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1. INTRODUCTION

Throughout this paper, » denotes a regular uncountable cardinal and ) a cardinal
> k™, unless otherwise specified.

Partial stationary reflection on P,,w, was introduced by H. Sakai [2]. First we
extend his notion to arbitrary « and .

Definition 1.1. Let S* be a stationary subset of P,\. For a stationary set T' C
P+ A, we say that RP(S*,T) holds if for every stationary subset S C S* there
exists X € T such that k C X and S NP, X is stationary in P.X. RP(S*) means
RP(S*, P+ ).

It is known that total stationary reflection RP(P,)) is a large cardinal property
(e.g., see Velicikovic [3]), but Sakai [2] showed that partial stationary reflection on
P, we is not:

Fact 1.2 ([2]). Suppose CH. If O,, holds, then there are a stationary set S* C
Puywz and a o-Baire, wy-c.c. poset P such that P forces RP(S*).

In this paper, we generalize his result as follows:

Theorem 1.3. Suppose k<" = k. Let T C P.+\ be a stationary set such that
VX € T(k C X). Then there exists a w-closed, k™ -c.c. poset which forces the
following statements:

(1) T is stationary.

(2) There ezists a stationary set S* C P\ such that
(a) VX € T (S*NP.X contains a club in P, X),
(b) RP(S*,T) holds.
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This theorem shows that, even k > w; and A > ws, our partial stationary
reflection is not a large cardinal property.
Next we consider a natural strengthening of partial stationary reflection, simul-

taneous partial stationary reflection.

Definition 1.4. For stationary sets S3,S7 C P.A and T C P+ A, we say that
RP?(Sg, St,T) holds if for every stationary subsets So C Sg and S1 C 57 in PeA,
there exists X € T such that kK € X and both SoNP,.X and S;NP,X are stationary
in P.X. RP%(S, S7) means RP?(S, St, Pes N).

We prove that our simultaneous partial stationary reflection is a large cardinal

property by showing the following:

Definition 1.5. For a regular uncountable cardinal u, O(u) holds if there exists a
sequence (Cg : € < p) satisfying the following:

(1) for all £ < p, C¢ is club in £ and for all € lim(C), C;, = C¢ N,

(2) for all club C in p, there exists £ € lim(C') such that CN & # Cg.
Such an sequence (Cg : £ < u) is called a O(u)-sequence.

Theorem 1.6. Suppose RP?(Sg, St) holds for some stationary Sg, St € PeA. Then
for every regular p with k¥ < u < A, O(p) fails.

We also prove the following:

Theorem 1.7. For every stationary S, S; C P and reqular p with k* < p <A,
RP%(S3, 81, {X € P+ A : cf(X N ) < k}) fails, where cf(X) = cf(ot(X)).

Todorcevic showed that RP(P,,w;) implies that 2 < w,. However we prove the
following, which shows that our partial stationary reflection does not affect the size

of the continuum:

Theorem 1.8. (1) Suppose RP(S*) for some stationary S* C P.A. Then every
Kk-c.c. forcing preserves RP(S™).
(2) Suppose PFATY. Let A > w;. Then every c.c.c. forcing notion forces
RPZ(PXI)\,'P&)\).

2. PRELIMINARIES

For a set X of ordinals, let cf(X) = cf(ot(X)).
For regular cardinals v < p, let E# = {a < p: cf(a) =v} and F%, = {a < p:
cf(a) < v}.



The proofs of the following lemmatta are easy:

Lemma 2.1. For a stationary S C P.A and a k-c.c. poset P, P preserves the
stationarity of S.

Lemma 2.2. For S C P, if {X € P+X : SNPX is stationary in P X} is
stationary in P+ A, then S is stationary in P.A.

Lemma 2.3. For stationary sets S* C P.A and T C P+ A, suppose RP(S*,T)
holds. Then for every stationary S C S*, {X € T : SNP.X is stationary in P, X}

- 18 stationary in P+ A.
We define club shootings into P\, which was observed in [2].

