PARTIAL STATIONARY REFLECTION PRINCIPLES

TOSHIMICHI USUBA

Toshimichi Usuba (薄葉 季路)
Institute for Advanced Research,
Nagoya University

1. Introduction

Throughout this paper, κ denotes a regular uncountable cardinal and λ a cardinal $\geq \kappa^+$, unless otherwise specified.

Partial stationary reflection on $\mathcal{P}_{\omega_1}\omega_2$ was introduced by H. Sakai [2]. First we extend his notion to arbitrary κ and λ .

Definition 1.1. Let S^* be a stationary subset of $\mathcal{P}_{\kappa}\lambda$. For a stationary set $T \subseteq \mathcal{P}_{\kappa^+}\lambda$, we say that $RP(S^*,T)$ holds if for every stationary subset $S \subseteq S^*$ there exists $X \in T$ such that $\kappa \subseteq X$ and $S \cap \mathcal{P}_{\kappa}X$ is stationary in $\mathcal{P}_{\kappa}X$. $RP(S^*)$ means $RP(S^*,\mathcal{P}_{\kappa^+}\lambda)$.

It is known that total stationary reflection $RP(\mathcal{P}_{\kappa}\lambda)$ is a large cardinal property (e.g., see Velicikovic [3]), but Sakai [2] showed that partial stationary reflection on $\mathcal{P}_{\omega_1}\omega_2$ is not:

Fact 1.2 ([2]). Suppose CH. If \square_{ω_1} holds, then there are a stationary set $S^* \subseteq \mathcal{P}_{\omega_1}\omega_2$ and a σ -Baire, ω_2 -c.c. poset \mathbb{P} such that \mathbb{P} forces $RP(S^*)$.

In this paper, we generalize his result as follows:

Theorem 1.3. Suppose $\kappa^{<\kappa} = \kappa$. Let $T \subseteq \mathcal{P}_{\kappa^+}\lambda$ be a stationary set such that $\forall X \in T (\kappa \subseteq X)$. Then there exists a κ -closed, κ^+ -c.c. poset which forces the following statements:

- (1) T is stationary.
- (2) There exists a stationary set $S^* \subseteq \mathcal{P}_{\kappa}\lambda$ such that
 - (a) $\forall X \in T (S^* \cap \mathcal{P}_{\kappa} X \text{ contains a club in } \mathcal{P}_{\kappa} X)$,
 - (b) $RP(S^*,T)$ holds.

This theorem shows that, even $\kappa > \omega_1$ and $\lambda > \omega_2$, our partial stationary reflection is not a large cardinal property.

Next we consider a natural strengthening of partial stationary reflection, simultaneous partial stationary reflection.

Definition 1.4. For stationary sets $S_0^*, S_1^* \subseteq \mathcal{P}_{\kappa}\lambda$ and $T \subseteq \mathcal{P}_{\kappa^+}\lambda$, we say that $RP^2(S_0^*, S_1^*, T)$ holds if for every stationary subsets $S_0 \subseteq S_0^*$ and $S_1 \subseteq S_1^*$ in $\mathcal{P}_{\kappa}\lambda$, there exists $X \in T$ such that $\kappa \subseteq X$ and both $S_0 \cap \mathcal{P}_{\kappa}X$ and $S_1 \cap \mathcal{P}_{\kappa}X$ are stationary in $\mathcal{P}_{\kappa}X$. $RP^2(S_0^*, S_1^*)$ means $RP^2(S_0^*, S_1^*, \mathcal{P}_{\kappa^+}\lambda)$.

We prove that our simultaneous partial stationary reflection is a large cardinal property by showing the following:

Definition 1.5. For a regular uncountable cardinal μ , $\square(\mu)$ holds if there exists a sequence $\langle C_{\xi} : \xi < \mu \rangle$ satisfying the following:

- (1) for all $\xi < \mu$, C_{ξ} is club in ξ and for all $\eta \in \lim(C_{\xi})$, $C_{\eta} = C_{\xi} \cap \eta$,
- (2) for all club C in μ , there exists $\xi \in \lim(C)$ such that $C \cap \xi \neq C_{\xi}$. Such an sequence $\langle C_{\xi} : \xi < \mu \rangle$ is called a $\square(\mu)$ -sequence.

Theorem 1.6. Suppose $RP^2(S_0^*, S_1^*)$ holds for some stationary $S_0^*, S_1^* \subseteq \mathcal{P}_{\kappa}\lambda$. Then for every regular μ with $\kappa^+ \leq \mu \leq \lambda$, $\square(\mu)$ fails.

We also prove the following:

Theorem 1.7. For every stationary S_0^* , $S_1^* \subseteq \mathcal{P}_{\kappa}\lambda$ and regular μ with $\kappa^+ \leq \mu \leq \lambda$, $RP^2(S_0^*, S_1^*, \{X \in \mathcal{P}_{\kappa^+}\lambda : cf(X \cap \mu) < \kappa\})$ fails, where cf(X) = cf(ct(X)).

Todorcevic showed that $RP(\mathcal{P}_{\omega_1}\omega_2)$ implies that $2^{\omega} \leq \omega_2$. However we prove the following, which shows that our partial stationary reflection does not affect the size of the continuum:

- **Theorem 1.8.** (1) Suppose $RP(S^*)$ for some stationary $S^* \subseteq \mathcal{P}_{\kappa}\lambda$. Then every κ -c.c. forcing preserves $RP(S^*)$.
 - (2) Suppose PFA⁺⁺. Let $\lambda \geq \omega_2$. Then every c.c.c. forcing notion forces $RP^2(\mathcal{P}^V_{\omega_1}\lambda, \mathcal{P}^V_{\omega_1}\lambda)$.

2. Preliminaries

For a set X of ordinals, let cf(X) = cf(ot(X)).

For regular cardinals $\nu < \mu$, let $E^{\mu}_{\nu} = \{\alpha < \mu : \text{cf}(\alpha) = \nu\}$ and $E^{\mu}_{<\nu} = \{\alpha < \mu : \text{cf}(\alpha) < \nu\}$.

The proofs of the following lemmatta are easy:

Lemma 2.1. For a stationary $S \subseteq \mathcal{P}_{\kappa}\lambda$ and a κ -c.c. poset \mathbb{P} , \mathbb{P} preserves the stationarity of S.

Lemma 2.2. For $S \subseteq \mathcal{P}_{\kappa}\lambda$, if $\{X \in \mathcal{P}_{\kappa^{+}}\lambda : S \cap \mathcal{P}_{\kappa}X \text{ is stationary in } \mathcal{P}_{\kappa}X\}$ is stationary in $\mathcal{P}_{\kappa^{+}}\lambda$, then S is stationary in $\mathcal{P}_{\kappa}\lambda$.

