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Abstract

Nippon Steel & Sumitomo Metal Corporation recognizes that mathematics
is a powerful language that can capture the essence of a variety ofproblems. This is
why the collaboration is in the process of creating an interdisciplinary platform to
encourage mathematical innovation. This platform is to serve as a framework for
the coming together of mathematicians and engineers to contemplate social
problems and to take voluntary actions.

The scientific topic revolves around anomalous diffusion in soil. This is a
typical multi-scale modeling subject since the field scale is macro, i.e., 100 m-10
km while the pore size of the soil is micro, i.e., about 100 $\mu m$ . Multi-scale
modeling is in great demand in social and industrial problems, but the mathematical
theory has not yet been fully developed.

It is often the case with mass diffusion in a porous medium such as soil that the
numerical simulations using traditional advection diffusion equations fail to predict
the observation results of a real phenomenon observed in the field or in laboratory
tests. The numerical experiments using the continuous time random walk (CTRW)
approach, predict that the mean squared displacement ofparticles grows in
proportion to the fractional power of time.

The first scenario deals with multi-scale modeling from a macro-scale
viewpoint. The CTRW approach is linked with the fractional differential equation
($FDE$) in terms of time. This means that anomalous diffusion depends on the
degree of history to be retained from the initial time to the current time. The
smaller $\alpha$ is, the more history will be retained. We can combine the physical
meaning of alpha (which is due to possible obstacles that delay the particle’sjump)
with mathematical reasoning.
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The second scenario takes a micro-scale viewpoint. Thus, how do we combine
the microstructure with the mechanism for determining the value? What are the
geometric invariants? How do we combine the geometric invariants with the PDE
in a mathematical framework? These are our next concem. We consider the
relationship among the CTRW approach, the $FDE$ , and the alpha value through the
characterization ofthe geometric features ofthe specimens of a $3DCT$-image.

The third scenario takes a multi-scale viewpoint. Here, a deductive reasoning is
considered to derive a $FED$ usming the homogenization method..

Introduction
The steel making process requires control of a diverse range of phenomena

involving mathematical applications for problem solving and modeling.
“Mathematics for industry” is aimed at extracting universal fundamental

principles behind various natural phenomena and engineering problems, and
crystallizing them into mathematical structures, and is essential for applying
mathematics for industrial technology.

A methodology based on the mathematical thinking enables us to constmct
mathematical models that describe the essence of a phenomenon selectively. Such
mathematical models serve as important basis for understanding and controlling a
phenomenon. When a mathematical model describes the essence of a phenomenon
as simply and comprehensibly as possible (a minimum necessary model), it
becomes easier for engineers and researchers from a variety of technical fields to
study, and it becomes easier to conceive ideas that can lead to innovations.

Nippon Steel & Sumitomo Metal Corporation has globally collaborated with
mathematicians for decades and resolved industrial problems by enhancing
practical insights with mathematical reasoning. Engineers in Nippon Steel have
leamt how to understand the phenomena in the steel-making process only by the
mles of pure logic, not by a posteriori ad hoc ways. On the other hand,
mathematicians in universities have leamt how to link mathematics with the
physical reality of the phenomena.

As a result, the collaborative research is playing a major role in mathematical
innovation to broaden the diverse range of applications in mathematics and
cultivation in both industry and the field ofmathematics.

Collaboration Style
Figure 1 shows our style of collaboration with engineers and mathematicians in

the case of Nippon Steel & Sumitomo Metal CoIporation and the University of
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Tokyo. We formed intemational task force teams made up of faculty members,
post-doctoral fellows and doctor course students. Team members are selected
flexibly to create a task force according to the characteristics of the task. Our
collaboration is composed of six indispensable phases.