Definition 2.4. For S C P, let C(S) be the poset which consists of all functions
p such that:
(1) ol <&,
(2) p:d(p) x d(p) —  for some d(p) € P\, and
(3) Vz C d(p) (x € S = x is not closed under p).
Forp,q e C(S),p<q <= q¢Cp.
Let C = C(0).

Lemma 2.5. (1) C(S) satisfies the (2<%)*-c.c.
(2) For every x € P, {p € C(S) : z C d(p)} is a dense open set in C(S).
(3) Whenever G is (V,C(S))-generic, UG is a function from X\ x A to k, and

every x € S is not closed under the function.

Proof. For (1), take A C C(S) with size (2<*)*. By A-system lemma, we can find
B C A and a € P\ such that |B| = (2<%)* and d(p) Nd(q) = a for every distinct
p,q € B. Moreover we may assume that pla X a = gla x a for every p,q € B. We
check that B is a pairwise compatible set. :

Take p,q € B. Pick o < x with a > sup(d(p) N ) + 1,sup(d(q) N k) + 1. Then
define r as dom(r) = (d(p) U d(q)) x (d(p) Ud(q)) and

p(&m) if&ned(p).
r(&m) =< q&mn) if&ned).

« otherwise,

We have r < p,q. (2) follows from a similar argument, and (3) is straightforward.

O
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3. THE PROOF OF THEOREM 1.3

Suppose k<% = k. Fix a stationary set T C Py+A such that VX € T (k C X).
We consider the following poset Pr, which adds a new stationary subset S* of

P

Definition 3.1. Py is the set of all functions p satisfying the following:

(1) |p| < k and dom(p) C T,
(2) for every X € dom(p), p(X) is a C-increasing continuous set {z; : i < v}
in P.X such that y < k and z; Nk € & for all 1 < .
For p € Py and X € dom(p), max(p(X)) denotes the maximum element of p(X).
Let u(p) = U{p(X) : X € dom(P)}. Note that u(p) C P and |u(p)| < k. For
p,q € Pp, define p < q <=

(a) dom(p) 2 dom(g),

(b) VX € dom(q)(g(X) = {z € p(X) : = C max(¢(X))}) (hence u(p) 2 u(q)),
(c) Vz €u(p) (z CUu(g) =z € U(Q))

(d) VX € dom(p) \ dom(q) (max ) ¢ Uu(q

(e) VX € dom(q)Vz € p(X) \ ¢(X $7_.‘ Uu(g)

Lemma 3.2. (1) Pr is k-closed,
(2) Pr satisfies the k™ -c.c. (if K<* = k),
(3) for all X € T and z € P X, {p € Pr : X € dom(p) and z C max(p(X))}
is dense in Pp.

Proof. (1). Let v < & be a limit ordinal and (p; : ¢ < ) be a decreasing sequence
in Pp. Then define the function p* as the following manner:

(i) dom(p*) = U, dom(p;),
(ii) for X € dom(p*), p*(X) = U{pi(X) : i <=, X € dom(p;) }U{U{max(p;(X)) :
1 <v,X €dom(p;)}}
Since the p;’s are decreasing, it is easy to show that p* € Pr. For i < v, we show
p < p;. It is easily verified that the conditions (a) and (b) in the definition of the
order are satisfied.

(c). Take z € u(p*) such that z C |Ju(p;). Take X € dom(p*) such that z €
p*(X). If z # max(p*(X)), then z € p;(X) for some j > i with X € dom(p;). Since
p; < p;, we have z € p;(X). Next suppose z = max(p*(X)). Take k < 7 such that
i < k and X € dom(px). Then max(pr(X)) C max(p*(X)) = =z C |Ju(p;) holds.
Hence X € dom(p;) by (d). For each j > i, max(p;(X)) € max(p*(X)) =z C



Ju(p;:) holds. Thus we have max(p;(X)) € p;(X) by (e). Therefore {max(p;(X)) :
i < j <7} € pi(X), and we have max(p*(X)) = U{max(p;(X)) : i < j <7} €
pi(X).