Lemma 2.3. For stationary sets $S^* \subseteq \mathcal{P}_{\kappa}\lambda$ and $T \subseteq \mathcal{P}_{\kappa^+}\lambda$, suppose $RP(S^*, T)$ holds. Then for every stationary $S \subseteq S^*$, $\{X \in T : S \cap \mathcal{P}_{\kappa}X \text{ is stationary in } \mathcal{P}_{\kappa}X\}$ is stationary in $\mathcal{P}_{\kappa^+}\lambda$.

We define club shootings into $\mathcal{P}_{\kappa}\lambda$, which was observed in [2].

Definition 2.4. For $S \subseteq \mathcal{P}_{\kappa}\lambda$, let $\mathbb{C}(S)$ be the poset which consists of all functions p such that:

- $(1) |p| < \kappa,$
- (2) $p: d(p) \times d(p) \to \kappa$ for some $d(p) \in \mathcal{P}_{\kappa}\lambda$, and
- (3) $\forall x \subseteq d(p) (x \in S \Rightarrow x \text{ is not closed under } p)$.

For $p, q \in \mathbb{C}(S)$, $p \leq q \iff q \subseteq p$. Let $\mathbb{C} = \mathbb{C}(\emptyset)$.

Lemma 2.5. (1) $\mathbb{C}(S)$ satisfies the $(2^{<\kappa})^+$ -c.c.

- (2) For every $x \in \mathcal{P}_{\kappa}\lambda$, $\{p \in \mathbb{C}(S) : x \subseteq d(p)\}$ is a dense open set in $\mathbb{C}(S)$.
- (3) Whenever G is $(V, \mathbb{C}(S))$ -generic, $\bigcup G$ is a function from $\lambda \times \lambda$ to κ , and every $x \in S$ is not closed under the function.

Proof. For (1), take $A \subseteq \mathbb{C}(S)$ with size $(2^{<\kappa})^+$. By Δ -system lemma, we can find $B \subseteq A$ and $a \in \mathcal{P}_{\kappa}\lambda$ such that $|B| = (2^{<\kappa})^+$ and $d(p) \cap d(q) = a$ for every distinct $p, q \in B$. Moreover we may assume that $p|a \times a = q|a \times a$ for every $p, q \in B$. We check that B is a pairwise compatible set.

Take $p, q \in B$. Pick $\alpha < \kappa$ with $\alpha > \sup(d(p) \cap \kappa) + 1, \sup(d(q) \cap \kappa) + 1$. Then define r as $\operatorname{dom}(r) = (d(p) \cup d(q)) \times (d(p) \cup d(q))$ and

$$r(\xi, \eta) = \begin{cases} p(\xi, \eta) & \text{if } \xi, \eta \in d(p). \\ q(\xi, \eta) & \text{if } \xi, \eta \in d(q). \\ \alpha & \text{otherwise.} \end{cases}$$

We have $r \leq p, q$. (2) follows from a similar argument, and (3) is straightforward.

3. The proof of Theorem 1.3

Suppose $\kappa^{<\kappa} = \kappa$. Fix a stationary set $T \subseteq \mathcal{P}_{\kappa^+}\lambda$ such that $\forall X \in T \ (\kappa \subseteq X)$. We consider the following poset \mathbb{P}_T , which adds a new stationary subset S^* of $\mathcal{P}_{\kappa}\lambda$.

Definition 3.1. \mathbb{P}_T is the set of all functions p satisfying the following:

- (1) $|p| < \kappa$ and $dom(p) \subseteq T$,
- (2) for every $X \in \text{dom}(p)$, p(X) is a \subseteq -increasing continuous set $\{x_i : i \leq \gamma\}$ in $\mathcal{P}_{\kappa}X$ such that $\gamma < \kappa$ and $x_i \cap \kappa \in \kappa$ for all $i \leq \gamma$.

For $p \in \mathbb{P}_T$ and $X \in \text{dom}(p)$, $\max(p(X))$ denotes the maximum element of p(X). Let $u(p) = \bigcup \{p(X) : X \in \text{dom}(P)\}$. Note that $u(p) \subseteq \mathcal{P}_{\kappa}\lambda$ and $|u(p)| < \kappa$. For $p, q \in \mathbb{P}_T$, define $p \leq q \iff$

- (a) $dom(p) \supseteq dom(q)$,
- (b) $\forall X \in \text{dom}(q)(q(X) = \{x \in p(X) : x \subseteq \max(q(X))\})$ (hence $u(p) \supseteq u(q)$),
- (c) $\forall x \in u(p) \ (x \subseteq \bigcup u(q) \Rightarrow x \in u(q)),$
- (d) $\forall X \in \text{dom}(p) \setminus \text{dom}(q) \left(\max(p(X)) \nsubseteq \bigcup u(q) \right)$
- (e) $\forall X \in \text{dom}(q) \forall x \in p(X) \setminus q(X) (x \nsubseteq \bigcup u(q)).$

Lemma 3.2. (1) \mathbb{P}_T is κ -closed,

- (2) \mathbb{P}_T satisfies the κ^+ -c.c. (if $\kappa^{<\kappa} = \kappa$),
- (3) for all $X \in T$ and $x \in \mathcal{P}_{\kappa}X$, $\{p \in \mathbb{P}_T : X \in \text{dom}(p) \text{ and } x \subseteq \text{max}(p(X))\}$ is dense in \mathbb{P}_T .

Proof. (1). Let $\gamma < \kappa$ be a limit ordinal and $\langle p_i : i < \gamma \rangle$ be a decreasing sequence in \mathbb{P}_T . Then define the function p^* as the following manner:

- (i) $dom(p^*) = \bigcup_{i < \gamma} dom(p_i),$
- (ii) for $X \in \text{dom}(p^*)$, $p^*(X) = \bigcup \{p_i(X) : i < \gamma, X \in \text{dom}(p_i)\} \cup \{\bigcup \{\max(p_i(X)) : i < \gamma, X \in \text{dom}(p_i)\}\}$.

Since the p_i 's are decreasing, it is easy to show that $p^* \in \mathbb{P}_T$. For $i < \gamma$, we show $p \le p_i$. It is easily verified that the conditions (a) and (b) in the definition of the order are satisfied.

