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ABSTRACT. In this paper we study the set of points, in the plane, defined
by $\mathcal{E}^{A}:=\{(x, y)=(\lambda_{1}(\Omega), \lambda_{2}(\Omega)), |\Omega|=1\}$ on the one hande and $\mathcal{E}^{P};=$

$\{(x, y)=(\lambda_{1}(\Omega), \lambda_{2}(\Omega)), P(\Omega)=2\sqrt{\pi}\}$ , on the other hand where $(\lambda_{1}(\Omega), \lambda_{2}(\Omega))$

are the two first eigenvalues of the Dirichlet-Laplacian. We give some qualita-
tive properties of these sets and show some pictures obtained through numer-
ical computations.

1. INTRODUCTION

Let $\Omega\subset \mathbb{R}^{2}$ be a bounded open set, $|\Omega|$ its area and $P(\Omega)$ its perimeter. Let us
consider the Dirichlet eigenvalue problem,

(1) $\{\begin{array}{ll}-\Delta u=\lambda u in \Omega u=0 on \partial\Omega,\end{array}$

defined on the Sobolev space $H_{0}^{1}(\Omega)$ . We will denote the eigenvalues by $0<\lambda_{1}(\Omega)\leq$

$\lambda_{2}(\Omega)\leq\ldots$ (counted with their multiplicities) and the corresponding orthonormal
real eigenfunctions by $u_{i},$ $i=1,2,$ $\ldots.$

A natural question in spectral geometry is the following:
let $0<a\leq b$ be two given real numbers, does there exist a domain $\Omega$ of area 1 which
has $a$ and $b$ as their two first eigenvalues? In acoustic, the question corresponds to:
is there exist a drum of given area (say 1) whose two first fundamental frequencies
are $a$ and $b?$ . In [WK] and [BBF], it was studied the region

$\mathcal{E}^{A}=\{(x, y)\in \mathbb{R}^{2}:(x, y)=(\lambda_{1}(\Omega), \lambda_{2}(\Omega)), \Omega\subset \mathbb{R}^{2}, |\Omega|=1\},$

which is the range of the first two Dirichlet eigenvalues of planar sets with unit area.
We also refer to [LY] for a similar study for the three first eigenvalues. Obviously,
the complete knowledge of the set $\mathcal{E}^{A}$ allows to answer the previous questions. The
same question can be raised by replacing the area by the perimeter. It leads to
study the set

$\mathcal{E}^{P}=\{(x, y)\in \mathbb{R}^{2}:(x, y)=(\lambda_{1}(\Omega), \lambda_{2}(\Omega)), \Omega\subset \mathbb{R}^{2}, P(\Omega)=2\sqrt{\pi}\},$
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These two questions will be discussed in this paper.
The plan of this paper is the following. In the next section we study the set

$\mathcal{E}^{A}$ and we mainly recall results already contained in [WK], [BBF] and [BNP] with
some proofs. Then in section 3, we study the set $\mathcal{E}^{P}$ and give some of its properties,

2. THE RANGE OF $\{\lambda_{1},$ $\lambda_{2}\}$ WITH AN AREA CONSTRAINT

We recall that we want to study the set
$\mathcal{E}^{A}=\{(x, y)\in \mathbb{R}^{2}:(x, y)=(\lambda_{1}(\Omega), \lambda_{2}(\Omega)), \Omega\subset \mathbb{R}^{2}, |\Omega|=1\},$

Let us begin with some elementary facts. Obviously $\mathcal{E}^{A}$ lies in the first quadrant
and within the sector $0<x\leq y$ , because we defined the eigenvalues to be ordered.
The behavior of eigenvalues with respect to homothety $(\lambda_{k}(t\Omega)=\lambda_{k}(\Omega)/t^{2})$ has
two consequences. First we can also write
(2) $\mathcal{E}^{A}=\{(x, y)\in \mathbb{R}^{2}:(x, y)=(\lambda_{1}(\Omega), \lambda_{2}(\Omega)), \Omega\subset \mathbb{R}^{2}, |\Omega|\leq 1\}$

(3) $\{(x, y)\in \mathbb{R}^{2}:(x, y)=(|\Omega|\lambda_{1}(\Omega), |\Omega|\lambda_{2}(\Omega)), \Omega\subset \mathbb{R}^{2}\}.$

Moreover the region $\mathcal{E}^{A}$ is conical with respect to the origin in the sense,
$(x, y)\in \mathcal{E}^{A}\Rightarrow(\alpha x, \alpha y)\in \mathcal{E}^{A}, \forall\alpha\geq 1.$

Indeed, we can consider a homothety of ratio $1/\sqrt{\alpha}$ of the original domain and
complete with a collection of small balls to reach volume 1 without changing the
two first eigenvalues. This proves also the first equality in (2).

Now, we can get more precise information about $\mathcal{E}^{A}$ thanks to some important
results on the low eigenvalues of the Laplacian. This region can be reduced using
the famous Faber-Krahn inequality proved in [Fl] and [K], $(see [H,$ Theorem $3.2.1])$
which states that the ball minimizes $\lambda_{1}$ among all planar domains with the same
area. We can write this result as

$|\Omega|\lambda_{1}(\Omega)\geq\lambda_{1}(\mathcal{B})=\pi j_{0,1}^{2}\approx 18.16842,$

where $j_{n,k}$ denotes the k-th positive zero of the Bessel function $J_{n}$ and $\mathcal{B}$ denotes
the ball of unit area. Equality holds if and only if $\Omega$ is a ball (up to.a set of zero
capacity). For the second eigenvalue, we know that the minimum is attained by
two balls of equal area. This result is due to Krahn and has been rediscovered by
Szeg\"o, and some other authors, see [$H$ , Theorem 4.1.1] for more details. It can be
written as

$|\Omega|\lambda_{2}(\Omega)\geq 2\lambda_{1}(\mathcal{B})=2\pi j_{0,1}^{2}\approx 36.33684.$

The quotient $\lambda_{2}/\lambda_{1}$ is maximized at the ball $(cf. [AB1] or [H,$ Theorem $6.2.1])$ or
equivalently,

$\frac{\lambda_{2}(\Omega)}{\lambda_{1}(\Omega)}\leq\frac{\lambda_{2}(\mathcal{B})}{\lambda_{1}(\mathcal{B})}=\frac{j_{1,1}^{2}}{j_{0,1}^{2}};=\gamma\approx 2.539.$

Now we recall two convexity results due to D. Bucur, G. Buttazzo and I. Figueiredo
in [BBF].