The first is “intuition and expertise” from industry. Intuition and expertise can
be camied out exclusively by insight based on observation of phenomena in the
manufacturing process. The insight should be enhanced by mathematical reasoning.
The second is “communication.” Communication is bilateral translations: the
translation of phenomena to mathematics and the translation of mathematics to
phenomena. Engineers in industry need to understand real problems on site, express
them in the language of physics, and offer possible model equations to
mathematicians. Mathematicians explore the underlying mathematics to the model
equations. This forum for communication through the interpretation of phenomena
is extremely important in order that engineers and mathematicians may reach a
common understanding of the nature of the problem and the mathematical
components. The third is ’‘logical path.” This corresponds to the extraction of
mathematical principles from phenomena. Better communication can create a more
logical path. The fourth is “analysis of data.” This means reasonable and
quantitative interpretation of observations carried out on site. This enables us to
extract the essence of phenomena. The fifth is“manufacturing theory.” This means
the integration of logical paths from viewpoints of operation and economic
rationality on site. The last is ”activation to mathematics.” Motivation for
mathematicians has launched new mathematical research fields.

We, engineers in industry, have been eager to free ourselves from restrictions in
our conventional thinking by making full use of mathematical reasoning that is free
from specific industrial fields, through wider borderless collaborations. We have
examined various conjectures by mathematicians and gained better practical
solutions and further utilized analysis results. By repeating such phases of
collaboration many times, we are able to pursue economic rationality, and
mathematicians are able to find new results and describe them as theorem for future
wider uses. It is important that mathematicians work not only for mathematical
interests but also for the economic rationality through teamwork with engineers
from a long-term point ofview.

The cultivating interface between mathematics and industry has come into
being as a fomm for communication with the mathematicians mentioned above.
Communication between the team members who are engineers in industry, and
faculty members, post-doctoral fellows and doctor course students in university
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mathematical departments, has enhanced their communication skills day by day. As
a result, several new themes have been launched.

Fig.1 Collaboration with engineers and mathematicians in the case ofNippon Steel
and the University ofTokyo

Example of interdisciplinary collaboration
Figure 2 shows a challenge faced by Dr. Yuko Hatano. She is an associate

professor affiliated with the University of Tsukuba whose major is Risk
Engineering, and she had already collaborated with Nippon Steel on another
subject.

The objective is to predict the progress of soil contamination. It is often the
case with mass diffusion in a porous medium such as soil that numerical
simulations using traditional advection diffusion equations fail to predict
observation results of a real phenomenon observed in the field or laboratory tests.
For instance, there are cases where actually the concentration is beyond the
environmental standard as shown in Fig.3, even when a simulation indicates that
the concentration ofthe pollutant is below the relevant environmental standard and
the danger of soil pollution is unlikely. Diffusion not following the prediction based
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on such a simulation is called anomalous diffusion, in contrast to the traditional
diffusion equations, and is often observed in different manners with various
substances in the soil or atmosphere in the real environment.

The above is the kind of problem that we encounter when numerically
simulating a soil system in which voids are distributed unevenly between particles,
using a grid for calculation larger than the voids. This type of problem will not
occur when the grid spacing is smaller than the voids between soil particles, for
instance, about 0.1 mm. However, since several kilometers or more is the normal
scale for environmental studies, in view of computer load the use of such a fme
grid for a three-dimensional case is extremely difficult, and is practically unsuitable
for on-line field analysis. Moreover, whereas a model test covers a time scale of as
short as minutes to days, the prediction of a real environmental problem must deal
with a time scale as large as a few years to tens ofyears.

$Dr$ Yuko Hatano, Departmento $RiSk$ Engineenng, $UnN\partial/sn\gamma$ of rsukuba

Fig.2 Prediction of soil contamination on a large scale and over a long term
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Fig.3 Comparison between model prediction and results of field tests

Although we have to treat widely varied sizes of data obtained through
physical and numerical tests based upon different scales of space and time, the
scaling law allows us to combine those data together in accordance with principles
ofphenomena.

Large-scale numerical simulation is the principal method for the dynamic
analysis of substances in any environmental medium: air, water or soil. Many
detailed chemical and biochemical reactions are incorporated in the program codes
for environmental simulation, and as a result, simulation programs seem to be
becoming increasingly complicated these days. While a great number of numerical
simulations are conducted on environmental issues, it is often difficult to tell
whether each of such simulation results is valid, which fact is most serious for the
problems.