(c). Take $x \in u(p^*)$ such that $x \subseteq \bigcup u(p_i)$. Take $X \in \text{dom}(p^*)$ such that $x \in p^*(X)$. If $x \neq \max(p^*(X))$, then $x \in p_j(X)$ for some j > i with $X \in \text{dom}(p_j)$. Since $p_j \leq p_i$, we have $x \in p_i(X)$. Next suppose $x = \max(p^*(X))$. Take $k < \gamma$ such that i < k and $X \in \text{dom}(p_k)$. Then $\max(p_k(X)) \subseteq \max(p^*(X)) = x \subseteq \bigcup u(p_i)$ holds. Hence $X \in \text{dom}(p_i)$ by (d). For each $j \geq i$, $\max(p_j(X)) \subseteq \max(p^*(X)) = x \subseteq i$

- $\bigcup u(p_i)$ holds. Thus we have $\max(p_j(X)) \in p_i(X)$ by (e). Therefore $\{\max(p_j(X)) : i \leq j < \gamma\} \subseteq p_i(X)$, and we have $\max(p^*(X)) = \bigcup \{\max(p_j(X)) : i \leq j < \gamma\} \in p_i(X)$.
- (d). Take $X \in \text{dom}(p^*) \setminus \text{dom}(p_i)$. Then there exists j > i such that $X \in \text{dom}(p_j)$. We know $\max(p_j(X)) \nsubseteq \bigcup u(p_i)$. Because $\max(p_j(X)) \subseteq \max(p^*(X))$, we know $\max(p^*(X)) \nsubseteq \bigcup u(p_i)$.
- (e). Take $X \in \text{dom}(p_i)$ and $x \in p^*(X) \setminus p_i(X)$. Then there exist $j \geq i$ and $y \in \text{dom}(p_i)$ such that $y \subseteq x$ and $y \notin p_i(X)$. Hence $y \not\subseteq \bigcup u(p_i)$ and $x \not\subseteq \bigcup u(p_i)$.
- (2). Take an arbitrary $A \subseteq \mathbb{P}_T$ with $|A| \ge \kappa^+$. We prove that A is not an antichain. By Δ -system lemma, we can find $r \in \mathcal{P}_{\kappa}T$, $s \in \mathcal{P}_{\kappa}\lambda$, and $B \subseteq A$ with $|B| \ge \kappa^+$ such that $\forall p, q \in B \ (\text{dom}(p) \cap \text{dom}(q) = r \ \text{and} \ \bigcup u(p) \cap \bigcup u(q) = s)$. By our cardinal arithmetic assumption, there exists $C \subseteq B$ with $|C| \ge \kappa^+$ such that $\forall p, q \in B \ (\forall X \in r \ (p(X) = q(X)) \ \text{and} \ \mathcal{P}_{\kappa}s \cap u(p) = \mathcal{P}_{\kappa}s \cap u(q))$. We check that any two elements of C are pairwise compatible. Take $p, q \in C$. For each $X \in \text{dom}(p) \cup \text{dom}(q)$, fix $a_X \in \mathcal{P}_{\kappa}X$ such that $(\bigcup u(p) \cup \bigcup u(q)) \cap X \subsetneq a_X$. Define the function r as the following:
 - (i) $dom(r) = dom(p) \cup dom(q)$,
 - (ii) $r(X) = p(X) \cup \{a_X\}$ if $X \in \text{dom}(p)$, and $r(X) = q(X) \cup \{a_X\}$ if $X \in \text{dom}(q)$.

This is well-defined because p(X) = q(X) for all $X \in \text{dom}(p) \cap \text{dom}(q)$. We see that r is a lower bound of p and q. $r \in \mathbb{P}_T$ is easily verified. For $r \leq p$, the conditions (a) and (b) are clear.

- (c). Take $x \in u(r)$ such that $x \subseteq \bigcup u(p)$. Then $x \neq a_X$ for all $X \in \text{dom}(p) \cup \text{dom}(q)$. Hence $x \in u(p) \cup u(q)$. If $x \in u(p)$ then we have done. Assume $x \in u(q)$. Then $x \subseteq \bigcup u(q)$. Since $x \subseteq \bigcup u(p)$, we have $x \subseteq \bigcup u(p) \cap \bigcup u(q) = s$ and $x \in \mathcal{P}_{\kappa}s$. Because $\mathcal{P}_{\kappa}s \cap u(p) = \mathcal{P}_{\kappa}s \cap u(q)$, we have $x \in \mathcal{P}_{\kappa}s \cap u(p)$ and $x \in u(p)$.
- (d). Take $X \in \text{dom}(r) \setminus \text{dom}(p)$. Then $\max(r(X)) = a_X \supsetneq \bigcup u(p) \cap X$, thus $\max(r(X)) \not\subseteq \bigcup u(p)$.
- (e). Take $X \in \text{dom}(p)$ and $x \in r(X) \setminus p(X)$. By the definition of r(X), we have $r(X) = p(X) \cup \{a_X\}$. Hence $x = a_X \nsubseteq \bigcup u(p)$.
 - $r \leq q$ can be proved by the same argument.
- (3). Take $X \in T$, $x \in \mathcal{P}_{\kappa}X$ and $q \in \mathbb{P}$. Take $x^* \in \mathcal{P}_{\kappa}X$ such that $\bigcup u(q) \cap X \subsetneq x^*$. Define p as $dom(p) = dom(q) \cup \{X\}$, p|dom(q) = q and $p(X) = \{x^*\}$ if $X \notin dom(q)$, and $q(X) \cup \{x^*\}$ if $X \in dom(q)$. Then $p \leq q$ can be verified.

Note that the following: For $\gamma < \kappa$ and a decreasing sequence $\langle p_i : i < \gamma \rangle$ in \mathbb{P}_T , let p^* be a lower bound of the p_i 's as constructed in the proof of (1) above. Then p^* is the largest lower bound of the p_i 's and $\bigcup u(p^*) = \bigcup_{i < \gamma} (\bigcup u(p_i))$.

Definition 3.3. For a canonical name of (V, \mathbb{P}_T) -generic filter \dot{G} , let \dot{S}^* be a \mathbb{P}_T -name such that

$$\Vdash_{\mathbb{T}} "\dot{S}^* = \bigcup \{u(p) : p \in \dot{G}\}".$$

The following are easily verified by the definition of \mathbb{P}_T .

Lemma 3.4. (1) $\Vdash_{\mathbb{P}_T}$ " $\forall X \in T \ (\dot{S}^* \cap \mathcal{P}_{\kappa} X \ contains \ a \ club \ in \ \mathcal{P}_{\kappa} X)$ ", (2) for all $p \in \mathbb{P}_T$, $p \Vdash_{\mathbb{P}_T}$ " $\{y \in \dot{S}^* : y \subseteq \bigcup u(p)\} = u(p)$ ".