Theorem 2.1 (Bucur-Buttazzo-Figueiredo). (i): The set $\mathcal{E}^{A}$ is convex in the
$x$ -direction, namely:

$\forall(x, y)\in \mathcal{E}^{A}, \forall t\in[0,1], ((1-t)x+ty, y)\in \mathcal{E}^{A}$

(ii): The set $\mathcal{E}^{A}$ is convex in the $y$ -direction, namely:
$\forall(x, y)\in \mathcal{E}^{A}, \forall t\in[O, 1], (x, (1-t)y+t\gamma x)\in \mathcal{E}^{A}$
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RANGE OF DIRICHLET EIGENVALUES

Proof. We just give here the main ideas of the proof, for the details we refer to
[BBF] and [BB]. Let $(x, y)=(\lambda_{1}(\Omega), \lambda_{2}(\Omega))$ . For the horizontal convexity, one can
construct a decreasing continuous sequence (or homotopy) $\Omega_{1}\subset\Omega_{t}\subset\Omega,$ $t\in[0,1]$

such that
$\bullet\Omega_{0}=\Omega$

$\bullet\lambda_{2}(\Omega_{t})=\lambda_{2}(\Omega)$

$\bullet\lambda_{1}(\Omega_{1})=\lambda_{2}(\Omega_{1})$ .
Roughly speaking, $\Omega_{t}$ is obtained from $\Omega$ by removing an increasing portion of the
nodal line of $u_{2}$ and $\Omega_{1}=\{x\in\Omega, u_{2}(x)\neq 0\}$ is the open set $\Omega$ without the whole
nodal line for which we already know that $\lambda_{1}(\Omega_{1})=\lambda_{2}(\Omega_{1})=\lambda_{2}(\Omega)$

The vertical convexity relies on properties of Steiner symmetrization and con-
tinuous Steiner symmetrization. We consider a point $(x, y)=(\lambda_{1}(\Omega), \lambda_{2}(\Omega))$ in
$\mathcal{E}^{A}$ . We denote by $\mathcal{B}$ the ball of area 1. We want to prove that the segment
$(x, (1-s)y+s\gamma x),$ $s\in[O, 1]$ is included in $\mathcal{E}^{A}$ . If $y\geq\lambda_{2}(B)$ the result is obvious us-
ing horizontal convexity, so we can assume $y<\lambda_{2}(\mathcal{B})$ . Let us fix $\alpha\in(\lambda_{2}(\Omega), \lambda_{2}(\mathcal{B}))$ .
We can constmct a sequence of Steiner symmetrizations of $\Omega$ , say $\Omega_{n},$ $n\in \mathbb{N}$ such
that $\Omega_{n}$ converges to $\mathcal{B}$ . Moreover, we assume that we go from $\Omega_{n}$ to $\Omega_{n+1}$ thanks
to a continuous Steiner symmetrization. We denote by $\Omega_{t},$ $t\in \mathbb{R}+$ this family of
sets. According to classical properties of the continuous Steiner symmetrization,
see [BR], $\lambda_{1}(\Omega_{t})$ decreases with $t$ . Now, the sequence $\lambda_{2}(\Omega_{t})$ has possibly discon-
tinuities, but converges to $\lambda_{2}(\mathcal{B})$ , therefore there exists $n_{0}$ such that $\lambda_{2}(\Omega_{n_{0}})\geq\alpha.$

We introduce
$t^{*}= \sup\{t\in[0, n_{0}]:\lambda_{2}(\Omega_{t})\leq\alpha\}.$

By lower semi-continuity on the left and upper semi-continuity on the right of the
eigenvalues with respect to continuous Steiner symmetrization, see [BH], we have
$\lambda_{2}(\Omega_{t*})=\alpha$ . We conclude by using one more time the horizontal convexity between
the points $(\lambda_{1}(\Omega_{t^{*}}), \alpha)$ and $(\alpha, \alpha)$ (which belong to $\mathcal{E}^{V}$ ), the point $(\lambda_{1}(\Omega), \alpha)$ is on
this segment, so belongs to $\mathcal{E}^{A}.$ $\square$

As a consequence, they also proved:

Theorem 2.2 (Bucur, Buttazzo, Figueiredo). The set $\mathcal{E}^{A}$ is closed in $\mathbb{R}^{2}.$

Proof. The idea of the proof is the following. Let us consider $(x, y)\in\overline{\mathcal{E}^{A}}$ and
a sequence $\Omega_{n}$ such that $\lambda_{1}(\Omega_{n})arrow x$ and $\lambda_{2}(\Omega_{n})arrow y$ . Then, we can find a
subsequence, still denoted by $\Omega_{n}$ and a set $\Omega$ such that

$\lambda_{1}(\Omega)\leq$ lim $inf\lambda_{1}(\Omega_{n})=x$ and $\lambda_{2}(\Omega)\leq$ lim $inf\lambda_{2}(\Omega_{n})=y.$

This is a consequence of the so-called compactness for the weak $\gamma$-convergence, see
[BBF] and [BB] for more details.

Let us assume first that $y\geq\lambda_{2}(\mathcal{B})$ where $\mathcal{B}$ is the ball of volume 1. Then, there
is an homothetic ball $B’$ of volume smaller than 1 such that $y=\lambda_{2}(B’)$ . The
horizontal convexity of $\mathcal{E}^{A}$ proved in Theorem 2.2 shows that the segment joining
the points $(\lambda_{1}(B’), \lambda_{2}(B’))$ and $(\lambda_{2}(B’), \lambda_{2}(B’))$ is contained in $\mathcal{E}^{A}$ . Therefore,
$(x, y)$ which belongs to this segment lies in $\mathcal{E}^{A}.$