Therefore the present study aims at dynamic prediction of environmental
phenomena not totally depending on conventional numerical simulations but also
employing mathematical methods typically such as scaling law. Toward this end, it
is desirable to create a new field of environmental study involving mathematicians.
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Launch of new research field in mathematics
A stochastic method employing random walk in consideration of the

distribution of the waiting time of particles is used for describing mass transfer in
soil. The stochastic method is called as CTRW that stands for Continuous Random
Walk). The CTRW method has been effective when applied to the small space
dealt with in laboratory tests, but the limitation on the number of particles is a
bottleneck due to the limit of computer capacity, and thus the method camot
respond effectively to more pragmatic requirements of calculation in a larger
volume of space.

On the other hand, some fields of physics and engineering employ numerical
simulation based on a diffusion equation that includes a fractional-order derivative
in time. While the concept of a fractional-order derivative can be traced back to as
long ago as Leibniz (see [2]), a theory of partial differential equation that is
applicable to such numerical simulation has not yet been established, and the
application of such a method has so far been limited to very special cases where
the space has only one dimension. It is reported in the literature [3] that, according
to the scaling law to the effect that the root mean square of the displacement of
particles is in proportion to time raised to the kth power $(t^{k})$ , the stochastic method
using the random walk mentioned earlier is closely related to the Fokker-Planck
equation, which leads to a fractional-order derivative:

$(\partial/\partial t)^{k}u(x, t)=\nabla\cdot(\kappa\nabla u(x, t))-\mu\cdot\nabla u(x, t)$ ,
where $u$ (x, t), $\kappa$ and $\mu$ are the probability density function of particles, their
diffusion coefficient, and mobility acting on them, respectively. It is expected that
a scaling law combines stochastic methods such as the random-walk model for
anomalous diffusion with the theory of partial differential equation including a
fractional-order derivative to form a new field of research for mathematical
concept and methodology. In [1], we discuss a related topic with such a theory.

Besides the above, Hatano et al. found that a formula $emp\ddot{m}$cally derived from
two short-term atmospheric pollution cases (emission of inert gas Kr-85 from a
nuclear plant in U.S.$A$ . and the data of aerosol collected by an intemational team
on global warming in the Arctic Ocean region) can describe the behavior of the
pollutant of a long-term atmospheric pollution case (the accident of the Chemobyl
Nuclear Power Plant) reasonably well [4], [5]. The formula is also written as a
scaling law, but it is not yet been fully clarified why the formula has such a form.

Figure 4 shows that CTRW is linked to the fractional order PDE in
terms of time [6]. This means that anomalous diffusion depends on the
degree of history to be retained from the initial time to the current time.
For smaller $a$ , more history will be retained. We can combine the
physical meaning of alpha (which is due to stems from possible
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obstacles that delay the particle’s jump) with the mathematical
reasoning. This is a typical example of a problem-solving type that is
mathematically based. We present an analytical description that
mathematically explains the facts discovered by the experiments.

$\gamma)PDI’ 1\dot{o}rpvr_{J(}1_{\theta}9^{\underline{d}the}arrow Y1I/in$tjme $\ell_{\delta}$ndspecex

.What are oeometric invariants?
$\underline{\mathfrak{a}=10}$

$\sqrt{}1\prime\{\sqrt{}|$

$\eta(x,t)=\int_{-\infty}^{\infty}$ dx $\int_{0}^{t}dt’\eta(x,t’)\varphi(x-x,t-t’)+\delta(t)a(x)$ What are Normal
2 $)PDFt\theta Itic1est_{\theta’}i_{1}b_{J}\cdot thedu/sti_{0IJ}$ time $t$ .How do we combine the $-^{\backslash }$

}

$\backslash _{}$ diffusion
$\underline{\Phi(t)=}1-\int_{0}^{t}\underline{w(t’)dt’\varphi(x,t)=\lambda(x)w(t)}-$ in a $mathemat_{\dot{\ovalbox{\tt\small REJECT}}Ca}|framework$?

oeometric invariants with $\underline{FDE}$

$\overline{I}^{-}$

$\overline{-}J’\prime^{r_{{\}}^{}}\backslash 4_{\backslash }\searrow.\backslash .-$

$\underline{2.}$Determination of $w(tl \underline{3.}$Analvtic $orocedures \partial_{t}^{\alpha}P(x,t)=c\nabla^{\beta}P(x,t)-\gamma_{0}\partial_{x}P(x,t)$

