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Abstract

We propose a crack propagation model on a spring-block system using an idea of
phase field model for the damage of springs. We consider a discrete model of elastic
body using a scalar or tensor-valued spring-block system, and study its properties in
detail. Our fracture model is constructed on the spring-block system. It is described
in a mathematically clear way and the unique existence and regularity of a solution
are proved.

1 Introduction

For crack propagation and fracture phenomena, a number of engineering-oriented simu-
lation algorithms, such as extended finite element method (X-FEM) [2], discrete element
method (DEM) [3, 7], particle discretization scheme (PDS-FEM) [4, 5] etc., are widely
used in engineering computing. On the other hand, from a viewpoint of mathematical
analysis, it is difficult to prove some mathematical properties of the engineering-oriented
models such as unique existence and energy estimates, since they are often not described
in sufficiently mathematical ways. In this research, we construct a mathematical frame-
work for a phase field model of material damage on a spring-block system. The obtained
model is described in a mathematically clear way and admits some mathematical analysis.

The outline of this paper is as follows. In Section 2, we construct scalar and tensor-
valued spring-block systems, which corresponds to anti-plane displacement and linear
elasticity problems, respectively. Their mathematical properties such as solvability of a
boundary value problem on the spring-block system are shown. In Section 3, we propose a
mathematical model of fracture dynamics or crack propagation on the spring-block system
by introducing a damage variable in Problem 3.3 and 3.4. We represent the fracture by
giving damage to the spring constant and cutting the spring according to the damage. In
Theorems 3.5, 3.6 and 3.7, we prove unique existence and regularity of a local solution
and existence of a global solution.

2  Spring-block system

2.1 Block division

Let n € N and let Q be a bounded domain in R® with a Lipschitz boundary I'. The outer
unit normal vector on T is denoted by v € R". We denote the inner product and the
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norm of L?(Q) as

(u, 0)o = /Q wz)(@)dz, |ulo = /@ a),

where u, v are real valued functions in L*(2).
We divide Q into N subblocks D = {D;}Y,. We suppose that each block D; is a
nonempty connected open set in R and the conditions:

N
§=UE, DiﬂDj=0 (Z?é])
i=1

If n > 2, we additionally suppose that D; has a Lipschitz boundary, and denote the outer
_ unit normal vector on 8D; by v* € R*. The n-dimensional volume of D; is denoted by
|D;|. In this paper, for simplicity, we call D = {D;}{\, a block division of } and assume

the above conditions.
We introduce the following notation for adjacent blocks in a block division D.

D;:=D,nD; (i, j=1,...,N, i#}j),
dij =H"'(Dy), (i, j=1...,N, i#}),
Ai={j; >0} (i=1,---,N), (2.1)
A:={(j); 1<i<j <N, d; >0}
Y= U D;j,
(i.j)EA

where H™! is the n — 1 dimensional Hausdorff measure. In particular, for (i,j) € A, the
blocks D; and D; are adjacent and d;; becomes

1 (n=1)
dij = { length of D;; (n=2)
areaof D;; (n=3).

We define function spaces of piecewise constant on D; and D;; as follows.

xi(x):={(1) ggg’\)D,) (t=1,...,N)

1 (z € Dy;)

xii(T) = 0 (z€ex\Dy) ((5,5) € A)

=1

V(D) = {v € L*(Q); v= Zv,x,, v; € R}

CeL®(Z) (=Y Gixun cueR}

(i.5)eA



In the following sections, we consider scalar or vector valued displacement field which
belongs to V(D), and virtual springs between adjacent blocks with a damage variable
z € W(D). ,

In most of boundary value problems of linear elasticity, we have to set a Dirichlet
boundary condition in a part of the boundary. Corresponding to the Dirichlet boundary
condition, we suppose that

J=(Jo, 1), UL ={L,....N}, Jonh=0, Jo#0, J #0,

and suppose that the balance of forces is considered at D, for i € Jy and the displacement
of D; for ¢ € J; is a priori given. The displacement space V(D) is a direct sum of the
following subspaces:

V(D) = {v eV(D); v= ZU"X"’ v; € R} (I=0,1).

ieJ)

2.2 Scalar spring constant model

For a block division D of €, a scalar valued spring-block system is constructed as follows.
We consider u = 3"V . u;x; € V(D) and call u; € R a displacement of the block D;.