(d). Take X € dom(p*) \ dom(p;). Then there exists j > 4 such that X €
dom(p;). We know max(p;(X)) € Uu(p;). Because max(p;(X)) C max(p*(X)),
we know max(p*(X)) € U u(p:).

(e). Take X € dom(p;) and z € p*(X) \ p;(X). Then there exist ;7 > ¢ and
y € dom(p;) such that y C = and y ¢ p;(X). Hence y € Ju(p;) and = € |Ju(p;).

(2). Take an arbitrary A C Pr with |A] > s*. We prove that A is not an
antichain. By A-system lemma, we can find » € P, T, s € P\, and B C A with
|B| > % such that Vp,q € B (dom(p) Ndom(q) = r and Ju(p) N Julq) = s).
By our cardinal arithmetic assumption, there exists C C B with |C| > ' such
that Vp,q € B(VX € r(p(X) = ¢(X)) and Ps Nu(p) = PxsNu(q)). We check
that any two elements of C are pairwise compatible. Take p,q € C. For each
X € dom(p)Udom(g), fix ax € P.X such that (|Ju(p) UJu(q))NX C ax. Define
the function r as the following;:

(i) dom(r) = dom(p) U dom(q),
(i) r(X) = p(X)U{ax} if X € dom(p), and r(X) = q(X)U{ax} if X € dom(q).

This is well-defined because p(X) = ¢(X) for all X € dom(p) N dom(qg). We see
that r is a lower bound of p and q. 7 € Pr is easily verified. For r < p, the
conditions (a) and (b) are clear. |

(c). Take x € u(r) such that z C (Ju(p). Then z # ax for all X € dom(p) U
dom(g). Hence z € u(p) Uu(q). If z € u(p) then we have done. Assume z € u(q).
Then z C |Ju(q). Since z C | Ju(p), we have z C Ju(p)NJu(g) = s and z € P,s.
Because Pes Nu(p) = Pes Nu(g), we have z € Pes Nu(p) and = € u(p).

(d). Take X € dom(r) \ dom(p). Then max(r(X)) = ax 2 Ju(p) N X, thus
max(r(X)) ¢ Uu(p).

(e). Take X € dom(p) and z € r(X) \ p(X). By the definition of r(X), we have
r(X) =p(X)U{ax}. Hence z =ax € Ju(p). '

r < g can be proved by the same argument.

(3). Take X € T,z € P, X and ¢ € P. Take z* € P, X such that Ju(q)nX C z*.
Define p as dom(p) = dom(q)U{X}, p|dom(q) = g and p(X) = {z*} if X ¢ dom(q),
and ¢(X) U {z*} if X € dom(q). Then p < q can be verified. d
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Note that the following: For v < x and a decreasing sequence (p; : % < 7) in Pr,
let p* be a lower bound of the p;’s as constructed in the proof of (1) above. Then
p* is the largest lower bound of the p;’s and Ju(p*) = U, (U u(p:))-

Definition 3.3. For a canonical name of (V,Pr)-generic filter G, let S* be a Pr-

name such that

Fp$* = | J{u(p) :p € G}
The following are easily verified by the definition of Pr.

Lemma 3.4. (1) Ibp, “VX € T(S* NP X contains a club in P.X)”,
(2) for allp € Pr, plrp; “{y € S* 1y S Uu(p)} = ulp)”.

Now fix a name S such that

IFp, $CS$ andVX eT (P.XN S is non-stationary in P.X)”.

We see that Py x C(S) has good properties.
For each X € T, fix a name gx such that

lFp.“ g : [X]<¥ — X and Vz € P, X (z is closed under gx = z ¢ S)”-

Let Q be a name such that IF“Q = C(S)”. We prove that Pr Q has a s-closed
dense subset.

Lemma 3.5. Let D = {p € Py : VX € dom(p) (p Ibp, “max(p(X)) is closed under
gx”)}. Then D is dense in Pr.