$Necessa/y$ condition

$w(t) \sim(\frac{t}{\tau_{0}})^{-(a+1)}$ $tarrow\infty$

2$)$ ApproximationtakenforonlyandLaplacetransformationto $\underline{t}$

$\partial_{t}^{a}f(t)=\overline{\Gamma(1-\alpha)}\int_{0}^{t}(t-\tau)^{-a}f’(\tau)d\tau$

$1\rangle$ Fourier transformation to-x $\frac{Fractionaldifferentia1}{1}$
in terms of time

the first term of the infinite series
$\ovalbox{\tt\small REJECT}_{J}w(t)=\frac{1}{\tau_{0}}(\frac{t}{\tau_{0}t})^{\alpha-1}E_{\alpha’\alpha}(-(\frac{t}{\tau_{0},io})^{\alpha})tIiLpff?rf\dot{u}ncta$

3$)$ Inverse Fourier transformation to $x$

to

The degree of history to be relained
from the $\dot{\ovalbox{\tt\small REJECT}}$nitial time $(t=0)$ to the

and Inverse Laplace transformation to $t$ current time (time $t\rangle$ The smaller $\mathfrak{a}$ is
$\frac{themorehistorwillberetained}{}$

Fig. 4 Analytical descriptions used to mathematically explain the facts discovered
by experiments

The approach of the above-mentioned case is based on a macro-scale viewpoint,
and is the first scenario for obtaining a multi-scale model. Thus, our next steps
involve determining: (1) how to combine the microstructure with the mechanism
for determining the alpha value. (2) the geometric invariants, and a method for
combining the geometric invariants with the PDE in a mathematical framework. $A$

micro-scale viewpoint will be used.
Figure 5 shows the second scenario used to obtain a multi-scale model. We can

use the geometric information of the real sand specimens taken by a $3DCT$-image.
There are two kinds of dimensions that are used to consider the geometric
invariants, namely the geometric dimension, which corresponds to the fractal
dimension $d_{f}$, and the analytical dimension, which corresponds to the spectral
dimension $d_{s}.$
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Our concem is determmining how to combine these geometric invariants with the
fractional order PDE in a mathematical framework. Figure 6 shows an approach to
obtaining the relationship among the fractal dimension $d_{f}$, the spectral dimension $d_{s}$

and the fractional differential order $a$. Equation (7) in Fig shows the conclusion.

Characterization of the geometric features of the specimens
of $3DCT$-image $\langle$a micro-scale viewpoint)

are built up.

1 $)$ Geometric dimension $\Rightarrow$ Fractal dimension $d_{f}$

2 $)$ Analytic dimens $\dot{\ovalbox{\tt\small REJECT}}on$ $\Rightarrow$ SDectral dimension $d_{s}$

Fig. 5 The second scenario for getting at a multi-scale modeling [7]

The behavior of the mean volume V occupies by a diffusion particles initially concentrated
on a given site $x$ is given by the mean squared displacement and the fractal dimension.

$V(x, r)\sim r^{d_{/\sim}}(\sqrt{\langle x(t)^{2}\rangle})^{d_{f}}$ (1)
$V(x,r):=\mu(B(x,r))$ $v(x_{\backslash }\iota)i\backslash 1]1(1ti(^{\backslash },\ln)11i;_{\grave{\prime}111\searrow()}\downarrow t\ln\iota(^{\backslash }of_{t}$

(1)
$B(x,r):=\{\gamma\in V|d(x,y)<r\}$ $\wedge\backslash r_{t}\searrow 0く:\backslash \iota’\cdot t_{1}i\prime 1|\iota\}(\lambda.\}.)$ .

M. Barlow and E. Perkins, Brownian motion on the Sierpinski gasket, Probab. Th. Rel. Fields, 79
(1988), showed that the following heat kemel takes place for alarge variety of fractal sets;

$p(x,y,t) \sim t^{\frac{d,}{2}}e\varphi[-(\frac{d(x,y)^{d}}{ct})^{\frac{1}{d_{w}-1}})$ (2) $\Rightarrow$

$p(x,x,t)\sim t^{\frac{d_{s}}{2}}$

(3)

$\ln$ the case of $Y^{-x}$

Wenssumathat
$p(x,x,t)\sim V(x,r)^{-1}$ (4)

By comparing Eq. (5)
With Eq. (1), Eq. (4) and Eq. (3), we obtain that and Eq. (6), we have