In the case n = 1 or 2, our spring-block system has a physical interpretation as follows.
In the space R**! = R™ x R with a coordinate (z,y) € R* x R, in equilibrium, the n-
dimensional object 2 is located on the hyperplane of y = 0, namely on the line (n=1)or
on the plane (n = 2). Under some body and boundary forces, we assume that the divided
block D; moves only into y-direction of the displacement u; € R.

For a fixed i, the block D; is adjacent to D; if j € A;. We consider a virtual spring
between D; and D;, and suppose that it has a spring constant ki; > 0, and suppose that
the force acting on D; from D; is given as k;j(u; — u;) € R. This represents a sort of the
Hook’s law. From the action-reaction law, x;; should satisfy the condition:

kij=kK; 20 ((4,7) € A)

We define « := Z(i’j)e A kijXij € W(D). In this paper, under the above conditions, we call
(D, k) a scalar spring-block system, and call (D, , J) a scalar spring-block system with
Dirichlet boundary.

We consider the following problem.

Problem 2.1. Let (D, k,J) be a scalar spring-block system with Dirichlet boundary in
R™. For a given body force f =Y fix; € Vo(D) with F; := f;|D;| and a given displacement
9= 3_9ixi € Vi(D), find a displacement u = 3 u;x; € V(D) such that

Z KZ,‘j(Uj - Ui) + E = O (Z € J()),
JEA; . (2.2)
U = g; (Z € J1)

The first equation of (2.2) represents the balance of force acting on the block D;
(¢ € Jo), and the second one represents the essential boundary condition of u; for i € J;.
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We introduce the following symmetric bilinear form and seminorm:

(u,v), := Z kij(uj — wi)(v; —vi) (u, v € V(D)), (2.3)
(3.5)eA

vl := vV (v,v) (v EV(D)).

For Problem 2.1, we consider the following elastic energy of the springs with the outer
force and an affine space for the Dirichlet boundary condition:

E@) = shl2 - (/o) (e V(D)

V(D,g):={veV(D); v-geW(D)} (g€ Vi(D)).
Then we have the following discrete analogue of the formula of integration by parts.

Lemma 2.2 (summation by parts). For a scalar spring-block system (D, k), the equality:

N
(u,v)g = Zv,- Z Kij(u; — uJ))

i=1 €A

holds for all u,v € V(D).

Proof. From (2.3), we have

(Wv)e= Y Kii(us = u)(v; —w)

(i.5)eA
= Z Kij(uj - ’U.,')’Uj + Z /c,-j(ui - u,-)vi
(i,5)EA (3,5)€A
= > mlw—wvi+ > ky(us — us)v;
(Gi)eA (i.5)EA
N
= Z’Ui Z /c,-j(u,- - UJ)) .
i=1 jEA; '

O
Using the summation by parts, we can derive a weak form of Problem 2.1.

Proposition 2.3. Problem 2.1 is equivalent to the problem: Find u € V(D, g) such that

(u,w)e = (fiw)o (“w € Vo(D)). (2.4)
Proof. For arbitrary w € Vy(D), we have the equality:
(fyw)o = Fa. (2.5)
i€Jp

From Lemma 2.2, we have

(u, w)n = Z Z K.,'j(’uli - u_,)) wy, (26)

i€Jo \JEA;



for any u € V(D). If u € V(D, g) is a solution of Problem 2.1, the right hand sides of
(2.5) and (2.6) are equal and (2.4) follows. Conversely, if u € V(D, g) satisfies (2.4), the
left hand sides of (2.5) and (2.6) are equal and (2.2) follows, since w; € R is arbitrary for
i€ Jo. O

Concerning the solvability of Problem 2.1, we introduce some non-degenerate condi-
tions of the spring constant x. We define

in ,Utn .
veVo(D), lIvflo0 |[v]lo

Definition 2.4. Let (D, «, J) be a scalar spring-block system with Dirichlet boundary.

co = co(D, K, J) 1=

1. (D,k,J) is called positively connected if the following condition is satisfied:

veVy(D)and Y |v;—v| =0, iff v=0€ V(D). (2.7)
K4 >0
2. (D, k, J) is called regular if co(D, &, J) > 0.