Now fix a name \dot{S} such that

$$\Vdash_{\mathbb{P}_T}$$
 " $\dot{S} \subseteq \dot{S}^*$ and $\forall X \in T \ (\mathcal{P}_{\kappa}X \cap \dot{S} \text{ is non-stationary in } \mathcal{P}_{\kappa}X)$ ".

We see that $\mathbb{P}_T * \mathbb{C}(\dot{S})$ has good properties.

For each $X \in T$, fix a name \dot{g}_X such that

$$\Vdash_{\mathbb{P}_T}$$
 " $\dot{g}:[X]^{<\omega}\to X$ and $\forall x\in\mathcal{P}_\kappa X$ (x is closed under $\dot{g}_X\Rightarrow x\notin\dot{S}$)".

Let $\dot{\mathbb{Q}}$ be a name such that $\Vdash "\dot{\mathbb{Q}} = \mathbb{C}(\dot{S})"$. We prove that $\mathbb{P}_T * \dot{\mathbb{Q}}$ has a κ -closed dense subset.

Lemma 3.5. Let $D = \{ p \in \mathbb{P}_T : \forall X \in \text{dom}(p) \ (p \Vdash_{\mathbb{P}_T} \text{``max}(p(X)) \ is \ closed \ under \ g_X ") \}$. Then D is dense in \mathbb{P}_T .

Proof. Take $p \in \mathbb{P}_T$. We want to find $q \in D$ such that $q \leq p$. We take a decreasing sequence p_i $(i < \omega)$ in \mathbb{P}_T by induction on $i < \omega$. Let $p_0 = p$. Suppose p_i is defined. By the κ -closedness of \mathbb{P}_T , we can choose $p' \leq p_i$ and $a \in \mathcal{P}_{\kappa}\lambda$ such that $p' \Vdash$ " \dot{g}_X " $[\max(p_i(X))]^{<\omega} \subseteq a \cap X$ " for all $X \in \text{dom}(p_i)$. Then choose $p_{i+1} \leq p'$ such that $a \cap X \subseteq \max(p_{i+1}(X))$ for all $X \in \text{dom}(p_i)$.

Finally let q be the greatest lower bound of the p_i 's. By our construction, it is easy to see that $q \in D$.

Lemma 3.6. Let D be as in Lemma 3.5. Let $D' = \{\langle p, q \rangle \in \mathbb{P}_T * \dot{\mathbb{Q}} : p \in D, q = \check{r} \text{ for some } r \in \mathbb{C} \text{ and } d(r) = \bigcup (u(p))\}$. Then D' is a κ -closed dense subset in $\mathbb{P}_T * \dot{\mathbb{Q}}$.

Proof. Density: Take $\langle p, \dot{q} \rangle \in \mathbb{P}_T * \dot{\mathbb{Q}}$. Take $p' \in D$ and r such that $p' \Vdash "\check{r} = \dot{q}$ " and $\bigcup u(p') \supseteq d(r)$. Now define r' as the following:

- (1) $r': \bigcup u(p') \times \bigcup u(p') \to \kappa$,
- (2) for $a \in \bigcup u(p') \times \bigcup u(p')$, if $a \in d(r) \times d(r)$ the r'(a) = r(a), otherwise $r'(a) = \sup(\bigcup (u(p') \cap \kappa)) + 1$.

It is easy to show that $p' \Vdash "\check{r'} \in \mathbb{C}(\dot{S})"$ and $\langle p', \check{r'} \rangle \leq \langle p, \dot{q} \rangle$.

Next we prove D' is κ -closed. Let $\gamma < \kappa$ and $\langle p_i, \check{q_i} \rangle$ $(i < \gamma)$ be a decreasing sequence in D'. We show that this sequence has a lower bound. Let $p^* \in \mathbb{P}_T$ be the greatest lower bound of the p_i 's. Note that for all $X \in \text{dom}(p^*)$, $p^* \Vdash_{\mathbb{P}_T} \text{"max}(p^*(X))$ is closed under g_X ".

Let $q^* = \bigcup_{i < \gamma} q_i$. q^* is a function with the domain $d(q^*) \times d(q^*)$, where $d(q^*) = \bigcup_{i < \gamma} d(q_i)$. Notice that $d(q^*) = \bigcup_{i < \gamma} d(q_i) = \bigcup_{i < \gamma} \bigcup u(p_i) = \bigcup u(p^*)$. We complete the proof by showing the following claim.

Claim 3.7. $p^* \Vdash "q^* \in \mathbb{C}(S)"$.

Proof. Take a (V, \mathbb{P}_T) -generic G with $p^* \in G$ and work in V[G]. First note that $\{x \in S^* : x \subseteq \bigcup u(p^*)\} = u(p^*)$. To show that $q^* \in \mathbb{C}(S)$, take $x \subseteq d(q^*)$ with $x \in S$. We check that x is not closed under q^* . Since $x \subseteq d(q^*) = \bigcup u(p^*)$ and $x \in S \subseteq S^*$, we have $x \in u(p^*)$. Hence there exists $X \in \text{dom}(p^*)$ such that $x \in p^*(X)$. Because $\max(p^*(X))$ is closed under g_X , we know $\max(p^*(X)) \notin S$. Thus $x \neq \max(p^*(X))$ and $x \in p_i(X)$ for some $i < \gamma$ with $X \in \text{dom}(p_i)$. Then $x \subseteq \bigcup u(p_i) = d(q_i)$. Since q_i is a condition, x is not closed under q_i , and not closed under q^* .

Note that, in fact, D' is κ -directed closed.

