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1 Introduction
Neurons communicate with each other by “fir-

ing” (i.e., emitting an electrical signal) for informa-
tion processing, and a circuit consisting of neurons
is often modelled by a combinatorial logic circuit,
called a threshold circuit. Motivated by a biological
fact that a neuron consumes substantially more en-
ergy to fire than not to fire [1], Uchizawa, Douglas
and Maass proposed a complexity measure, called
energy complexity, and initiate a study of threshold
circuits with small energy complexity [2].

In this paper, we consider a Boolean function,
called $P_{LR}^{n}$ , which Legenstrin and Maass introduced
to model a simple task for a pattern recognition on
1-dimensional array [3]. We investigate a relation-
ship between the energy and size of a threshold
circuit computing $P_{LR}^{n}.$

2 Preliminaries
A threshold circuit $C$ is a combinatorial circuit

of threshold gates. $A$ threshold circuit $C$ is ex-
pressed by a directed acyclic graph; let $n$ be the
number of input variables to $C$ , then each node of
in-degree $0$ in $C$ corresponds to one of the $n$ in-
put variables $x_{1},$ $x_{2},$ $\cdots$ , $x_{n}$ , and the other nodes
correspond to threshold gates. We define size $s$

of a threshold circuit $C$ as the number of thresh-
old gates in $C$ . Let $g_{1},$ $g_{2},$ $\ldots$ , $g_{s}$ be the gates in
$C$ . One may assume without loss of generality
that $g_{1},$ $g_{2},$ $\ldots$ , $g_{s}$ are topologically ordered with
respects to the underlying graph of $C$ . Let $i$ be
an integer such that $1\leq i\leq s$ . For each gate
$g_{i}$ , we denote by $w_{i,1},$ $w_{i,2},$ $\ldots$ , $w_{i,l}$ . the weights
and by $t_{i}$ the threshold of the gate $g_{i}$ , respec-
tively, where the weights and the threshold are real
numbers and $l_{i}$ is the fan-in of the gate $g_{i}$ . Let
$z_{i}(x)=(z_{i,1}(x), z_{i,2}(x), \cdots, z_{i},\iota_{:}(x))\in\{0,1\}^{\iota_{:}}$ be
an input to $g_{i}$ for a circuit input $x$ . The output
$g_{i}(z_{i}(x))$ of $g_{i}$ is defined as follows: $g_{i}(z_{i}(x))=1$ if
$\sum_{j=1}^{l_{l}}w_{i,j}z_{i,j}(x)\geq t_{i}$ ; and $g_{i}(z_{i}(x))=0$ otherwise.
For every input $x\in\{0,1\}^{n}$ , the output $C(x)$ of $C$

is denoted by $g_{s}(z_{s}(x))$ . Let $f$ : $\{0,1\}^{n}arrow\{0,1\}$ be
a Boolean function of $n$ inputs. $A$ threshold circuit
$C$ computes a Boolean function $f$ if $C(x)=f(x)$
for every input $x\in\{0,1\}^{n}$ . The energy $e$ of a
threshold circuit $C$ is defined as the maximum num-
ber of gates outputting “1” in $C$ , where the maxi-
mum is taken over all inputs to $C.$

For any positive integer $n$ , we define $P_{LR}^{n}$ as
follows: For $x=$ $(x_{1}, x_{2}, \ldots , x_{n})\in\{0,1\}^{n}$ and
$y=(y_{1}, y_{2}, \ldots, y_{n})\in\{0,1\}^{n},$ $P_{LR}^{n}(x, y)=1$ if
there exists a pair of indices $i$ and $j$ such that
$1\leq i<j\leq n,$ $x_{i}=y_{j}=1$ ; and $P_{LR}^{n}(x, y)=0$

otherwise.
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3 Our result
We give a construction of energy-efficient thresh-

old circuits computing $P_{LR}^{n}$ . The following theorem
gives an upper bound on the size of threshold cir-
cuits computing $P_{LR}^{n}$ with energy $e$ for any $e\geq 3.$

Theorem 1 Let $n$ be a positive integer. Then,

there is a threshold circuit $C$ computing $P_{LR}^{n}$

such that $C$ has energy $e$ $\geq$ $3$ and size $s=$

$O(e\cdot n^{2/(e-1)})$ .

Thus, one can construct an energy-efficient circuit
computing $P_{LR}^{n}$ if it is allowable to use large size.

We also consider the extreme case where a
threshoId circuit has energy $e=1$ . We prove by

construction that a linear number of gates is suffi-
cient.

Theorem 2 Let $n$ be a positive integer. Then,
there is a threshold circuit $C$ computing $P_{LR}^{n}$ such
that $C$ has energy $e=1$ and size $s=\lceil n/2\rceil.$

The following theorem implies that the size of $C$

given in Theorem 2 is optimal.

Theorem 3 Let $n$ be a positive integer. Let $C$ be
any threshold circuit computing $P_{LR}^{n}$ with energy
$e=1$ . Then, the size of $C$ is at least $\lceil n/2\rceil.$
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