The condition (2.7) means that all the blocks D; (; € Jy) is connected to a Dirichlet
boundary block D; (j € Ji) by a chain of springs of positive x;; > 0. We also remark
that, if (D, k, J) is regular, then the inequality

Ivllo < c5tjvls (v € Vo(D)) (2.8)
holds.

Proposition 2.5. For a scalar spring-block system with Dirichlet boundary (D, k, J), it
1s reqular if and only if it is positively connected.

Proof. We first remark that, since V4(D) is finite dimensional, it is not difficult to show
existence of ¥ € Vy(D) which satisfies ||7]jo = 1 and |9, = co.

We suppose that (D, &, J) is positively connected. If it is not regular, there exists
? € Vo(D) such that ||ollo = 1 and |5], = cp = 0. But this contradicts the assumption
that (D, «, J) is positively connected. Hence (D, k, J) is regular.

Next, we suppose that (D,«,J) is regular. If v € V4(D) satisfies the condition
> xi;>0 Vi — vil =0, then [v], = 0 holds and v = 0 € V(D) follows from the inequality

lvllo < cg'|vlx = 0. Hence (D, &, J) is positively connected. -0
Lemma 2.6. Ifu is a solution of Problem 2.1, then the following equality holds:
1
B@) - B@) = sl -uf}  (ve V(D,g))
Proof. For v € V(D, g), we set w := v — u € V(D). From Proposition 2.3, we obtain
1 1 1
B() ~ B(w) = gfol? ~ 21uf? — (v u)o = 5(v+ v — ), — (fw)e

1 1
= 5(1} +u, W) — (u, W), = %(v — U W), = -2—]1) —ul?.
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Theorem 2.7. Let (D, k, J) be a reqular scalar spring-block system with Dirichlet bound-
ary. Then there exists a unique solution u € V(D) to Problem 2.1. Moreover, the solution
u s a unique minimizer of E(v) in V(D, g):

u = arg min E(v), (2.9)
veV(D,g)

and it satisfies the following estimates for all v € V(D, g):

[1£llo
ulx < |Vl + , 2.10
fule < Jols + = (2.10)
2vlx , 11l |
< —_—. .
luflo < llvllo + o ta (2.11)

Proof. For u € V(D, g), we set 4 :=u — g € Vp(D). From Proposition 2.3, Problem 2.1 is
equivalent to

(@w)e =Uw) ("we V(D)) (2.12)

where [ is a linear functional on Vp(D) defined by I(w) := (f,w)o — (g, w)«. Since (D, «, J)
is regular, ¢y = ¢5(D, k, J) > 0 and the bilinear form (-, ), is coercive on V4(D), namely,

(w,w)e 2 cGllwll§  (w € Vo(D)).

From the Lax-Milgram theorem, there uniquely exists @& which satisfies (2.12). Hence, the
unique existence of the solution u of Problem 2.1 is obtained.

From Lemma 2.6, the solution u becomes a minimizer of the energy E among V' (D, g).
Conversely, if u € V(D, g) is a minimizer of E among V' (D, g), taking the first variation
of the energy, for arbitrary w € Vo(D), we obtain

0= 2B+ ew) =)= (ke

Hence, u is a solution of (2.4).
From Proposition 2.3, the solution u is decomposed as u = u! + u?, where

ul € Vo(D) st. (uh,v)e=(f,v)e (v € Vy(D)), (2.13)
v € V(D,g9) st. (Whv).=0 (veVy(D)). (2.14)

From (2.13), we have
'z = (£, 4o < Ifloflwtllo < gl fllofutl.
Hence, we obtain
|u'lx < 5[ flo- (2.15)

On the other hand, since u? is a unique minimizer of E(v) among v € V(D, g) with
f =0, we obtain

[u*|c < |v|lx forall veV(D,g). (2.16)



The inequality (2.10) follows from (2.15) and (2.16). The estimate (2.11) is also obtained
as follows:

llullo < lIollo + v = ullo < Jlvllo + 5 v — ul.
< ollo + cg " (fvl + [ule) < llvllo + c5 ™ (2fvlx + 51 £o)-

2.3 tensor-valued spring constant model

In a similar way to the scalar spring constant model, we construct a tensor-valued spring
constant model in this section.