Proof. Take p € Pr. We want to find ¢ € D such that ¢ < p. We take a decreasing
sequence p; (i < w) in Py by induction on ¢ < w. Let py = p. Suppose p; is defined.
By the k-closedness of Py, we can choose p’ < p; and a € P such that p’ IF¢
gx “[max(p;(X))]<“ € an X” for all X € dom(p;). Then choose p;y; < p' such
that a N X C max(p;+1(X)) for all X € dom(p;).

Finally let ¢ be the greatest lower bound of the p;’s. By our construction, it is
easy to see that ¢ € D. O

Lemma 3.6. Let D be as in Lemma 3.5. Let D' = {(p,q) € Pr*Q : p € D,
q =7 for somer € C and d(r) = J(u(p))}. Then D’ is a k-closed dense subset in

PT*Q-

Proof. Density: Take (p,q) € Pr * Q. Take p’ € D and r such that p’ IF% = ¢”
and [Ju(p') 2 d(r). Now define 7’ as the following:



(1) " UYuly) x Jul@) — &,
(2) for a € Yu') x Uulp'), if a € d(r) x d(r) the '(a) = r(a), otherwise
r'(a) = sup(U(u(p') N k) + 1.
It is easy to show that p’ -7 € C(S)” and (¢/,) < (p,q).

Next we prove D’ is k-closed. Let v < x and (p;,q;) (i < 7) be a decreas-
ing sequence in D’'. We show that this sequence has a lower bound. Let p* €
Pr be the greatest lower bound of the p;’s. Note that for all X € dom(p*),
p* IFpy “max(p*(X)) is closed under gx”.

Let ¢ =, &- ¢" is a function with the domain d(g*) x d(g*), where d(¢*) =
Ui« d(¢). Notice that d(g*) = Uiey d@:) = U;, Uulp:) = Uu(p*). We complete
the proof by showing the following claim.

Claim 3.7. p* I+ ‘g* € C(S)”.

Proof. Take a (V,Pr)-generic G with p* € G and work in V[G]. First note that
{z €8z CUu(p?)} = u(p*). To show that ¢* € C(S), take z C d(g*) with
x € S. We check that z is not closed under ¢*. Since z C d(¢*) = Ju(p*) and
r € S C 5% we have z € u(p*). Hence there exists X € dom(p*) such that
z € p*(X). Because max(p*(X)) is closed under gx, we know max(p*(X)) ¢ S.
Thus z # max(p*(X)) and = € p;(X) for some i < v with X € dom(p;). Then
x C Ju(p;) = d(g;). Since g; is a condition, z is not closed under ¢;, and not closed
under ¢*. ’ O[Claim]

O

Note that, in fact, D’ is x-directed closed.
By an iteration of the above forcing, we can prove Theorem 1.3. Let (Pe, Qy, :
§ < (,n < () be a < k-support iteration such that for every & < (,

(1) QO = ]P)Ta
(2) PP, satisfies the k*-c.c. and has a k-closed dense subset,
(3) for & > 0 there exists P;-name S¢ such that

¢ “Sf CS* andVX eT (P.X N Sg is non-stationary in P, X)”,
(4) for every X € T, g% is a Pe-name such that
¢ “d% : [X]<% — X and Vz € P.X (z € S¢ = x is not closed under ¢5)”,

(5) IFe“Q¢ = C(S¢)” for £ > 0,
(6) let Dg is the set of all p € P¢ such that
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(a) Vn € supp(p) \ {0} (p(n) = 7 for some r € C),
(b) for all X € dom(p(0)) and n € supp(p) \ {0} ( pln Ik, “max(p(0)(X)) is

L/ B

closed under g%”,

(c) U(u(p(0)) = d(p(n)) for all n € supp(p) \ {0}
Then Dy is a k-closed dense set in P;.

Let P; and D, be as intended. We can check that D, is a x-closed dense set in
PP;, and P, has the k*-c.c.

By a standard book keeping method, we can destroy the stationarity of all non-
reflecting subset of S* by an iteration above. By x*-c.c., T remains stationary in
P.+ A in the generic extension. Thus S* is stationary in P.A, and RP(S*, T') holds.