Now, if $y<\lambda_{2}(\mathcal{B})$ , from the vertical convexity, the segment joining the points
$(\lambda_{1}(\Omega), \lambda_{2}(\Omega))$ and $(\lambda_{1}(\Omega), \gamma\lambda_{1}(\Omega))$ is contained in $\mathcal{E}^{A}$ and the point $(\lambda_{1}(\Omega), y)$

belongs to this segment. We conclude, as above, by using the horizontal convexity
between $(\lambda_{1}(\Omega), y)$ and $(y, y)$ . $\square$
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The above results show that the only unknown part of the set $\mathcal{E}^{A}$ is the lower
part, the curve $\gamma$ joining the point $A$ corresponding to one ball and the point $B$

corresponding to two balls. It turns out that the tangents of $\gamma$ at these extremal
points are known, see [WK] for the vertical tangent at point $A$ and the recent [BNP]
for the horizontal tangent at point $B.$

Theorem 2.3 (Wolff-Keller, Brasco-Nitsch-Pratelli). Let $\gamma$ denotes the curve,
lower part of the set $\mathcal{E}^{A}$ , then

$\bullet$ the tangent at the point $A$ corresponding to one ball is vertical,
$\bullet$ the tangent at the point $B$ corresponding to two identical balls is horizontal

(sketch of the) proof: Because of Faber-Krahn inequality, to prove the first
item, it suffices to find $a$ (continuous) sequence of open sets $\Omega_{\epsilon}$ of area 1, converging
to the ball $\mathcal{B}$ and such that

(4) $\frac{\lambda_{2}(\Omega_{\epsilon})-\lambda_{2}(\mathcal{B})}{\lambda_{1}(\Omega_{\epsilon})-\lambda_{1}(\mathcal{B})}arrow-\infty.$

For that purpose, S. Wolf and J. Keller use the following expansion of the two first
eigenvalues of a nearly circular domain. If a domain $\Omega_{\epsilon}$ is given in polar coordinates
as

(5) $r:= \frac{1}{\sqrt{\pi}}+\epsilon\sum_{n=-\infty}^{+\infty}a_{n}e^{in\theta}+\epsilon^{2}\sum_{n=-\infty}^{+\infty}b_{n}e^{in\theta}+O(\epsilon^{3}), a_{n}=\overline{a_{-n}}, b_{n}=\overline{b_{-n}}$

then its area is preserved (at order two) if

$a_{0}=0, b_{0}=- \frac{1}{2}\sum_{n=1}^{+\infty}|a_{n}|^{2},$

while the two first eigenvalues satisfy

(6) $\lambda_{1}(\Omega_{\epsilon})=\pi j_{01}^{2}\{1+4\epsilon^{2}\sum_{n=1}^{+\infty}[1+j_{01}\frac{J_{n}’(j_{01})}{J_{n}(j_{01})}]|a_{n}|^{2}\}+O(\epsilon^{3})$ ,

(this expansion is actually due to Lord Rayleigh who proved, in particular, that the
coefficient in $\epsilon^{2}$ is positive) and
(7) $\lambda_{2}(\Omega_{\epsilon})=\pi j_{11}^{2}\{1-2|\epsilon||a_{2}|\}+O(\epsilon^{2})$

in these expression $j_{01}$ and $j_{11}$ denote respectively the first (positive) zeroes of the
Bessel functions $J_{0}$ and $J_{1}$ . In particular $\lambda_{1}(\mathcal{B})=\pi j_{01}^{2}$ and $\lambda_{2}(\mathcal{B})=\pi j_{11}^{2}$ Choosing
now $a_{2}\neq 0$ , we get

(8)
$\frac{\lambda_{2}(\Omega_{\epsilon})-\lambda_{2}(\mathcal{B})}{\lambda_{1}(\Omega_{\epsilon})-\lambda_{1}(\mathcal{B})}=\frac{-2\pi j_{11}^{2}|\epsilon||a_{2}|+O(\epsilon^{2})}{4\pi j_{01}^{2}\epsilon^{2}\sum_{n=1}^{+\infty}[1+j_{01}\frac{J’(j_{01})}{J_{n}(j_{01})}]+O(\epsilon^{3})}$

and the result follows when $\epsilon$ goes to $0$ , the tangent at point $A$ is vertical.
Let us denote by $\Theta$ the union of two identical balls of total area $2\pi$ . In [BNP] (see
also $[vdB]$ for similar results), the authors introduce the set (see Figure 1)

$\Omega_{\epsilon}:=\{(x, y):(x-1+\epsilon)^{2}+y^{2}<1 or (x+1-\epsilon)^{2}+y^{2}<1\}$

and they prove the following estimates (using appropriate test functions in the
Rayleigh quotient defining $\lambda_{1}$ and $\lambda_{2}$ )
(9) $\forall\epsilon$ small enough $\lambda_{1}(\Omega_{\epsilon})\leq\lambda_{1}(\Theta)-\gamma_{1}\epsilon$
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FIGURE 1. The set $\Omega_{\epsilon}.$

(10) $\forall\epsilon$ small enough $\lambda_{2}(\Omega_{\epsilon})\leq\lambda_{2}(\Theta)+\gamma_{2}\epsilon^{3/2}$

where $\gamma_{1},\gamma_{2}$ are two positive constants. Thus introducing $\tilde{\Omega}_{\epsilon}$ and $\tilde{\Theta}$ which are
rescaled version of $\Omega_{\epsilon}$ and $\Theta$ of area 1, we can estimate the following ratio using
(9) and (10)

$\frac{\lambda_{2}(\tilde{\Omega}_{\epsilon})-\lambda_{2}(\tilde{\Theta})}{\lambda_{1}(\tilde{\Theta})-\lambda_{1}(\tilde{\Omega}_{\epsilon})}\leq\frac{\gamma_{2}’\epsilon^{3/2}}{\gamma_{1}\epsilon}arrow 0$when $\epsilonarrow 0$

which shows that the tangent at point $B$ is horizontal. $\square$

In Figure 2, we have determined numerically this curve with the same procedure
as in [WK], solving a minimization problem with a convex combination of $\lambda_{1}$ and
$\lambda_{2}$ . Our results were obtained with the gradient method to solve the minimization
problems, as in [AA2]. The solver that we used was the Method of Fundamental
Solutions (MFS), as studied in [AAl] or in some cases an enriched version of the
MFS, as in [AV]. We recall the conjecture already stated in [BBF]:

FIGURE 2. The region $\mathcal{E}^{A}.$

Conjecture 1. The set $\mathcal{E}^{A}$ is convex.
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3. THE RANGE OF $\{\lambda_{1},$ $\lambda_{2}\}$ WITH A PERIMETER CONSTRAINT

We want now to study the set
$\mathcal{E}^{P}=\{(x, y)\in \mathbb{R}^{2}:(x, y)=(\lambda_{1}(\Omega), \lambda_{2}(\Omega)), \Omega\subset \mathbb{R}^{2}, P(\Omega)=2\sqrt{\pi}\}.$

The choice of the value $2\sqrt{\pi}$ is done to ensure that the set $\mathcal{E}^{P}$ contains the same
ball (of area 1) than the previous set $\mathcal{E}^{A}$ and then the two sets can be more easily
compared.