For a block division D of © in R", We consider a vector valued displacement u =
S uixi € V(D)", where u; € R™ is a column vector and

N
V(D))" .= {v € L*(QR™); v = sz-x,-, v; € R”} .

i=1
For (i, j) € A, We consider a virtual spring between the adjacent blocks D; and D; with

tensor-valued spring constant K;; € REX", where RE,m denotes a space of real symmetric

matrices of size n. We suppose the condition:
Kij=K; >0  ((3,)) € A),

where K;; > O means that K;; is nonnegative definite. If K;; € ngfg is positive definite,
we denote it by K;; > O. We also define

= Y Kixi; € W(D)™.
(i.d)eA

Under the above conditions, we call (D, K) a tensor-valued spring-block system, and call
(D, K, J) a tensor-valued spring-block system with Dirichlet boundary.
We consider the following problem.

Problem 2.8. Let (D, K, J) be a tensor-valued spring-block system with Dirichlet bound-
ary in R". For a given body force f =3 fix; € Vo(D)™ with F; := |D;|f; € R" and a
given displacement g = 3 g;x; € Vi(D)", find a displacement u = 3 w;x; € V(D)™ such
that

ZK,J(UJ i)+ Fi=0 (zeJo)
e (2.17)

We introduce the following symmetric bilinear form and seminorm:

(o)== Y {Kij(u; —u)}- (v — ) (u, v € V(D)"),

(&5)en

vk ==/ (v,v)k (v € V(D)).
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For Problem 2.8, we consider the following elastic energy of the springs with the outer
force and an affine space for the Dirichlet boundary condition:

1
E(v) :=5llk - (f,v)0 (v e VD)),
VMD,g):={veV(D); v-ge WD)} (9€Wi(D)).
The summation by parts formula is valid even for the tensor-valued model.

Lemma 2.9 (summation by parts). For a tensor-valued spring-block system (D, K), the
equality:

N
(W)= vi-| Y Kilui— uj)>
i=1 jEA;

holds for all u,v € V(D)™

Proposition 2.10. Problem 2.8 is equivalent to the problem: Find u € V*(D,g) such
that

(w,w)x = (fiw)o (“weW(D)).

Concerning the solvability of Problem 2.8, we introduce some non-degenerate condi-
tions of the spring constant K. We define

|v]x
=¢(D,K,J) = inf > 0.
o 4 ) vGVb(’D)" lvllo#0 ||v]|o

Definition 2.11. Let (D, K, J) be a tensor-valued spring-block system with Dirichlet
boundary.

1. (D, K, J) is called positively connected if the following condition is satisfied:

v € Vp(D) and Z lv; — v =0, iffv=0¢€ V(D). (2.18)
K;;>0
2. (D, K,J) is called regular if co(D, K, J) > 0.

The condition (2.18) means that all the blocks D; (i € Jp) is connected to a Dirichlet
boundary block D; (j € Ji) by a chain of springs of positive definite K;; > O. We also
remark that, if (D, K, J) is regular, then the inequality

lollo < c3'lvlx (v € Vo(D)") (2.19)

holds.

178

Proposition 2.12. For a tensor-valued spring-block system with Dirichlet boundary (D, K, J),

it is reqular if it is positively connected.



Proof. We suppose that (D, K, J) is positively connected. If it is not regular, there exists
v € Vo(D)™ such that ||7]jo = 1 and |3]x = co = 0. But this contradicts the assumption
that (D, K, J) is positively connected. Hence (D, K, J) is regular. O

In contrast with the scalar spring-block system, a reg‘ular tensor-valued spring-block
system is not necessarily positively connected.

Lemma 2.13. If u is a solution of Problem 2.8, then the following equality holds:
‘ 1
Bv) - Ew =gl —uk (v €V(D,g).

