vee B) = \xi(A) \vee \xi(B)$
- $(3) \quad \xi(A \to B) = (\xi(A))' \lor \xi(B)$
- (4) $\xi(\neg A) = (\xi(A))'$
- (5) $\xi(GA) = (\varphi((\xi(A))'))' = \varphi^{\partial}(\xi(A))$
- (6) $\xi(HA) = (\psi(\xi(A)'))' = \psi^{\partial}(\xi(A))$

Lemma 1. For every formula A, we have

$$\vdash_{K_*^*} A \implies \xi(A) = 1 \text{ for all } \xi : \Phi \to B$$

Proof. It is sufficient to verify that each axiom α of K_t^* has a value $\xi(\alpha) = 1$ and each rule of inference is preserved, that is, for the case of (MP),

$$\xi(A) = \xi(A \to B) = 1 \text{ imply } \xi(B) = 1$$

and for the case of (Nec)

$$\xi(A) = 1$$
 implies $\xi(GA) = \xi(HA) = 1$.

We omit their proof.

We can show the converse direction of the above. In order to do that we prepare some lemmas. At first we define a relation \equiv on the set Φ of formulas of K_t^* : For $A, B \in \Phi$,

$$A \equiv B \iff \vdash_{K_{\bullet}^*} A \to B \text{ and } \vdash_{K_{\bullet}^*} B \to A$$

As to the relation \equiv we can prove that

Lemma 2. \equiv is a congruence on Φ , that is, it is an equivalence relation and satisfies the compatible property: If $A \equiv B$ and $C \equiv D$, then

$$A \wedge C \equiv B \wedge D, \ A \vee C \equiv B \vee D,$$

$$A \rightarrow D \equiv B \rightarrow D,$$

$$\neg A \equiv \neg B,$$

$$GA \equiv GB, \ HA \equiv HB$$

Proof. We only prove that if $A \equiv B$ then $GA \equiv GB$. It follows from assumption that $\vdash A \to B$. From (Nec) we get

$$\vdash G(A \rightarrow B).$$

On the other hand, since $\vdash G(A \to B) \to (GA \to GB)$, we have from (MP)

$$\vdash GA \rightarrow GB$$
.

Similarly, by $\vdash B \rightarrow A$, we get

$$\vdash GB \rightarrow GA$$
.

This means that

$$GA \equiv GB$$
.

Since \equiv is the congruence, we can define operations on Φ/\equiv : For $A,B\in\Phi$, we define

$$[A] \sqcap [B] = [A \land B],$$

$$[A] \sqcup [B] = [A \lor B],$$

$$[A]^* = [\neg A],$$

$$\varphi([A]) = [\neg G \neg A] = [FA],$$

$$\psi([A]) = [\neg H \neg A] = [PA],$$

$$\mathbf{0} = [\bot], \ \mathbf{1} = [\top].$$

Lemma 3. $(\Phi/\equiv, \sqcap, \sqcup, *, \mathbf{0}, \mathbf{1})$ is a Boolean algebra with (φ, ψ) as a conjugate pair.

Proof. We show that (φ, ψ) is the conjugate pair. Let $[A], [B] \in \Phi / \equiv$. We have to prove

$$[A] \cap \varphi([B]) = \mathbf{0} \iff [B] \cap \psi([A]) = \mathbf{0},$$

that is,

$$[A \wedge FB] = \mathbf{0} \iff [B \wedge PA] = \mathbf{0}.$$

Suppose that $[A \wedge FB] = \mathbf{0}$. Since $\vdash A \wedge FB \to \bot$, we have $\vdash FB \to \neg A$. From (Nec) we get $\vdash HFB \to H\neg A$. Since $\vdash B \to HFB$, we also have $\vdash B \to H\neg A$. Thus we obtain

$$\vdash \neg (B \land PA),$$

that is,

$$[B \wedge PA] = \mathbf{0}.$$

It is similar the converse.

Lemma 4. For any formula $A \in \Phi$,

$$\vdash_{K^*} A \iff [A] = 1 \text{ in } \Phi/\equiv$$

Proof.

$$\vdash_{K_t} A \iff \vdash_{K_t} A \to \top \text{ and } \vdash_{K_t} \top \to A$$

 $\iff [A] = [\top] = 1$

From the above, we can prove the next theorem.

Theorem 3. Let $A \in \Phi$.

For any Boolean algebra B with conjugate and a map $\xi: \Phi \to B$, we have $\xi(A) = 1$ $\iff \vdash_{K_t^*} A$

Proof. We have already proved if part. To show the only if part, we assume that $\not\vdash_{K_i^*} A$. Since Φ/\equiv is the Boolean algebra with conjugate, if we take a map

$$\xi: \Phi \to \Phi/\equiv, \ \xi(A)=[A],$$

then on Φ/\equiv we get

$$\xi(A) \neq \mathbf{1}$$

by $\not\vdash_{K_{\bullet}^{\bullet}} A$.

We can characterize some logics by Boolean algebras with conjugate.

Theorem 4. Logical systems $K_t^* + (ext)$, $K_t^* + (sym)$, $K_t^* + (cl)$ are characterized respectively by the Boolean algebras with extensive, symmetric, closed conjugate, that is, for any formula $A \in \Phi$

- (1) for any Boolean algebra B with extensive conjugate and a map $\xi:\Phi\to B$, we have $\xi(A)=1\iff \vdash_{K_t^*+(ext)}A$
- (2) for any Boolean algebra B with symmetric conjugate and a map $\xi:\Phi\to B$, we have $\xi(A)=1\iff \vdash_{K_t^*+(sym)}A$
- (3) for any Boolean algebra B with closed conjugate and a map $\xi: \Phi \to B$, we have $\xi(A) = 1$ $\iff \vdash_{K_t^* + (cl)} A$

Proof. We only show that, in any Boolean algebra with typical property, $\xi(A) = 1$ for the correspondent typical axioms A in respective cases. Suppose that $\xi(A) = x \in B$.