Let us observe, in that context that $\mathcal{E}^{P}\subset \mathcal{E}^{A}$ . The first remark is that we can
also take as a definition for $\mathcal{E}^{P}=\{(x, y) : (x, y)=(\lambda_{1}(\Omega), \lambda_{2}(\Omega)), P(\Omega)\leq 2\sqrt{\pi}\}$

and the set $\mathcal{E}^{P}$ is conical with respect to the origin. The proof is the same as
in the area constraint: take an homothetic version of a set $\Omega$ and complete with
a collection of small discs without changing the two first eigenvalues. Then, if
the point $(x, y)$ belongs to $\mathcal{E}^{P}$ corresponding to some $\Omega$ of perimeter $2\sqrt{\pi}$ , by the
classical isoperimetric inequality $|\Omega|\leq 1$ and therefore $\Omega$ defines an admissible set
for the class $\mathcal{E}^{A}$ , so $(x, y)\in \mathcal{E}^{A}.$

Now, as in the area constraint case, we have
$\bullet \mathcal{E}^{P}\subset\{(x, y):0<x\leq y\}$

$\bullet$ $\mathcal{E}^{P}\subset\{(x, y) : x\geq\lambda_{1}(\mathcal{B})=\pi j_{0,1}^{2}\}$ because Faber-Krahn’s inequality holds
true by the classical isoperimetric inequality (as we already mentioned, it
follows from the inclusion $\mathcal{E}^{P}\subset \mathcal{E}^{A}$ )

$\bullet$ $\mathcal{E}^{P}\subset\{(x, y) : y/x\leq\frac{\lambda_{2}(\mathcal{B})}{\lambda_{1}(\mathcal{B})}=\hat{j_{0,1}^{2}}j_{11}^{2}\}$ because Ashbaugh-Benguria Theorem
still holds true.

The first big difference comes from the fact that the lowest point of $\mathcal{E}^{P}$ , i.e. the
point corresponding to the domain minimizing $\lambda_{2}$ with a perimeter constraint is
no longer the union of two balls. It has been proved in [BBH] that this domain is
a regular convex domain (see Figure 3). It will also be a consequence of the more
general Theorem 3.1 below.

FIGURE 3. The set which minimizes $\lambda_{2}$ with a perimeter constraint.

Theorem 3.1. For any $\beta\in[0, \pi/2]$ , there exists a minimizer $\Omega$ for the problem

(11) $\min\{\cos\beta\lambda_{1}(\Omega)+\sin\beta\lambda_{2}(\Omega), P(\Omega)=2\sqrt{\pi}\}.$

Moreover, the domain $\Omega$ is convex, $C^{\infty}$ and it satisfies the overdetermined condition

(12) $\cos\beta|\nabla u_{1}|^{2}+\sin\beta|\nabla u_{2}|^{2}=\frac{\cos\beta\lambda_{1}(\Omega)+\sin\beta\lambda_{2}(\Omega)}{\sqrt{\pi}}C on\partial\Omega$
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where $u_{1}$ and $u_{2}$ are the two first normalized eigenfunctions (which aoe both simple)
and $C$ is the curvature of the boundary. In particular, the boundary of $\Omega$ does not
contain any segment.

Proof. First, let us observe that the monotonicity of the eigenvalues of the Dirichlet-
Laplacian with respect to the inclusion has two easy consequences:

(1) If $\Omega^{*}$ denotes the convex hull of $\Omega$ , since in two dimensions and for a
connected set, $P(\Omega^{*})\leq P(\Omega)$ , it is clear that we can restrict ourselves to
look for minimizers in the class of convex sets with perimeter less or equal
than $c:=2\sqrt{\pi}.$

(2) Obviously, it is equivalent to consider the constraint $P(\Omega)\leq c$ or $P(\Omega)=c.$

We will need the simplicity of $\lambda_{2}(\Omega)$ (the simplicity of $\lambda_{1}(\Omega)$ is a consequence of
the connectedness of $\Omega_{\beta}$ )

Lemma 3.2. If $\Omega$ is a minimizer of problem (11), then $\lambda_{2}(\Omega)$ is simple.

Proof. The idea of the proof is to show that a double eigenvalue would split under
boundary perturbation of the domain, with one of the eigenvalues going down. $A$

very similar result is proved in [$H$ , Theorem 2.5.10]. The new difficulties here are
the perimeter constraint (instead of the volume) and the fact that the domain $\Omega$ is
convex, but not necessarily regular. Nevertheless, we know that any eigenfunction
of a convex domain is in the Sobolev space $H^{2}(\Omega)$ , see [Gri]. Let us assume, for
a contradiction, that $\lambda_{2}(\Omega)$ is not simple, then it is double because $\Omega$ is a convex
domain in the plane, see [Lin]. Let us recall the result of derivability of eigenvalues
in the multiple case (see [Cox] or [R]). Assume that the domain $\Omega$ is modified by
a regular vector field $x\mapsto x+tV(x)$ . We will denote by $\Omega_{t}$ the image of $\Omega$ by
this transformation. Of course, $\Omega_{t}$ may be not convex but we have actually no
convexity constraint (since convexity come for free) and this has no consequence
on the differentiability of $t\mapsto\lambda_{2}(\Omega_{t})$ . Let us denote by $u_{2},$ $u_{3}$ two orthonormal
eigenfunctions associated to $\lambda_{2},$ $\lambda_{3}$ . Then, the first variation of $\lambda_{2}(\Omega_{t}),$ $\lambda_{3}(\Omega_{t})$ are
the repeated eigenvalues of the $2\cross 2$ matrix