Theorem 2.14. Let (D, K, J) be a regular tensor-valued spring-block system with Dirich-
let boundary. Then there exists a unique solution u € V(D)™ to Problem 2.8. Moreover,
the solution u is a unique minimizer of E(v) in V(D g):

u = arg min E(v), (2.20)
VeV (Dyg)

and it satisfies the following estimates for allv € V*(D, g):

W7l
Co

lulg < Jvlk +

2ulx | |Ifllo
< —_— —_
lullo < llvllo + % + 2

We omit proofs of Lemma 2.9, Proposition 2.10, Lemma 2.13 and Theorem 2.14, since.

they are shown in similar arguments to the scalar spring constant model.

3 Phase field model of fracture

3.1 Damage variable and phase field model

We construct a mathematical model of fracture on the scalar or tensor-valued spring
constant model by introducing a damage variable. We represent the fracture or crack
propagation by giving damage to the spring constant and cutting the spring according to
the given damage.

For (i,5) € A, the damage of the spring between the adjacent blocks D; and D; is
assumed to be represented by z;(t) € [0,1] at time t. We set z;; = 0 if a spring is
nondamaged, and set z;; = 1 if it is completely broken. We also allow that 2;; takes an
intermediate value in (0, 1) if the spring is slightly damaged. We define

At)= Y z(t)xi; € W(D),

(Ba)eA

and call 2(t) a damage variable or a phase field of damage. We define sets of damage
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variables:

Z:={¢= ) Gx; €W(D), ¢;€0,1] ¢,

(t.5)eA
Zy:= {CGZ; v € Vo(D) and E|vj——v,-|=0, ifvo=0eV(D),,

Gij#l
Z) = {C € Z; Cij € [Oa 1)}

If 2(t) € 2y, it means that each block D; of ¢ € J; is connected with a block D; of
Dirichlet boundary (j € J1) by some springs which are not completely bloken. We also
remark that 2, C Z,.

For a given scalar spring constant k = Z(,.,j)e A KijXij, the damaged spring constant

&(t) = 3 .j)en Rij(t)xij is defined by
Rij(t) == n(z;(t)sy;  ((67) € A),
where 7 is a given function which satisfies the conditions:
n € C°([0,00)) N C*([0,1)), n(0)=1, 7'(s) <0 (0<s<1), n(s)=0 (s=1)
_ In case of a tensor-valued spring-block system, we define the damaged spring constant
K (t) = > jjen Kij(t)xi; is defined by
Kij(t) = n(z;(0)Ki;  ((3,5) € A).
For the damaged spring-block systems, we have the following propositions.

Proposition 3.1. Let (D, k,J) be a scalar spring-block system with Dirichlet boundary.
For a damage variable z € Z, we define a damaged spring constant & = Z(me A KijXi; by
Rij = n(zi;)Kij
1. We suppose that (D, k, J) is regular. Then (D, &, J) is regular if z € 2.
2. We suppose that k;j > 0 for all (i,j) € A. Then (D,&,J) is regular if and only if
z € Zy.
Proof. For the first statement, we set

2" = max z;; < 1.
(G.9)eA

Then we have 7(z;;) > n(2*) > 0 for all (4, ) € A. For v € V4(D), since
w2 = Y nlzy)mi(v; — v)? 2 n(2") ok = n(z")co(D, &, J)?(lolf5,
(i,4)€A

(D, &, J) is regular. The second statement is also shown by virtue of Proposition 2.5, since
(D, &, J) is positively connected if and only if z € Z,. O
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Proposition 3.2. Let (D,K,J) be a tensor-valued spring-block system with Dirichlet
boundary. For a damage variable z € Z, we define a damaged spring constant K =

> jen Kisxis by Kij := () K.
1. We suppose (D, K, J) is regular. Then (D, K,J) is regular if z € Z,.
2. We suppose that K;; > 0 for all (i,5) € A. Then (’D, K, J) is reqular if z € Z,.