(1) For an extensive conjugate (φ, ψ) , we have to prove that $\xi(GA \to A) = 1$. Since

$$\xi(GA \to A) = 1 \Longleftrightarrow \xi(GA) \le \xi(A)$$
$$\iff (\varphi(x'))' \le x$$
$$\iff x' \le \varphi(x')$$

and φ is extensive, we have $\xi(GA \to A) = 1$.

(2) Let (φ, ψ) be a symmetric conjugate. Since $\varphi = \psi$ by assumption, we have

$$\xi(A \to GPA) = 1 \iff \xi(A) \le \xi(GPA)$$

$$\iff x \le \varphi^{\partial}(\psi(x))$$

$$\iff x \le \psi^{\partial}(\psi(x))$$

$$\iff \varphi(x) \le \psi(x)$$

$$\iff \varphi(x) < \varphi(x).$$

Thus, $\xi(A \to GPA) = 1$.

(3) Suppose that (φ, ψ) is a closed conjugate. It follows from the assumption that $\varphi^{\partial}(x) \leq \varphi^{\partial}(\varphi^{\partial}(x))$ $(x \in B)$ and hence that

$$\xi(GA \to GGA) = 1 \Longleftrightarrow \xi(GA) \le \xi(GGA)$$
$$\Longleftrightarrow \varphi^{\partial}(x) \le \varphi^{\partial}(\varphi^{\partial}(x)).$$

This means that $\xi(A \to GPA) = 1$.

4 Decidability

It is well-known that the minimal tense logic K_t can be characterized by the class of *finite* Kripke models. Similarly we can show that K_t^* is characterized by the class \mathbf{B}^* of *finite* Boolean algebras with conjugate.

Suppose that $otin K_{K_{\bullet}^*}$ A. There is a finite Kripke model $\mathcal{M}^* = (W, R, v)$ such that $x \notin v(A)$ for some $x \in W$, that is, $v(A) \neq W$. We construct a finite Boolean algebra B^* with conjugate from the finite Kripke model \mathcal{M}^* as follows:

$$B^* = \mathcal{P}(W)$$

 $\varphi, \psi : B \to B$ are defined respectively by

$$\varphi(X) = \{ x \in B \mid R(x) \cap X \neq \emptyset \}$$

$$\psi(X) = \{ x \in B \mid R^{-1}(x) \cap X \neq \emptyset \},$$

where R(x), $R^{-1}(x)$ are defined by

$$R(x) = \{ y \in B \mid (x, y) \in R \}, \ R^{-1}(x) = \{ y \in B \mid (y, x) \in R \}$$

We can prove the fundamental result.

Lemma 5. B^* is a finite Boolean algebra with a conjugate pair $\varphi, \psi: B^* \to B^*$.

Proof. It is sufficient to prove that $\varphi, \psi : B^* \to B^*$ are conjugate. That is, we have to prove that for $X, Y \subseteq W$ (i.e., $X, Y \in B^*$),

$$X \cap \varphi(Y) = \emptyset \iff Y \cap \psi(X) = \emptyset.$$

Suppose that $Y \cap \psi(X) \neq \emptyset$. Since $y \in \psi(X)$ for some $y \in Y$, it follows from definition of $\psi(X)$ that

$$\exists x \in X \ s.t. \ (x,y) \in R.$$

We also have $(x, y) \in R$ and $y \in Y$. This implies that

$$R(x) \cap Y \neq \emptyset$$

and $x \in \varphi(Y)$. The fact that $x \in X$ means

$$x \in X \cap \varphi(Y)$$
, that is, $X \cap \varphi(Y) \neq \emptyset$.

The converse can be proved similarly. Thus B^* is the finite Boolean algebra with the conjugate pair $\varphi, \psi: B^* \to B^*$.

Moreover if we take $\xi^*:\Phi\to B^*$ as

$$\xi^*(A) = v(A),$$

then we have $\xi^*(A) \neq 1$ from $v(A) \neq W$. This means that $\not\vdash_{K_t^*} A$ implies $\xi^*(A) \neq 1$ for some finite Boolean algebra with conjugate and $\xi^*: B^* \to B^*$. It is obvious the converse statement. We thus obtain the next result.

Theorem 5. The logic K_t^* can be characterized by the finite Boolean algebras with conjugate.

We can show the following similarly.

Theorem 6. The logics $K_t^* + (ext)$, $K_t^* + (sym)$, $K_t^* + (cl)$ are characterized by the class of all finite Boolean algebras with extensive, symmetric, closed conjugate pair, respectively.

Thus we can conclude that our logical systems $K_t^*(+(ext), +(sym), +(cl))$ are decidable, that is, we can determine whether a given formula is provable or not by finite steps.

References

- [1] J.Jarvinen and J.Kortelainen, A unifying study between modal-like operators, topologies, and fuzzy sets, TUCS Technical report, 642 (2004)
- [2] B.Jonsson and A.Tarski, Boolean algebras with operators. Part 1., American Journal of Mathematics, vol.73 (1951), 891-939
- [3] Goldblatt, R., Logics of time and computation, CSLI Lecture Notes No.7 (1987)
- [4] Lemmon, E.J., New foundation for Lewis modal systems, Journal of Symbolic Logic, vol.22 (1957), 176-186