(13) $\mathcal{M}=(\begin{array}{llllll}-\int_{\partial\Omega}(\frac{\partial}{\partial}un\simeq)^{2} V.n d\sigma -\int_{\partial\Omega}(_{\vec{\partial n}}^{\partial u} -\partial\vec{\partial}un)V.n d\sigma\partial\partial\vec{\partial}unu\vec{\partial n})V.nd\sigma-\int_{\partial\Omega}( -\int_{\partial\Omega}(_{\vec{\partial n}}^{\partial u})^{2} V.n d\sigma\end{array})$

Now, let us introduce the Lagrangian $L(\Omega)=\cos\beta\lambda_{1}(\Omega)+\sin\beta\lambda_{2}(\Omega)\mu P(\Omega)$ . As
we will see below, the perimeter is differentiable and the derivative is a linear
form in $Vn$ supported on $\partial\Omega$ (see e.g. [HP, Corollary 5.4.16]). We will denote
by $\langle dP_{\partial\Omega},$ $Vn\rangle$ this derivative. Moreover the first eigenvalue is also differentiable
(see [HP]) since it is simple, we will denote by $d\lambda_{1}(\Omega;V)$ its derivative. So the
Lagrangian $L(\Omega_{t})$ has a derivative which is the smallest eigenvalue of the matrix
$\sin\beta \mathcal{M}+(\cos\beta\langle d\lambda_{1}(\Omega;V), V.n\rangle+\mu\langle dP_{\partial\Omega}, V.n\rangle)$ $I$ where $I$ is the identity matrix.
Therefore, to reach a contradiction (with the optimality of $\Omega$ ), it suffices to prove
that one can always find a deformation field $V$ such that the smallest eigenvalue of
this matrix is negative. Let us consider two points $A$ and $B$ on $\partial\Omega$ and two small
neighborhoods $\gamma_{A}$ and $\gamma_{B}$ of these two points of same length, say $2\delta$ . Let us choose
any regular function $\varphi(s)$ defined on $(-\delta, +\delta)$ (vanishing at the extremities of the
interval) and a deformation field $V$ such that

$V.n=+\varphi$ on $\gamma_{A},$ $Vn=-\varphi$ on $\gamma_{B},$ $V.n=0$ elsewhere.
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Then, the matrix $\sin\beta \mathcal{M}+(\cos\beta\langle d\lambda_{1}(\Omega;V), Vn\rangle+\mu\langle dP_{\partial\Omega}, Vn\rangle)$ $I$ splits into two
matrices $\mathcal{M}_{A}-\mathcal{M}_{B}$ which are obtained from the previous formula. In particular, it
is clear that the exchange of $A$ and $B$ replaces the matrix $\mathcal{M}_{A}-\mathcal{M}_{B}$ by its opposite.
Therefore, the only case where one would be unable to choose two points $A,$ $B$ and
a deformation $\varphi$ such that the matrix has a negative eigenvalue is if $\mathcal{M}_{A}-\mathcal{M}_{B}$ is
identically zero for any $\varphi$ . But this implies, in particular

(14) $\int_{A}\frac{\partial u_{2}}{\partial n}\frac{\partial u_{3}}{\partial n}\varphi d\sigma=\int_{\gamma_{B}}\frac{\partial u_{2}}{\partial n}\frac{\partialu_{3}}{\partial n}\varphi d\sigma$

and

(15) $\int_{\gamma_{A}}[(\frac{\partial u_{2}}{\partial n})^{2}-(\frac{\partial u_{3}}{\partial n})^{2}]\varphi d\sigma=\int_{\gamma_{B}}[(\frac{\partial u_{2}}{\partial n})^{2}-(\frac{\partial u_{3}}{\partial n})^{2}]\varphi d\sigma$

for any regular $\varphi$ and any points $A$ and $B$ on $\partial\Omega$ . This implies that the product
$(_{\partial n\partial n}^{\underline{\partial}u\underline{\partial}u}rA)^{2}$ and the difference $(_{\vec{\partial n}}^{\underline{\partial}u})^{2}-( \frac{\partial}{\partial}un\simeq)^{2}$ should be constant a.e. on $\partial\Omega.$

As a consequence $(_{\vec{\partial n}}^{\underline{\partial}u})^{2}$ has to be constant. Since the nodal line of the second
eigenfunction touches the boundary in two points see [Mel], $\partial u\vec{\partial n}$ has to change $sign.$

So we get a function belonging to $H^{1/2}(\partial\Omega)$ taking values $c$ and $-c$ on sets of
positive measure, which is absurd, unless $c=0$ . This last issue is impossible by the
Holmgren uniqueness theorem. $\square$

We are now in a position to prove the existence and regularity of optimal domains
for problem (11). To show the existence of a solution we use the direct method of
calculus of variations. Let $\Omega_{n}$ be a minimizing sequence that, according to point 1
above, we can assume made by convex sets. Moreover, $\Omega_{n}$ is a bounded sequence
because of the perimeter constraint. Therefore, there exists a convex domain $\Omega$ and
a subsequence still denoted by $\Omega_{n}$ such that:

$\bullet$ $\Omega_{n}$ converges to $\Omega$ for the Hausdorff metric and for the $L^{1}$ convergence of
characteristic functions (see e.g. [HP, Theorem 2.4.10]); since $\Omega_{n}$ and $\Omega$

are convex this implies that $\Omega_{n}arrow\Omega$ in the $\gamma$-convergence;
$\bullet$ $P(\Omega)\leq c$ (because of the lower semicontinuity of the perimeter for the $L^{1}$

convergence of characteristic functions, see [HP, Proposition 2.3.6] $)$ ;
$\bullet$ $\lambda_{1}(\Omega_{n})arrow\lambda_{1}(\Omega)$ and $\lambda_{2}(\Omega_{n})arrow\lambda_{2}(\Omega)$ (continuity of the eigenvalues for the

$\gamma$-convergence, see [BB, Proposition 2.4.6] or [$H$ , Theorem 2.3.17].
Therefore, $\Omega$ is a solution of problem (11).