We can prove this proposition in the same manner of the proof of Proposition 3.1.
We define

o(s) = —%77/(5) (0<s<1) |
0 (s>1)

A typical choice of 7 and ¢ is
n(s) =((1-5)+)%  w(s)=(1-s), |

where (a); = max(0, a). This 7 belongs to C'([0, 00)) N W?%(0, 00). Another example is

1

1) =(1-s)s  gls)=1{ 2
- 0 (s>1)

(0<s<1)

We suppose that the crack propagation speed is slow and the quasi-stationary state for
the displacement field u(t) € V(D) is approximately valid during fracture progress. For
each time ¢, We consider the force balance equations with the modified spring constant.
For the damage variable z(t), we consider the following model:

dZij

a% = (p(zij)(Qij - 7’U)+ ((Z,]) € A)? (31)
where

Qi (t) = kij(u(t) —us(8))?, or Qu(t) == {Kij(us(t) — wi®))} - (u;(t) — wi(t)) (3.2)

represents the magnitude of the strain energy between D; and D; in case of the scalar or
tensor-valued case, respectively. The given constant 7Yi; > 0 corresponds to a strength of
the spring. The parameter a > 0 stands for a time constant of time relaxation effect. In
our model (3.1), the damage variable z;; tends to 1 if the strain energy ();; exceeds the
given threshold +;;, however z;; does not change if Qi < V45

In a usual elastic material, a crack once appeared in the material does not heal by
itself. We also suppose this non-repair condition of the crack in our model. By virtue of
the form a%i = (-)4, the damage variable is non-decreasing in ¢, which represents the
non-repair condition.

We consider the following conditions for the body force, the boundary displacement
and the initial damage. For [ € {0, 1,2}, we suppose

f=) fxi € C[0,00),Vo(D), g=3 gxi€C(0,00),a(D)), '€ Z, (3.3)

where, in the case of tensor-valued spring-block system, we suppose fi(t) € Vo(D)" and
9i(t) € Vi(D)™. Hence, we consider the following problems.
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Problem 3.3. Let (D, n J) be a scalar spring-block system with Dirichlet boundary in
R". For given f, g and 2° with the condition (3.3), find a displacement u(t) = Y ui(t)x: €
V(D) for a.e. t € [0,T) and a damage variable z € C°([0,T), Z) with % € L(0, T; W (D))
for some T € (0, 00| such that

(3 Ry()(us(t) —wi()) + F() =0 (i€ &, t€[0,T)),
JEA:

4 uzfltz) .‘_‘ gl(t) ' ('l € ']1) te [0) T))a (34)
o d;J (t) = (25 () (Qui () = 15),  ((5,9) € A, ae. t€[0,T)),

\ ZlJ(O) - z?; ((1‘1]) € A)a

where E(t) = |Dz|fz(t) fo'ri =1, ’N.

Problem 3.4. Let (D, K, J) be a tensor-valued spring-block system with Dirichlet bound-
ary in R". For given f, g and 2° with the condition (3.3), find a displacement u(t) =
Y ui(t)x; € V(D)* for a.e. t € [0,T) and a damage variable z € C°([0,T), Z) with
% ¢ L0, T; W(D)) for some T € (0,00] such that

(3 Ky(0)(u(t) - w(®) + B@®) =0 (€, t€[0,T)),
JEA
ﬁ ’U,.,'(t) = gt(t) (Z € Jl) te [O)T))v
0 <t) ol ®)(@ut) = 15),  (d) €A, ae. te[0,T)),
\ ZU(O) ((%.7) € A),

where Fy(t) := |D;|fi(t) fori=1,--- ,N.

A numerical example of a simulation of Problem 3.4 is shown in Figure 3, where we
give a crack opening load to an initially cracked plate. If z;;(t) > 1 — ¢ for small € > 0,
the spring between the blocks D; and D; is almost broken and we consider D” =D;ND;
is a part of the crack and bold it in the figures. A close view of a crack tip is shown in
Figure 2. In Figure 3, we can observe that a straight crack propagates in time.

Figure 1: An adjacent blocks D; and D;; Figure 2: Close view of a crack tip



'Figure 3: Example of crack propagation on a tensor-valued spring constant model: Initial
configuration (left), Final configuration (right).

3.2 Solvability and regularity

Since the initial value problem (3.4) may have a singularity, we consider W'-solution in

Problem 3.3 instead of the standard C*-solution. Actually, (3.4) is considered as a system -

of ODEs of {2;(t)}j)es, and a singularity may exist at z;; = 1 or if the coefficient
matrix of the linear system of the displacement field {u;}icy, is singular. We state our
mathematical results in the following three theorems in case of the scalar spring-block
system. We, however, remark that these theorems are valid even for Problem 3.4.