By an iteration of the above forcing, we can prove Theorem 1.3. Let $\langle \mathbb{P}_{\xi}, \dot{\mathbb{Q}}_{\eta} : \xi < \zeta, \eta < \zeta \rangle$ be a $< \kappa$ -support iteration such that for every $\xi < \zeta$,

- $(1) \mathbb{Q}_0 = \mathbb{P}_T,$
- (2) \mathbb{P}_{ξ} satisfies the κ^+ -c.c. and has a κ -closed dense subset,
- (3) for $\xi > 0$ there exists \mathbb{P}_{ξ} -name \dot{S}_{ξ} such that

 \Vdash_{ξ} " $\dot{S}_{\xi} \subseteq \dot{S}^*$ and $\forall X \in T (\mathcal{P}_{\kappa}X \cap \dot{S}_{\xi} \text{ is non-stationary in } \mathcal{P}_{\kappa}X)$ ",

(4) for every $X \in T, \, \dot{g}_X^{\xi}$ is a \mathbb{P}_{ξ} -name such that

 $\Vdash_{\xi} "\dot{g}_X^{\xi} : [X]^{<\omega} \to X \text{ and } \forall x \in \mathcal{P}_{\kappa} X \ (x \in \dot{S}_{\xi} \Rightarrow x \text{ is not closed under } \dot{g}_X^{\xi})",$

- (5) \Vdash_{ξ} " $\dot{\mathbb{Q}}_{\xi} = \mathbb{C}(\dot{S}_{\xi})$ " for $\xi > 0$,
- (6) let D_{ξ} is the set of all $p \in \mathbb{P}_{\xi}$ such that

- (a) $\forall \eta \in \text{supp}(p) \setminus \{0\} \ (p(\eta) = \check{r} \text{ for some } r \in \mathbb{C}),$
- (b) for all $X \in \text{dom}(p(0))$ and $\eta \in \text{supp}(p) \setminus \{0\}$ ($p \mid \eta \Vdash_{\eta} \text{``max}(p(0)(X))$) is closed under \dot{g}_X^{η} ",
- (c) $\bigcup (u(p(0)) = d(p(\eta))$ for all $\eta \in \text{supp}(p) \setminus \{0\}$.

Then D_{ξ} is a κ -closed dense set in \mathbb{P}_{ξ} .

Let \mathbb{P}_{ζ} and D_{ζ} be as intended. We can check that D_{ζ} is a κ -closed dense set in \mathbb{P}_{ζ} , and \mathbb{P}_{ζ} has the κ^+ -c.c.

By a standard book keeping method, we can destroy the stationarity of all non-reflecting subset of S^* by an iteration above. By κ^+ -c.c., T remains stationary in $\mathcal{P}_{\kappa^+}\lambda$ in the generic extension. Thus S^* is stationary in $\mathcal{P}_{\kappa}\lambda$, and $RP(S^*,T)$ holds.

4. Proof of Theorems 1.6 and 1.7

Proposition 4.1. Let μ be a regular cardinal with $\kappa^+ \leq \mu \leq \lambda$. Let $T = \{X \in \mathcal{P}_{\kappa^+}\lambda : \kappa \subseteq X, \operatorname{cf}(X \cap \mu) < \kappa\}$. Then for every stationary sets $S_0^*, S_1^* \subseteq \mathcal{P}_{\kappa}\lambda$, $\operatorname{RP}^2(S_0^*, S_1^*, T)$ fails.

Proof. Suppose not. For each $\xi \in E^{\mu}_{<\kappa}$, fix an increasing sequence $\langle \gamma_i^{\xi} : i < \text{cf}(\xi) \rangle$ with limit ξ . For n < 2, $i < \kappa$, and $\delta < \mu$, let

$$S_{n,i,\delta} = \{ x \in S_n^* : \delta = \min(x \setminus \gamma_i^{\sup(x \cap \mu)}) \}.$$

- Claim 4.2. (1) For every $\xi < \mu$, there exist $i < \kappa$ and $\delta < \mu$ such that $\delta > \xi$ and $S_{0,i,\delta}$ is stationary.
 - (2) For every $i < \kappa$ and $\delta < \mu$, if $S_{0,i,\delta}$ is stationary then $S_{1,i,\delta}$ is stationary.
 - (3) For every $i < \kappa$ and $\delta_0, \delta_1 < \mu$, if S_{0,i,δ_0} and S_{1,i,δ_1} are stationary then $\delta_0 = \delta_1$.
- Proof. (1). Let $T' = \{X \in T : S_0^* \cap \mathcal{P}_{\kappa}X \text{ is stationary, } \xi \in X\}$. T' is stationary in $\mathcal{P}_{\kappa^+}\lambda$. Take $X \in T'$. Then $\operatorname{cf}(X \cap \mu) < \kappa \subseteq X$ and $\sup(X \cap \mu) > \xi$, hence there exists $i \in X$ such that $\gamma_i^{\sup(X \cap \mu)} > \xi$. By applying Fodor's lemma to T', there exists $i < \kappa$ such that $T'' = \{x \in T' : \gamma_i^{\sup(X \cap \mu)} > \xi\}$ is stationary in $\mathcal{P}_{\kappa^+}\lambda$. For $X \in T''$ let $\delta_X = \min(X \setminus \gamma_i^{\sup(X \cap \mu)})$. By Fodor's lemma again, there is $\delta < \mu$ such that $T^* = \{X \in T'' : \gamma_i^{\sup(X \cap \mu)} > \xi, \delta = \min(X \setminus \gamma_i^{\sup(X \cap \mu)})\}$ is stationary in $\mathcal{P}_{\kappa^+}\lambda$.

Pick $X \in T^*$. Since $\operatorname{cf}(X \cap \mu) < \kappa$, the set $D_X = \{x \in \mathcal{P}_{\kappa}X : \sup(x \cap \mu) = \sup(X \cap \mu), \delta \in x\}$ contains a club in $\mathcal{P}_{\kappa}X$. Clearly $x \in S_{0,i,\delta}$ for each $x \in D_X \cap S_0^*$. This means that $S_{0,i,\delta}$ is stationary in $\mathcal{P}_{\kappa}\lambda$.

(2). By $RP^2(S_0^*, S_1^*)$, $T' = \{X \in T : \delta \in X, S_{0,i,\delta} \cap \mathcal{P}_{\kappa}X, S_1^* \cap \mathcal{P}_{\kappa}X \text{ are stationary } \}$ is stationary in $\mathcal{P}_{\kappa} + \lambda$. Fix $X \in T'$. Since $S_{0,i,\delta} \cap \mathcal{P}_{\kappa}X$ is stationary in $\mathcal{P}_{\kappa}X$ and

 $\operatorname{cf}(X \cap \mu) < \kappa$, we have that $\delta = \min(X \setminus \gamma_i^{\sup(X \cap \mu)})$. By the same argument as (1), we have that $S_{1,i,\delta}$ is stationary in $\mathcal{P}_{\kappa}\lambda$.