We go on with the proof of regularity, which is classical, see e.g. [CL]. Let us
consider (locally) the boundary of $\partial\Omega$ as the graph of $a$ (concave) function $h(x)$ , with
$x\in(-a, a)$ . We make a perturbation of $\partial\Omega$ using a regular function $\psi$ compactly
supported in $(-a, a)$ , i.e. we look at $\Omega_{t}$ whose boundary is $h(x)+t\psi(x)$ . The
function $t\mapsto P(\Omega_{t})$ is differentiable at $t=0$ (see [Gi] or [HP]) and its derivative
$dP(\Omega, \psi)$ at $t=0$ is given by:

(16)
$dP( \Omega, \psi):=\int_{-a}^{+a}\frac{h’(x)\psi’(x)dx}{\sqrt{1+h(x)^{2}}}.$

In the same way, thanks to Lemma 3.2, the functions $t\mapsto\lambda_{1}(\Omega_{t})$ and $t\mapsto\lambda_{2}(\Omega_{t})$ are
differentiable (see [HP, Theorem 5.7.1]) and since the (normalized) eigenfunctions
$u_{1},$ $u_{2}$ belong to the Sobolev space $H^{2}(\Omega)$ (due to the convexity of $\Omega$ , see [Gri,
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Theorem 3.2.1.2] $)$ , the derivative of $J(\Omega);=\cos\beta\lambda_{1}(\Omega)+\sin\beta\lambda_{2}(\Omega)$ at $t=0$ is
given by

(17) $dJ( \Omega, \psi) :=-\int_{-a}^{+a}[\cos\beta|\nabla u_{1}(x, h(x))|^{2}+\sin\beta|\nabla u_{2}(x, h(x))|^{2}]\psi(x)dx.$

The optimality of $\Omega$ implies that there exists a Lagrange multiplier $\mu$ such that, for
any $\psi\in C_{0}^{\infty}(-a, a)$

$\mu dJ(\Omega, \psi)+dP(\Omega, \psi)=0$

which implies, thanks to (16) and (17), that $h$ is a solution (in the sense of distri-
butions) of the o.d. $e.$ :

(18) $-( \frac{h’(x)}{\sqrt{1+h(x)^{2}}})’=\mu[\cos\beta|\nabla u_{1}(x, h(x))|^{2}+\sin\beta|\nabla u_{2}(x, h(x))|^{2}].$

Since $u_{1},$ $u_{2}\in H^{2}(\Omega)$ , their first derivatives $\partial u\vec{\partial x}$ and $\partial u\vec{\partial y}’ j=1,2$ have a trace
on $\partial\Omega$ which belong to $H^{1/2}(\partial\Omega)$ . Now, the Sobolev embedding in one dimension
$H^{1/2}(\partial\Omega)\hookrightarrow L^{p}(\partial\Omega)$ for any $p>1$ shows that $x\mapsto|\nabla u_{j}(x, h(x))|^{2},j=1,2$ is in
$L^{p}(-a, a)$ for any $p>1$ . Therefore, according to (18), the function $h’/\sqrt{1+h^{\prime 2}}$ is
in $W^{1,p}(-a, a)$ for any $p>1$ (recall that $h’$ is bounded because $\Omega$ is convex), so it
belongs to some H\"older space $C^{0,\alpha}([-a, a])$ (for any $\alpha<1$ , according to Morrey-
Sobolev embedding). Since $h’$ is bounded, it follows immediately that $h$ belongs to
$C^{1,\alpha}([-a, a])$ . Now, we come back to the partial differential equation and use an
intermediate Schauder regularity result (see [GH] or the remark after Lemma 6.18
in [GT] $)$ to claim that if $\partial\Omega$ is of class $C^{1,\alpha}$ , then the eigenfunctions $u_{j}$ are $C^{1,\alpha}$ (St)
and $|\nabla u_{j}|^{2}$ is $C^{0,\alpha}$ for $j=1,2$ . Then, looking again to the o.d. $e$ . (18) and using
the same kind of Schauder’s regularity result yields that $h\in C^{2,\alpha}$ . We iterate the
process, thanks to a classical bootstrap argument, to conclude that $h$ is $C^{\infty}.$

Since we know that the minimizers are of class $C^{\infty}$ , we can now write rigorously
the optimality condition. Under variations of the boundary (replace $\Omega$ by $\Omega_{t}=$

$(I+tV)(\Omega))$ , the shape derivative of the perimeter is given by (see [$HP$ , Corollary
5.4.16] $)$

$dP( \Omega;V)=\int_{\partial\Omega}CV.nd\sigma$

where $C$ is the curvature of the boundary and $n$ the exterior normal vector. Using
the expression of the derivative of the eigenvalues given in (17) (see also [$HP,$

Theorem 5.7.1] $)$ , the proportionality of these two derivatives through some Lagrange
multiplier yields the existence of a constant $\mu$ such that

(19) $\cos\beta|\nabla u_{1}|^{2}+\sin\beta|\nabla u_{2}|^{2}=\mu C$

Setting $X=(x_{1}, x_{2})$ , multiplying the equality in (19) by $X.n$ and integrating on $\partial\Omega$

yields, thanks to Gauss formulae $\int_{\partial\Omega}CX.nd\sigma=P(\Omega)$ , and a classical application of
the Rellich formulae $\int_{\partial\Omega}|\nabla u_{j}|^{2}X.nd\sigma=2\lambda_{j}(\Omega),j=1,2$ , the value of the Lagrange
multiplier. So, we have proved that any minimizer $\Omega$ satisfies

(20) $\cos\beta|\nabla u_{1}|^{2}+\sin\beta|\nabla u_{2}|^{2}=\frac{\cos\beta\lambda_{1}(\Omega_{\beta})+\sin\beta\lambda_{2}(\Omega_{\beta})}{\sqrt{\pi}}C(x) , x\in\partial\Omega$

where $C(x)$ is the curvature at point $x.$

74



PEDRO R. S. ANTUNES AND ANTOINE HENROT

As a consequence, we easily see that the boundary of the optimal domain does
not contain any segment. Indeed, an easy consequence of Hopf’s lemma (applied
to each nodal domain) is that the normal derivative of $u_{2}$ only vanishes on $\partial\Omega$ at
points where the nodal line hits the boundary while the normal derivative of $u_{1}$

never vanishes. This proves, together with (20) that the curvature cannot be zero
$($ for $\beta<\pi/2)$ or can be zero only at two points $($ for $\beta=\pi/2)$ . $\square$