Theorem 3.5. We suppose the condition (3.3) with I = 0. If (D, %(0), J) is regular, then
there exist Ty € (0,00) and a solution (u(t), 2(t)) for 0 <t < Ty to Problem 3.3, and the
solution is unique in the time interval [0, To]. It also satisfies that u € C°([0, Tp], V(D))
and z € C'([0,Ty), Z), and that (D,&(t),J) is regular for t € [0,Ty]. Furthermore, if
l =1, then u € CY[0,Tp],V(D)) and z € W2>(0,Tp; Z) hold. Ifl = 2, then u €
W2°(0,To; V(D)) holds.

Proof. Since (D, &(0), J) is regular, from Theorem 2.7, u(0) is uniquely determined from
the linear system of the first two equations of (3.4). From the Cramer’s formula, u(0) is
represented in the form:

Uk (0) =

Po(%(0))

where pg is the determinant given as a polynomial of %;;(0) and py is also a polynomial
of £;;(0), fi(0) and g;(0).
We define

A* = {(i,j)‘e A; 0< 2 <1},
Zr={(€Z; =1 ((i,5) € A\A")}.

It is sufficient to consider z(t) € Z* since z;;(t) is non-decreasing.

pk(g(o): f(O), g(O)) (k =1,... ,N), (35) |
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For ¢ € Z* and t > 0, we define
R(¢) =) n(Gs)riixs; € W(D),
(i.j)eA ,
_ i pk(k(C)’ f(t)1 g(t)) i —
-uk(Qt) = po(f_ﬁ(g)) (k L,...,N),
Qii(¢,t) = kii(@;(¢, 1) — w((,1)* ((5,5) € A),

and we consider the following system of ODEs of z;;(t) for (3,7) € A*.

ad;tij (t) = p(z () (Qii(2(1),1) — ¥5),  ((5,5) € A*, £20),
%(0) = 25 ((i,9) € A%, (36)
%(t) =1 ((,5) € A\AY).

" From the standard theory of ODE, since our system (3.6) satisfies the Lipschitz condition,
it follows that there exists a unique local solution z € C([0, Tp), £*), with some T > 0.
Without loss of generality, we can assume that 2;;(t) € [0,1) for all (¢,5) € A*.and
t € [0, Ty). Weset u(t) := u(z(t),t). Then (u(t), 2(t)) is becomes a solution of Problem 3.3.
It is clear that this is a unique solution of Problem 3.3 in the time interval [0, Tg)].

Moreover, since po(k(t)) = po(R(2(t))) # 0, it follows that (D,&(t),J) is regular
for t € [0,Ty). Under the above conditions, it also follows that &; € C'([0,Ty]) and
@ o z; € C*([0,Tp)). In particular, from (3.5), u € C°([0, To], V(D)) follows.

If (3.3) holds for I = 1, from (3.5), we obtain that u € C'([0,To], V(D)) and that
55 ¢ Wieo(0,Ty; W(D)). We also have z € W2>(0,To; W(D)) and &;; € W>*(0,Ty).

If (3.3) holds for | = 2, u € W2%°(0, Ty; V(D)) holds from (3.5). O

By replacing k;; = 1 and z% = 1 in case of k;; = 0, we can assume that all spring
constant «;; is positive without loss of generality. For a damage variable 2(t) (0 < t <
T < ), we define

J(i,t) == {ke {1,--- ,N}; v =0, if v € V(D) and Z lv; — vl =0},

z5(t)<1

fori =1,---,N, where k € J(i,t) means that the block D is connected by a chain of
positive spring constants with the block D;. We call J(i,t) an index set of connected
blocks to D;.