4. PROOF OF THEOREMS 1.6 AND 1.7

Proposition 4.1. Let p be a regular cardinal with k¥ < p < A Let T = {X €
Pd:k C X, cf(X Np) < k}. Then for every stationary sets S§,S7 C Pil,
RP?(S3,5:,T) fails.

Proof. Suppose not. For each £ € E%,, fix an increasing sequence (fyf : 1 < cf(€))
with limit £&. For n < 2,1 < k, and § < u, let

Sn,i,ls = {.’L‘ c S,;: : 6 = mln(.’L‘ \ %Sup(wﬁu))}.

Claim 4.2. (1) For every & < p, there exist i < k and § < p such that 6 > &
and Sp ;s s stationary.
(2) For every i < k and § < p, if So;s 1s stationary then Sy ;s is stationary.
(8) For every i < k and 8,01 < p, if Sois, and Si.s, are stationary then
do = 0.

Proof. (1). Let T' = {X € T : S§ NP X is stationary, £ € X}. T' is stationary
in P+ A. Take X € T'. Then cf(X Nu) < k C X and sup(X Nu) > &, hence

there exists 1 € X such that 7§up(X Np)

1

> £. By applying Fodor’s lemma to T”, there
exists i < k such that 7" = {z € T' : %"®"™™) > ¢} is stationary in P+ A. For
X €T" let §x = min(X \ 7; up(Xm )). By Fodor’s lemma. again, there is § < p such
that T* = {X € T” : ¥y *™ > ¢ 6 = min(X \ /" *™))} is stationary in P+ .

Pick X € T*. Since cf(X Nu) < k, the set Dy = {z € P X : sup(z Npu) =
sup(X Ny), 8 € =} contains a club in P, X. Clearly z € Sy ; 5 for each z € Dx N Sg.
This means that Sy, s is stationary in PA.

(2). By RP%(S3,57), T' ={X €T :6 € X,Sp:5NP.X, S;NP.X are stationary

} is stationary in P+ A. Fix X € T'. Since Sp; s N P.X is stationary in P, X and



cf(X Np) < &, we have that § = min(X \ 7"®*™)). By the same argument as (1),
we have that S ;s is stationary in P, A.

(3). Let X € T be such that §,d; € X and Sp;s N PeX, S1i6 NPX are
stationary. Choose zg € Sp;s, VP X and z; € S1;6 NPX such that sup(zoNu) =
sup(z1 N u) = sup(X N u) and &, d; € o N ;. By the minimality of dy, we have
do < 6;. Similarly we know &; < &y. Therefore &, = 6;. O|[Claim]

Hence we have that if Sp;s and Sp; ¢ are stationary, then § = &'

For each i < &, define §; < p as follows: if Sp; s is stationary for some § < p,
then let d; be a (unique) § < p such that Sy; s is stationary. If there is no such 6,
then let §; = 0. Since p = cf(u) > &, we know sup,_, §; < p. But this contradicts
(1) of the claim. O

Proposition 4.3. Let S§, St C P\ be stationary and suppose RP?(S, ST) holds.
Then for every reqular p with k™ < u < A, O(p) fails.

Proof. We prove only the case u = A. Other cases follow from similar arguments.

Toward the contradiction, suppose (J(A) holds. Let (C¢ : € < A) be a [J())-
sequence.

Let T = {X € Pe+ A : cf(X) = k C X}. We assumed RP%(S3, S7), but by the
previous proposition, in fact RP?(Sg, S7, T) holds.

For each o < A and n < 2, let

Sna =1{z €S} : Coupz) Nsup(z Na) = Cy Nsup(z Na)}.
Let A, = {a < A : S, , is stationary}.
Claim 4.4. For each n < 2, A, is unbounded in \.

Proof. Fix n < 2. By shrinking S* by a club in P,), we may assume that the
following:

(1) For all z € S} and @ € z, if N a is bounded in « then cf(a) > .
(2) For all z € S;; and a € zN E3,, sup(z N a) € lim(C,) holds.