As we did in the previous section, we use Theorem 3.1 to determine the lower part
of the set $\mathcal{E}^{P}$ since looking for solutions of the minimization problem (11) provides
the lower point of $\mathcal{E}^{P}$ in the direction orthogonal to $(\cos\beta, \sin\beta)$ . The result we get
numerically is shown in Figure 4. In this Figure, the black point on the left, say $A,$

FIGURE 4. The region $\mathcal{E}^{P}.$

corresponds to one ball, the black point on the right, say $B$ , to two identical balls,
while the three red points correspond to solutions of the minimization problem (11)
for $\beta=0.2,$ $\beta=1.6$ and $\beta=2.18$ respectively, see Figure 5

FIGURE 5. Three optimal domains for $\beta=0.2,$ $\beta=1.6$ and $\beta=2.18.$

We conclude by giving the tangents of the curve bounding $\mathcal{E}^{P}$ at point $A$ and $B$ :

Theorem 3.3. Let $\gamma_{2}$ denotes the curve, lower part of the set $\mathcal{E}^{P}$ , then
$\bullet$ the tangent of $\gamma_{2}$ at the point $A$ corresponding to one ball is vertical,
$\bullet$ the tangent of $\gamma_{2}$ at the point $B$ corresponding to two identical balls is the

first bissectm.
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Proof. We proceed in the same way as in the proof of Theorem 2.3. Because of
Faber-Krahn inequality, to prove the first item, it suffices to find $a$ (continuous)
sequence of open sets $\Omega_{\epsilon}$ of perimeter $2\sqrt{\pi}$ , converging to the ball $\mathcal{B}$ and such that

(21) $\frac{\lambda_{2}(\Omega_{\epsilon})-\lambda_{2}(\mathcal{B})}{\lambda_{1}(\Omega_{\epsilon})-\lambda_{1}(\mathcal{B})}arrow-\infty.$

We use a family of domains $\Omega_{\epsilon}$ given in polar $co$ordinates as

(22) $r := \frac{1}{\sqrt{\pi}}+2\epsilon a\cos 2\theta$

with $a$ a positive real number. then its perimeter is given by

$P( \Omega_{\epsilon})=\int_{0}^{2\pi}\sqrt{r^{2}+r^{\prime 2}}d\theta=2\sqrt{\pi}+4\pi^{3/2}a^{2}\epsilon^{2}+O(\epsilon^{3})$

while the two first eigenvalues satisfy

(23) $\lambda_{1}(\Omega_{\epsilon})=\pi j_{01}^{2}\{1+4\epsilon^{2}[1+j_{01^{J_{2}’(j_{01})}}J_{2}(j_{01})]a^{2}\}+O(\epsilon^{3})$ ,

and

(24) $\lambda_{2}(\Omega_{\epsilon})=\pi j_{11}^{2}\{1-2|\epsilon|a\}+O(\epsilon^{2})$

By homogeneity, we can consider $P^{2}(\Omega_{\epsilon})\lambda_{j}(\Omega_{\epsilon})$ instead of fixing the perimeter and
considering $\lambda_{j}(\Omega_{\epsilon})$ . Therefore, we get

(25) $\frac{P^{2}(\Omega_{\epsilon})\lambda_{2}(\Omega_{\epsilon})-P^{2}(\mathcal{B})\lambda_{2}(\mathcal{B})}{P^{2}(\Omega_{\epsilon})\lambda_{1}(\Omega_{\epsilon})-P^{2}(\mathcal{B})\lambda_{1}(\mathcal{B})}=\frac{-8\pi^{2}j_{11}^{2}|\epsilon|a+O(\epsilon^{2})}{O(\epsilon^{2})}$

and the result follows when $\epsilon$ goes to $0$ , the tangent at point $A$ is vertical.
Now we want to determine the tangent at the point corresponding to $\tilde{\Omega}_{\epsilon}$ the union
of two identical balls of total area 1. We use the same set as previously namely (see
Figure 1)

$\Omega_{\epsilon} :=\{(x, y) : (x-1+\epsilon)^{2}+y^{2}<1 or (x+1-\epsilon)^{2}+y^{2}<1\}$

First of all, it is easy to check by a straightforward computation that

$|\Omega_{\epsilon}|=2\pi-O(\epsilon^{3/2}),$ $P(\Omega_{\epsilon})=4\pi-4\sqrt{2\epsilon}+O(\epsilon^{3/2}),$ and $\frac{P(\Omega_{\epsilon})^{2}}{|\Omega_{\epsilon}|}=8\pi-16\sqrt{2\epsilon}+O(\epsilon)$ .

We want to find the limit of the ratio

$Q( \epsilon):=\frac{P^{2}(\Omega_{\epsilon})\lambda_{2}(\Omega_{\epsilon})-P^{2}(\Theta)\lambda_{2}(\Theta)}{P^{2}(\Omega_{\epsilon})\lambda_{1}(\Omega_{\epsilon})-P^{2}(\Theta)\lambda_{1}(\Theta)}$

when $\epsilonarrow 0$ . We write it

$Q( \epsilon):=\frac{\frac{P^{2}(\Omega_{e})}{|\Omega_{e}|}|\Omega_{\epsilon}|\lambda_{2}(\Omega_{\epsilon})-\frac{P^{2}(\ominus)}{|\Theta|}|\Theta|\lambda_{2}(\Theta)}{\frac{P^{2}(\Omega_{e})}{|\Omega_{e}|}|\Omega_{\epsilon}|\lambda_{1}(\Omega_{\epsilon})-\frac{P^{2}(\Theta)}{|\Theta|}|\Theta|\lambda_{1}(\Theta)}.$

If we introduce $x(\epsilon)=|\Omega_{\epsilon}|\lambda_{1}(\Omega_{\epsilon})$ and $y(\epsilon)=|\Omega_{\epsilon}|\lambda_{2}(\Omega_{\epsilon})$ , we already know, accord-
ing to Theorem 2.3 that $y(\epsilon)-y(O)=g(\epsilon)(x(\epsilon)-x(O))$ with $g(\epsilon)arrow 0$ when $\epsilonarrow 0.$

Now we write

$Q( \epsilon)=\frac{(8\pi-16\sqrt{2\epsilon})y(\epsilon)-8\pi y(0)}{(8\pi-16\sqrt{2\epsilon})x(\epsilon)-8\pi x(0)}=\frac{8\pi g(\epsilon)(x(\epsilon)-x(0))-16\sqrt{2\epsilon}y(\epsilon)}{8\pi(x(\epsilon)-x(0))-16\sqrt{2\epsilon}x(\epsilon)}.$
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Moreover, according to (9), $x(\epsilon)-x(O)=O(\epsilon)$ and $y(\epsilon)/x(\epsilon)arrow 1$ therefore we
have $Q(\epsilon)arrow 1$ which proves the desired result. $\square$

REFERENCES
[AAl] C. J. S. ALVES AND P. R. S. ANTUNES, The Method of Fundamental Solutions applied

to the calculation of eigenfrequencies and eigenmodes of 2D simply connected shapes,
Computers, Materials & Continua Vo12, No. 4 (2005), 251-266.