Let I(t) be the number of completely broken springs, namely,

I(t) .= #{(,7) € A; z;(t) =1}
There exists 0 =ty < t; < -+ <ty = T such that
I(to) < I(t) <--- < I(tg-1), I®t)=1(tm-1) (tE€ [tm-1,tm), m=1,---,q).
Then we also have

J6,8) = JGytmey) (=1, N, t € tmot,tm), m=1,--+ ,q). (3.7)
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For fixed m = 1,- .- , ¢, in each time interval [tm—1,tm), D is divided into subblock system
D1,... ,DP(# (), where DF depends on m and

p
D=|JD* i :=min{j; D; € D*}, D*={Dilicspin_r-
k=1 '

Theorem 3.6. Under the condition (3.3) with | = 0, we suppose that there ezists a
solution (u(t), 2(t)) (0 <t < T < oo) of Problem 3.8, and define 0 =ty < t, < --- < ty =
T with the condition (3.7). Then the solution satisfies the following properties.

1. The damage variable z(t) is unique in the interval [0, T), and z € C( [tm—1,tm), W(D))
form=1,---q.

2. There exists 4(t) with i € C[tm-1,tm), V(D)) form =1,--- , q such that (a(t), z(t))
s a solution of Problem 3.3.

3. Suppose that z;(t) € [0,1) for 0 < t < t,,. Then the quantity Qi;(t) fort € [0,t,)
is uniquely determined and Q;; € C°([0,t,,)).

Proof. For fixed m = 1,--- ¢, in each interval [t,, — 1,,,), we consider reduced problems
in each connected spring block system D* (k = 1,- - -, p). We define J* := J(iy, tm—1)NJ1,
and set
_ JE i gk £
JE— (Jk gk k. b k k. 1 )1

(JO’JJ)a JO J(?’k, m 1)\J1v Jl {Zk} if J{“ =(Z)
Then (D*, &(t), J*) becomes regular spring-block system with Dirichlet boundary for ¢ €
[tm—1,tm). Then we can solve (3.4) in each D* with the initial condition 2(tm—1) for z and
Dirichlet boundary condition:

ke _ [ git) ifTE#£D gk
i ={ 90 LD e

We define

o () if JE#£0 5
uz(t) = { u,(t) _ uik(t) if j{" —p (Dz eD" te [tm_l,tm)).
Then it is easy to show that (@(t),2(t)) is a solution of each regular sub-spring-block
system. From Theorem 3.5, the solution is unique and it satisfies & € C%([tm_1, tm), V(D))
and z € CY([tm-1,tm), W(D)).
, We also remark that z(t) is globally unique, since z(t,,) = limy_,., g 2(t) always exists
due to the monotonicity of z;;(t) and we can extend z(t) uniquely in the next interval
[tma tm+1) .

If (u(t), 2(¢)) and (4(t), 2(t)) are both solutions of Problem 3.3, from the uniqueness
of 2(t), we have Z(t) = 2(t). Then, for fixed ¢, u(t) — U(t) becomes a solution of force
balance equations with f = 0 and g = 0. Hence, we have ui(t) — 4;(t) = u;(t) — a(t) if
J € A(4,t). It holds that u;(t) — us(t) = @;(t) — @;(t) if 2;(¢) € [0,1), and the third claim
follows. a
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Theorem 3.7. We suppose that f = 0, g € C°([0,00),V1(D)) and 2° € Z. Then there
exists a global solution (u(t), z(t)) to Problem 8.8 in 0 <t < oo.

Proof. We suppose that «;; > 0 for all (¢, 5) € A without loss of generality. Similarly to
the proof of Theorem 3.6, we can construct a solution (u(t), z(t)) and 0 =tp < t; < -+ <
ty = oo by solving each reduced problem in D* with the initial condition at ¢ = tp,_;.
We remark that, even if J¥ = @, u;(t) = 0 for D; € D* satisfies (3.4) since f = 0, and
Zij(t) = zij(tm—l) for ¢ Z tm_1 if J(i,tm_l) N J(], t) N Jl = 0 ]

4 Conclusion

In this paper, we proposed a mathematical model of fracture of an elastic material. The
deformation of the elastic body is approximated by a spring-block system and the crack is
represented by a damage variable defined on each springs. We remark that this research
is based on the idea of [6], and that a dynamic problem in similar setting is studied in {1].

Due to the page limitation, we could not describe some further results such as an
energy decay property, a uniform estimate of the energy, an estimate of crack length and
more numerical examples. We also could not discuss about the consistency of the scalar
or tensor-valued spring constant model with the linear elasticity problem. They will be
discussed in our forthcoming papers.
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