Let 7" = {X € T : S; NP.X is stationary}. Then T’ is stationary in P+ \.
To show that A, is unbounded, take £ < X\. Fix X € T" with sup(X) > &. Since
cf(X) = k, the set {8 < sup(X) : 8 € lim(Cysypx)} contains a club in sup(X).
Note that Csupxy N B = Cjp for each B from the club. Hence we know Sy = {z €
SpNPeX : Coupz) = Coup(x) Nsup(z)} is stationary in P, X. Since cf(sup(X)) = «,
lim(X) N lim(Csup(x)) is unbounded in sup(X). Take 8 € lim(X) N lim(Csyp(x))
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with 8 > £ and cf(8) < k. Note that {x € P.X : zNf is unbounded in B} contains
a club. Since 8 € lim(Cgyp(x)), Coup(x) N B = Cj holds. For each z € Sx such that
z N B is unbounded in B and sup(z) > B, let 5, = min(z \ B).

Case 1. B, = . Then Cg, Nsup(z N B;) = Cp = Coupx) N B = Coupz) N B =
C’sup(ac) n sup(x N Bz)

Case 2. B, > B. Then sup(z N fB;) = B and B = sup(z N B) € lim(Cy, ), hence
Cs, N B = Cp = Coupx) N B = Csup(z) N B = Caup(z) N sup(z N Sy).

Hence for each z € Sx such that x N S is unbounded in S and sup(z) > 3,
we have Cyup(z) N sup(z N B;) = Cp, Nsup(z N S;). By applying Fodor’s lemma
to Sx, we can find Bx € X such that {z € Sx : Bx = B} is stationary. Thus
{r € S*NPX : Coup) Nsup(z N Bx) = Cpy Nsup(z N Bx)} is stationary.

By applying Fodor’s lemma to T”, we have 3, < A such that {X € T" : 8. = Bx}
is stationary. Then S, 4, is stationary and S, > &. O[Claim]

Claim 4.5. For each a € Ay and B € A; with a < 8, Cy = Cp N a holds.

Proof. Let T* = {X € T : Sp o NPcX, SisNP.X are stationary in P, X}. Take
X € T*. Since Dx = {z € PxX : Coypx) Nsup(z) = Ciup(z)} contains a club
in P,X, Dx N Sy is stationary in P,X. For £ € Cx N Sp 4, Cy Nsup(z Na) =
Csup(z) Nsup(zNa) = Ceypx) Nsup(zNa) holds. Since {sup(zNa):z € CxNSoqa}
is unbounded in sup(X N a), we have Cyypx) Nsup(X Na) = Cy Nsup(X N @).
Similarly, we have Cg N sup(X N B) = Caupx) Nsup(X N B). Therefore we have

Co Nsup(X Na) = CsgNsup(X Na).
Because {sup(X Na) : X € T*} is unbounded in «, we have C, = Cs N a.
O[Claim)]

Now, let C = {Cs : B € Ap}. Since A is unbounded, C is unbounded. Fur-
thermore, C, = CgNa for all a < f € A; For o, € Ay with a < 3, choose
v € Ay with <. Then C, = C;Na and Cs = C,Na. Thus C, = CsNa.
Hence C forms a club in A. Take a € lim(C). Then there exists 8 € Ay such that
CNa = CgNa. Since a € lim(C), we know « € lim(Cp) and C, = CsNa = CNa.
Thus Vo € lim(C) (C N a = C,), this is a contradiction. O

Baumgartner|[1] showed that if a weakly compact cardinal « is collapsed to wq by
Levy-collapse with countable conditions, then RP(P,,w,) holds, and it is known
that in fact RP?(P,,w,, P.,w2) holds in the generic extension. Conversely, Veli-
cikovic [3]showed that if RP(P,,w2) holds, then ws, is weakly compact in L. Con-
sequently, we have the following equiconsistency:



Corollary 4.6. The following are equiconsistent:

(1) ZFC + “there exists a weakly compact cardinal”.

(2) ZFC + “RP(P,,w2) holds”.

(8) ZFC + “RP*(P. w2, Puws) holds”.

(4) ZFC + “RP?*(S%, St) holds for some stationary sets Si, St C P ws”.