(3). Let $X \in T$ be such that $\delta_0, \delta_1 \in X$ and $S_{0,i,\delta_0} \cap \mathcal{P}_{\kappa}X$, $S_{1,i,\delta_1} \cap \mathcal{P}_{\kappa}X$ are stationary. Choose $x_0 \in S_{0,i,\delta_0} \cap \mathcal{P}_{\kappa}X$ and $x_1 \in S_{1,i,\delta_1} \cap \mathcal{P}_{\kappa}X$ such that $\sup(x_0 \cap \mu) = \sup(x_1 \cap \mu) = \sup(X \cap \mu)$ and $\delta_0, \delta_1 \in x_0 \cap x_1$. By the minimality of δ_0 , we have $\delta_0 \leq \delta_1$. Similarly we know $\delta_1 \leq \delta_0$. Therefore $\delta_0 = \delta_1$.

Hence we have that if $S_{0,i,\delta}$ and $S_{0,i,\delta'}$ are stationary, then $\delta = \delta'$.

For each $i < \kappa$, define $\delta_i < \mu$ as follows: if $S_{0,i,\delta}$ is stationary for some $\delta < \mu$, then let δ_i be a (unique) $\delta < \mu$ such that $S_{0,i,\delta}$ is stationary. If there is no such δ , then let $\delta_i = 0$. Since $\mu = \operatorname{cf}(\mu) > \kappa$, we know $\sup_{i < \kappa} \delta_i < \mu$. But this contradicts (1) of the claim.

Proposition 4.3. Let $S_0^*, S_1^* \subseteq \mathcal{P}_{\kappa}\lambda$ be stationary and suppose $RP^2(S_0^*, S_1^*)$ holds. Then for every regular μ with $\kappa^+ \leq \mu \leq \lambda$, $\square(\mu)$ fails.

Proof. We prove only the case $\mu = \lambda$. Other cases follow from similar arguments. Toward the contradiction, suppose $\Box(\lambda)$ holds. Let $\langle C_{\xi} : \xi < \lambda \rangle$ be a $\Box(\lambda)$ -sequence.

Let $T = \{X \in \mathcal{P}_{\kappa^+}\lambda : \operatorname{cf}(X) = \kappa \subseteq X\}$. We assumed $\operatorname{RP}^2(S_0^*, S_1^*)$, but by the previous proposition, in fact $\operatorname{RP}^2(S_0^*, S_1^*, T)$ holds.

For each $\alpha < \lambda$ and n < 2, let

$$S_{n,\alpha} = \{ x \in S_n^* : C_{\sup(x)} \cap \sup(x \cap \alpha) = C_\alpha \cap \sup(x \cap \alpha) \}.$$

Let $A_n = \{ \alpha < \lambda : S_{n,\alpha} \text{ is stationary} \}.$

Claim 4.4. For each n < 2, A_n is unbounded in λ .

Proof. Fix n < 2. By shrinking S_n^* by a club in $\mathcal{P}_{\kappa}\lambda$, we may assume that the following:

- (1) For all $x \in S_n^*$ and $\alpha \in x$, if $x \cap \alpha$ is bounded in α then $cf(\alpha) \geq \kappa$.
- (2) For all $x \in S_n^*$ and $\alpha \in x \cap E_{\geq \kappa}^{\lambda}$, $\sup(x \cap \alpha) \in \lim(C_{\alpha})$ holds.

Let $T' = \{X \in T : S_n^* \cap \mathcal{P}_{\kappa}X \text{ is stationary}\}$. Then T' is stationary in $\mathcal{P}_{\kappa^+}\lambda$. To show that A_n is unbounded, take $\xi < \lambda$. Fix $X \in T'$ with $\sup(X) > \xi$. Since $\operatorname{cf}(X) = \kappa$, the set $\{\beta < \sup(X) : \beta \in \lim(C_{\sup X})\}$ contains a club in $\sup(X)$. Note that $C_{\sup(X)} \cap \beta = C_{\beta}$ for each β from the club. Hence we know $S_X = \{x \in S_n^* \cap \mathcal{P}_{\kappa}X : C_{\sup(X)} \cap \sup(X) \cap \sup(X)\}$ is stationary in $\mathcal{P}_{\kappa}X$. Since $\operatorname{cf}(\sup(X)) = \kappa$, $\lim(X) \cap \lim(C_{\sup(X)})$ is unbounded in $\sup(X)$. Take $\beta \in \lim(X) \cap \lim(C_{\sup(X)})$

with $\beta > \xi$ and $\operatorname{cf}(\beta) < \kappa$. Note that $\{x \in \mathcal{P}_{\kappa}X : x \cap \beta \text{ is unbounded in } \beta\}$ contains a club. Since $\beta \in \lim_{x \to \infty} (C_{\sup(X)}), C_{\sup(X)} \cap \beta = C_{\beta}$ holds. For each $x \in S_X$ such that $x \cap \beta$ is unbounded in β and $\sup(x) > \beta$, let $\beta_x = \min(x \setminus \beta)$.

Case 1. $\beta_x = \beta$. Then $C_{\beta_x} \cap \sup(x \cap \beta_x) = C_{\beta} = C_{\sup(X)} \cap \beta = C_{\sup(x)} \cap \beta = C_{\sup(x)} \cap \beta = C_{\sup(x)} \cap \sup(x \cap \beta_x)$.

Case 2. $\beta_x > \beta$. Then $\sup(x \cap \beta_x) = \beta$ and $\beta = \sup(x \cap \beta) \in \lim(C_{\beta_x})$, hence $C_{\beta_x} \cap \beta = C_{\beta_x} = C_{\sup(X)} \cap \beta = C_{\sup(X)} \cap \beta = C_{\sup(X)} \cap \sup(x \cap \beta_x)$.

Hence for each $x \in S_X$ such that $x \cap \beta$ is unbounded in β and $\sup(x) > \beta$, we have $C_{\sup(x)} \cap \sup(x \cap \beta_x) = C_{\beta_x} \cap \sup(x \cap \beta_x)$. By applying Fodor's lemma to S_X , we can find $\beta_X \in X$ such that $\{x \in S_X : \beta_X = \beta_x\}$ is stationary. Thus $\{x \in S^* \cap \mathcal{P}_{\kappa}X : C_{\sup(x)} \cap \sup(x \cap \beta_X) = C_{\beta_X} \cap \sup(x \cap \beta_X)\}$ is stationary.

By applying Fodor's lemma to T', we have $\beta_* < \lambda$ such that $\{X \in T' : \beta_* = \beta_X\}$ is stationary. Then S_{n,β_*} is stationary and $\beta_* > \xi$.

Claim 4.5. For each $\alpha \in A_0$ and $\beta \in A_1$ with $\alpha < \beta$, $C_{\alpha} = C_{\beta} \cap \alpha$ holds.