[AA2] C. J. S. ALVES AND P. R. S. ANTUNES, The Method of Fundamental Solutions applied
to some inverse eigenproblems, in preparation.

[AV] P. R. S. ANTUNES AND S. S. VALTCHEV, A Meshfree numerical method for acoustic wave
propagation problems in planar domains with corners and cracks, J. Comp. Appl. Math.
234 (2010), 2646-2662.

[ABl] M. ASHBAUGH AND R. BENGURIA, Proof of the Payne-P\‘olya-Weinberger conjecture, Bull.
AMS 25 (1991), 19-29.

[vdB] M. VAN DEN BERG, On Rayleigh’s formula for the
first Dirichlet eigenvalue of a radial perturbation of a ball, Journal of Geometric Analysis,
DOI 10.1007/sl2220-Oll-9258-0 (2012).

[BNP] L. BRASCO, C. NITSCH, A. PRATELLI, On the boundary of the attainable set of the
Dimchlet spectrum

[BR] F. BROCK, Continuous Steiner symmetrization, Math. Nachr., 172 (1995), p.25-48.
[BB] D. BUCUR, G. BUTTAZZO, Variational Methods in Shape optimization Problems,

Progress in Nonlinear Differential Equations and Their Applications, 65 Birkh\"auser,
Basel, Boston 2005.

[BBF] D. BUCUR, G. BUTTAZZO AND I. FIGUEIREDO, On the attainable eigenvalues of the
Laplace operator, SIAM J. Math. Anal. 30 (1999), 527-536.

[BBH] D. BUCUR, G. BUTTAZZO AND A. HENROT, Minimization of $\lambda_{2}(\Omega)$ with a perimeter
constraint, Indiana Univ. Math. Journal, Vol. 58, (6) 2009, 2709-2728.

[BH] D. BUCUR, A. HENROT, Stability for the $Di_{7}\cdot\iota$chlet problem under continuous Steiner
symmetrization, Potential Anal., 13 (2000), no. 2, 127-145.

[CL] A. CHAMBOLLE, C. LARSEN, $c\infty$ regularity of the free boundary for a two-dimensional
optimal compliance problem, Calc. Var. Partial Differential Equations, 18 (2003), no. 1,
77-94.

[Cox] S.J. Cox, Extremal eigenvalue problems for the Laplacian, Recent advances in partial
differential equations (El Escorial, 1992), RAM Res. Appl. Math. 30, Masson, Paris,
1994, 37-53.

[Fl] G. FABER, Beweis, dass unter allen homogenen membranen von gleicher flache und gle-
icher spannung die kreisformige den tiefsten grundton gibt, Sitz. ber. bayer. Akad. Wiss.
(1923), 169-172.

[GH] D. GILBARG, L. H\"oRMANDER, Intermediate Schauder estimates, Arch. Rational Mech.
Anal., 74 (1980), no. 4, 297-318.

[GT] D. GILBARG, N.S. TRUDINGER, Elliptic Partial Differential Equations of Second Order.
Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin 2001.

[Gi] E. GIUSTI, Minimal Surfaces and Functions of Bounded Variation, Monographs in Math-
ematics 80, Birkh\"auser Verlag, Base11984.

[Gri] P. GRISVARD, Elliptic Problems in Nonsmooth Domains, Pitman, London 1985.
[H] A. HENROT, Extremum problems for eigenvalues of elliptic operators, Frontiers in Math-

ematics. Birkh\"auser Verlag, Basel, 2006.
[HP] A. HENROT AND M. PIERRE, Variation et optimisation de formes, Math\’ematiques et

Applications 48, Springer-Verlag, Berlin, 2005.
[K] E. KRAHN, \"Uber eine von Rayleigh formulierte minimaleigenschaft des kreises, Math.

Annalen 94 (1924), 97-100.
[LY] M. LEVITIN AND R. YAGUDIN, Range of the first three eigenvalues of the planar Dirichlet

Laplacian, LMS J. Comput. Math. 6 (2003), 1-17.
[Lin] C.S. LIN, On the second eigenfunctions of the Laplacian in $\mathbb{R}^{2}$ , Comm. Math. Phys.,

111 no. 2 (1987), 161-166.
[Mel] A. MELAS, On the nodal line of the second eigenfunction of the Laplacian in $\mathbb{R}^{2}$ , J. Diff.

Geometry, 35 (1992), 255-263.

77



RANGE OF DIRICHLET EIGENVALUES

[R] B. ROUSSELET, Shape Design Sensitivity of a Membmne, J. Opt. Theory and Appl.
$\rangle$ 40

(1983), 595-623.
[WK] S. A. WOLF AND J. B. KELLER, Range of the first two eigenvalues of the Laplacian, Proc.

Roy. Soc. London Ser. A 447 (1994), 397-412.

DEPARrAMENTO DE MATEM\’ATICA, UNIVERSIDADE Lus6FONA DE HUMANIDADES E TECNOLO-
GIAS, Av. Do CAMPO GRANDE 376, $P$-1749-024 LISBOA AND GRUPO DE FIsICA MATEM\’ATICA $DA$

UNIVERSIDADE DE LISBOA, COMPLEXO INTERDISCIPLINAR, Av. PROF. GAMA PINTO 2, $P$-1649-003
LISBOA.

$E$-mail address: pantQcii. fc. ul. pt

INSTITUT \’ELIE CARTAN NANCY, UMR 7502, UNIVERSIT\’E DE LORRAINE $-$ CNRS, B.P. 70239
54506 VANDOEUVRE LES NANCY CEDEX, FRANCE

$E$-mail address: antoine. henrotQuniv-lorraine. fr

78