5. PROOF OF THEOREM 1.8

Proposition 5.1. Suppose RP(S*) for some stationary S* C P.X. Then every
k-c.c. forcing preserves RP(S*).

Proof. First note that every k-c.c. forcing preserves the stationarity of S*.

Let P be a poset which satisfies the x-c.c. Let S be a P-name such that IF4S C S§*
is stationary”. It is enough to show that there are some p € P and X C P.+ ) such
that p IF“S NP, X is stationary in P.X".

Let &' = {z € $*: Ip € P(p IFc € §”)}. It is easy to check that S is a
stationary subset of S*. By RP(S*), there is X € P.+A such that | X| =k C X
and S’ N P,.X is stationary in P,X. We see that p IF“S N P.X is stationary”
for some p € P. Suppose to the contrary that IF“S N P,.X is non-stationary”.
Since [X| = « and P satisfies the x-c.c., we can find a club C C P.X such that
IF«SNC =0”. $’NP.X is stationary, hence there is z € S’ N C. Pick p € P with
plF¢z € 8”. Thenpl-“z € SN C”, this is a contradiction. O

Recall that PFA™™ is the assertion that for every proper forcing notion P, every
dense subsets D; (i < w;) of P, and every P-names S; (i < wy) for stationary
subsets of wy, there is a filter F on P such that:

(1) D; N F # 0 for every i < wy.
(2) Si={a<w :3peF(plrp“a € 5} is stationary in w; for i < w;.

Proposition 5.2. Suppose PFA™. Let A > wo. Then every c.c.c. forcing notion
forces RP? (PY X, PYA).

Proof. Let P be a poset which satisfies the c.c.c. Let Sp, S; be P-names so that
H—“SO,S"l - ’Pwvl)\ are stationary”. We will find p € P and X € P,, A such that
pIF“Sy N P X, SN P., X are stationary”.

Let Q be a P-name for a o-closed poset which adds a bijection from w; to A.
We know that IFp,q “Sp, S1 remain stationary”. Fix a P x Q-name 7 for a bijection
from w; to A. Let Ep, F; be P * Q-names such that Fpagy “Bi={a<w 7% €
Sz, TéaNwy = a}” for i =0,1. We know |FP*Q “E is stationary in w;”.
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Now fix a sufficiently large regular cardinal § and take M < Hj such that | M| =
w; € M and M contains all relevant objects.

P+ Q is proper, hence we can apply PFA™™ to P+« Q and E;. By PFA™ we can
find a filter F on P * Q such that:

(1) FND # 0 for all dense D € M in P x Q.
(2) Ei={a<w:3IpeF(plhpg ac E;”)} is stationary in w; for i = 0, 1.

Let X = {8 < A:3p€ Fla < w(p IFp,g“m(a) = 5”)}. We can check that
| X| =w; C X.

Since Sy, S; are names for subsets of P‘Yl)\, for each a € E;, we can find z € P,, A
and p € F such that z Nw; = a and p Ik, “7“a = z”7. Moreover it is easy to see
that z € P, X.

For i < 2 and o € E;, take z,, € P,, X such that there is p € F with
Plrpg “Tia=2,". Let S;={zia:a € E;}. The following are easy to check for
1< 2

(1) ;o C z;p holds for a, § € E; with a < 8.

(2) If a € lim(E;) N E;, then z; , = UﬂeEma Tig-

B)Us:=X.
Furthermore, since E; = {z;,Nw; : o € E;} is stationary in w;, we can check that
each S; is stationary in P,, X.

Now we see that p IFp “So N P, X, SN P., X are stationary” for some p € P.
Suppose otherwise. Since PP satisfies the c.c.c. and | X| = w;, we an find a club C
in P,, X such that IFp“C' N So=0orCNS; =0.

Since Sp and S; are stationary in P, X, we can find zy € SoNC and z; € 5;NC.
Then there is ¢ € F such that q IFp,s“zo € So and z; € S1”. Thus q lbpg“C NSy #*
() and C N Sy # 07, this is a contradiction. O
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