Proof. Let $T^* = \{X \in T : S_{0,\alpha} \cap \mathcal{P}_{\kappa}X, S_{1,\beta} \cap \mathcal{P}_{\kappa}X \text{ are stationary in } \mathcal{P}_{\kappa}X\}$. Take $X \in T^*$. Since $D_X = \{x \in \mathcal{P}_{\kappa}X : C_{\sup(X)} \cap \sup(x) = C_{\sup(x)}\}$ contains a club in $\mathcal{P}_{\kappa}X$, $D_X \cap S_{0,\alpha}$ is stationary in $\mathcal{P}_{\kappa}X$. For $x \in C_X \cap S_{0,\alpha}$, $C_{\alpha} \cap \sup(x \cap \alpha) = C_{\sup(x)} \cap \sup(x \cap \alpha) = C_{\sup(X)} \cap \sup(x \cap \alpha)$ holds. Since $\{\sup(x \cap \alpha) : x \in C_X \cap S_{0,\alpha}\}$ is unbounded in $\sup(X \cap \alpha)$, we have $C_{\sup(X)} \cap \sup(X \cap \alpha) = C_{\alpha} \cap \sup(X \cap \alpha)$. Similarly, we have $C_{\beta} \cap \sup(X \cap \beta) = C_{\sup(X)} \cap \sup(X \cap \beta)$. Therefore we have $C_{\alpha} \cap \sup(X \cap \alpha) = C_{\beta} \cap \sup(X \cap \alpha)$.

Because $\{\sup(X \cap \alpha) : X \in T^*\}$ is unbounded in α , we have $C_{\alpha} = C_{\beta} \cap \alpha$. $\square[\text{Claim}]$

Now, let $C = \{C_{\beta} : \beta \in A_0\}$. Since A_0 is unbounded, C is unbounded. Furthermore, $C_{\alpha} = C_{\beta} \cap \alpha$ for all $\alpha < \beta \in A$; For $\alpha, \beta \in A_0$ with $\alpha < \beta$, choose $\gamma \in A_1$ with $\beta < \gamma$. Then $C_{\alpha} = C_{\gamma} \cap \alpha$ and $C_{\beta} = C_{\gamma} \cap \alpha$. Thus $C_{\alpha} = C_{\beta} \cap \alpha$. Hence C forms a club in λ . Take $\alpha \in \lim(C)$. Then there exists $\beta \in A_0$ such that $C \cap \alpha = C_{\beta} \cap \alpha$. Since $\alpha \in \lim(C)$, we know $\alpha \in \lim(C_{\beta})$ and $C_{\alpha} = C_{\beta} \cap \alpha = C \cap \alpha$. Thus $\forall \alpha \in \lim(C) \ (C \cap \alpha = C_{\alpha})$, this is a contradiction.

Baumgartner[1] showed that if a weakly compact cardinal κ is collapsed to ω_2 by Levy-collapse with countable conditions, then $RP(\mathcal{P}_{\omega_1}\omega_2)$ holds, and it is known that in fact $RP^2(\mathcal{P}_{\omega_1}\omega_2, \mathcal{P}_{\omega_1}\omega_2)$ holds in the generic extension. Conversely, Velicikovic [3]showed that if $RP(\mathcal{P}_{\omega_1}\omega_2)$ holds, then ω_2 is weakly compact in L. Consequently, we have the following equiconsistency:

Corollary 4.6. The following are equiconsistent:

- (1) ZFC + "there exists a weakly compact cardinal".
- (2) $ZFC + \text{"RP}(\mathcal{P}_{\omega_1}\omega_2) \text{ holds"}.$
- (3) $ZFC + \text{"RP}^2(\mathcal{P}_{\omega_1}\omega_2, \mathcal{P}_{\omega_1}\omega_2) \text{ holds"}.$
- (4) $ZFC + \text{"RP}^2(S_0^*, S_1^*)$ holds for some stationary sets $S_0^*, S_1^* \subseteq \mathcal{P}_{\omega_1}\omega_2$ ".

5. Proof of Theorem 1.8

Proposition 5.1. Suppose $RP(S^*)$ for some stationary $S^* \subseteq \mathcal{P}_{\kappa}\lambda$. Then every κ -c.c. forcing preserves $RP(S^*)$.

Proof. First note that every κ -c.c. forcing preserves the stationarity of S^* .

Let \mathbb{P} be a poset which satisfies the κ -c.c. Let \dot{S} be a \mathbb{P} -name such that $\Vdash "\dot{S} \subseteq S^*$ is stationary". It is enough to show that there are some $p \in \mathbb{P}$ and $X \subseteq \mathcal{P}_{\kappa^+}\lambda$ such that $p \Vdash "\dot{S} \cap \mathcal{P}_{\kappa}X$ is stationary in $\mathcal{P}_{\kappa}X$ ".

Let $S' = \{x \in S^* : \exists p \in \mathbb{P} (p \Vdash "x \in \dot{S}")\}$. It is easy to check that S' is a stationary subset of S^* . By $RP(S^*)$, there is $X \in \mathcal{P}_{\kappa} + \lambda$ such that $|X| = \kappa \subseteq X$ and $S' \cap \mathcal{P}_{\kappa} X$ is stationary in $\mathcal{P}_{\kappa} X$. We see that $p \Vdash "\dot{S} \cap \mathcal{P}_{\kappa} X$ is stationary" for some $p \in \mathbb{P}$. Suppose to the contrary that $\Vdash "\dot{S} \cap \mathcal{P}_{\kappa} X$ is non-stationary". Since $|X| = \kappa$ and \mathbb{P} satisfies the κ -c.c., we can find a club $C \subseteq \mathcal{P}_{\kappa} X$ such that $\Vdash "\dot{S} \cap C = \emptyset$ ". $S' \cap \mathcal{P}_{\kappa} X$ is stationary, hence there is $x \in S' \cap C$. Pick $p \in \mathbb{P}$ with $p \Vdash "x \in \dot{S}$ ". Then $p \Vdash "x \in \dot{S} \cap C$ ", this is a contradiction.

Recall that PFA⁺⁺ is the assertion that for every proper forcing notion \mathbb{P} , every dense subsets D_i ($i < \omega_1$) of \mathbb{P} , and every \mathbb{P} -names \dot{S}_i ($i < \omega_1$) for stationary subsets of ω_1 , there is a filter F on \mathbb{P} such that:

- (1) $D_i \cap F \neq \emptyset$ for every $i < \omega_1$.
- (2) $S_i = \{ \alpha < \omega_1 : \exists p \in F (p \Vdash_{\mathbb{P}} ``\alpha \in \dot{S}_i") \}$ is stationary in ω_1 for $i < \omega_1$.

Proposition 5.2. Suppose PFA⁺⁺. Let $\lambda \geq \omega_2$. Then every c.c.c. forcing notion forces $RP^2(\mathcal{P}^V_{\omega_1}\lambda, \mathcal{P}^V_{\omega_1}\lambda)$.

Proof. Let \mathbb{P} be a poset which satisfies the c.c.c. Let \dot{S}_0 , \dot{S}_1 be \mathbb{P} -names so that \Vdash " \dot{S}_0 , $\dot{S}_1 \subseteq \mathcal{P}^V_{\omega_1} \lambda$ are stationary". We will find $p \in \mathbb{P}$ and $X \in \mathcal{P}_{\omega_2} \lambda$ such that $p \Vdash$ " $\dot{S}_0 \cap \mathcal{P}_{\omega_1} X$, $\dot{S}_1 \cap \mathcal{P}_{\omega_1} X$ are stationary".

Let $\dot{\mathbb{Q}}$ be a \mathbb{P} -name for a σ -closed poset which adds a bijection from ω_1 to λ . We know that $\Vdash_{\mathbb{P}*\dot{\mathbb{Q}}}$ " \dot{S}_0 , \dot{S}_1 remain stationary". Fix a $\mathbb{P}*\dot{\mathbb{Q}}$ -name $\dot{\pi}$ for a bijection from ω_1 to λ . Let \dot{E}_0 , \dot{E}_1 be $\mathbb{P}*\dot{\mathbb{Q}}$ -names such that $\Vdash_{\mathbb{P}*\dot{\mathbb{Q}}}$ " $\dot{E}_i = \{\alpha < \omega_1 : \dot{\pi}$ " $\alpha \in \dot{S}_i, \dot{\pi}$ " $\alpha \cap \omega_1 = \alpha\}$ " for i = 0, 1. We know $\Vdash_{\mathbb{P}*\dot{\mathbb{Q}}}$ " \dot{E}_i is stationary in ω_1 ".

Now fix a sufficiently large regular cardinal θ and take $M \prec H_{\theta}$ such that $|M| = \omega_1 \subseteq M$ and M contains all relevant objects.

 $\mathbb{P} * \dot{\mathbb{Q}}$ is proper, hence we can apply PFA⁺⁺ to $\mathbb{P} * \dot{\mathbb{Q}}$ and \dot{E}_i . By PFA⁺⁺ we can find a filter F on $\mathbb{P} * \dot{\mathbb{Q}}$ such that:

- (1) $F \cap D \neq \emptyset$ for all dense $D \in M$ in $\mathbb{P} * \dot{\mathbb{Q}}$
- (2) $E_i = \{ \alpha < \omega_1 : \exists p \in F (p \Vdash_{\mathbb{P} \star \hat{\Omega}} "\alpha \in \dot{E}_i") \}$ is stationary in ω_1 for i = 0, 1.

Let $X = \{ \beta < \lambda : \exists p \in F \exists \alpha < \omega_1 (p \Vdash_{\mathbb{P}*\dot{\mathbb{Q}}} "\dot{\pi}(\alpha) = \beta") \}$. We can check that $|X| = \omega_1 \subseteq X$.

Since \dot{S}_0 , \dot{S}_1 are names for subsets of $\mathcal{P}^V_{\omega_1}\lambda$, for each $\alpha \in E_i$, we can find $x \in \mathcal{P}_{\omega_1}\lambda$ and $p \in F$ such that $x \cap \omega_1 = \alpha$ and $p \Vdash_{\mathbb{P}*\dot{\mathbb{Q}}}$ " $\dot{\pi}$ " " $\alpha = x$ ". Moreover it is easy to see that $x \in \mathcal{P}_{\omega_1}X$.

For i < 2 and $\alpha \in E_i$, take $x_{i,\alpha} \in \mathcal{P}_{\omega_1}X$ such that there is $p \in F$ with $p \Vdash_{\mathbb{P}*\dot{\mathbb{Q}}} "\dot{\pi} "\alpha = x_{i,\alpha}"$. Let $S_i = \{x_{i,\alpha} : \alpha \in E_i\}$. The following are easy to check for i < 2:

- (1) $x_{i,\alpha} \subseteq x_{i,\beta}$ holds for $\alpha, \beta \in E_i$ with $\alpha < \beta$.
- (2) If $\alpha \in \lim(E_i) \cap E_i$, then $x_{i,\alpha} = \bigcup_{\beta \in E_i \cap \alpha} x_{i,\beta}$.
- (3) $\bigcup S_i = X$.

Furthermore, since $E_i = \{x_{i,\alpha} \cap \omega_1 : \alpha \in E_i\}$ is stationary in ω_1 , we can check that each S_i is stationary in $\mathcal{P}_{\omega_1}X$.

Now we see that $p \Vdash_{\mathbb{P}} "\dot{S}_0 \cap \mathcal{P}_{\omega_1} X$, $\dot{S}_1 \cap \mathcal{P}_{\omega_1} X$ are stationary" for some $p \in \mathbb{P}$. Suppose otherwise. Since \mathbb{P} satisfies the c.c.c. and $|X| = \omega_1$, we an find a club C in $\mathcal{P}_{\omega_1} X$ such that $\Vdash_{\mathbb{P}} "C \cap \dot{S}_0 = \emptyset$ or $C \cap \dot{S}_1 = \emptyset$ ".

Since S_0 and S_1 are stationary in $\mathcal{P}_{\omega_1}X$, we can find $x_0 \in S_0 \cap C$ and $x_1 \in S_1 \cap C$. Then there is $q \in F$ such that $q \Vdash_{\mathbb{P}*\dot{\mathbb{Q}}} "x_0 \in \dot{S}_0$ and $x_1 \in \dot{S}_1"$. Thus $q \Vdash_{\mathbb{P}*\dot{\mathbb{Q}}} "C \cap \dot{S}_0 \neq \emptyset$ and $C \cap \dot{S}_1 \neq \emptyset$ ", this is a contradiction.

REFERENCES

- [1] J. E. Baumgartner, A new class of order types. Ann. Math. Logic 9 (1976), no. 3, pp 187-222.
- [2] H. Sakai, Partial stationary reflection in $\mathcal{P}_{\omega_1}\omega_2$. RIMS kokyuroku, Vol. 1595, pp 47–62.
- [3] B. Velickovic, Forcing axioms and stationary sets. Adv. Math. 94 (1992), no. 2, pp 256-284.
- (T. Usuba) Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, JAPAN

E-mail address: usuba@math.cm.is.nagoya-u.ac.jp