$\langle x(t)^{2}\rangle\sim V(x, r)^{\frac{2}{d_{f}}}\sim p(x,x,t)^{\frac{2}{d_{f}}}\sim(t^{\frac{d}{2}})^{\frac{2}{d_{/}}}\sim t^{\frac{d}{d_{f}}}(5\rangle\} \alpha=\frac{d_{s}}{d_{f}} (7\rangle$

Numerical experiments using CTRW say that
$\langle x(t)^{2}\rangle\sim t^{a}$ (6)

Fig.6 Relationship between $d_{f},$ $d_{s}$ and the fractional differential order $a$ conjectured
by Physicists [8]
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Figure 7 compares the diffusion behavior between of small-scale experiment
and that of large-scale one. The result of the small-scale experiment shows that the
diffusion follows an advection-diffusion equation ($ADE$) that corresponds to the
normal diffusion. The result of the large-scale experiment differs from results
obtained using the $ADB$, and it also cannot be completely explained using the
CTRW method. We need a scaling law to combine laboratory experiments with
field scale.

Number of pores Number of pores

Fig. 7 Comparison of diffusion behavior between small scale experiment and large
scale one provided by Dr. Yuko Hatano affiliated with the department of risk
engineering, University ofTsukuba

Figure 8 shows the third scenario used to obtain a multi-scale model. This is a
deductive approach that uses the nature ofmathematics. We use the
homogenization method proposed by J.L. Auriault and J. Lewandowska[9].

In Figure 8, $\Omega$ is composed ofperiodic components of a microcell. The
goveming equation in $\Omega$ are given by Eqs. (1) to (3).This PDE is a normal
diffusion type. $D_{m}$ represents the diffusion coefficient ofMedia $M$ which
corresponds to solid particles. On the other hand, $D_{f}$ is the diffusion coefficient of
Media $F$ , which corresponds to air space. Eq. (5) shows the relationship between
$D_{m}$ and $D_{f}$. The $\epsilon$ is a homogenization parameter. When $\epsilon$ becomes zero, the
relationship in Bq. (5) Plays an important role in the appearance of the memory
term in the homogenization Eq. (6). This memory term appears to correspond to
the fractional differential in terms of time in $FDE$ in Figure 4.
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What shape of Mleads to a similar effect like the fractional differential?

Fig.8 The 3rd scenario for getting at a multi-scale modeling provided by Dr.
Masaaki Uesaka who is affiliated with Graduate School ofMathematical
Science, The University ofTokyo
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Thus, through the collaboration of mathematicians and engineers from both
academic and industrial fields, our study establishes the fundamental logical
stmcture that lies behind the scaling law observed in the behavior of pollutants in
different environmental media such as soil and atmosphere, and thus clarifies the
universal characteristics of the scaling law.

Future Plan

In industrial practice, a reduced-scale model is constmcted to analyze a
phenomenon that takes place in real-size equipment, significant physical values for
the phenomenon in question are described by dimensionless numbers, and the
dimensionless numbers obtained from the model analysis are made to match with
those of real-size equipment. This matching operation secures the similarity of the
dynamic physical values between the model and real-size equipment. This
similarity refers also to the scaling law. It has been found from the above
viewpoint of scaling law that, in addition to the physical values such as time and
length which have been conventionally used for scaling up, the fractional powers
in the differentiation of time and space are essential. This means that mathematics
is expected to present a new “angle of view” for the scaling law that deals with
inhomogeneous media. Practically, environmental analysis deals with a scale of
several kilometers or more in size. In this relation, establishment of scaling laws
including an a priori choice of an exponent will make it possible to appropriately
use results obtained through reduced-scale tests and clarify a real phenomenon
across a large space.

By establishing scaling laws and developing mathematical methods based
thereon, we can significantly reduce costs for producing high-quality products as
well as energy consumption and $CO_{2}$ emission by improving production efficiency
in various problems of manufacturing industries such as monitoring of sintering
processes, reactions in a blast fumace, and other metallurgical reactions in steel-
making processes.

Scaling laws and mathematical methods are applicable also to a wide variety of
fields such as chemical engineering, mechanical engineering, geotechnical
engineering, biotechnology, etc., and therefore, the establishment of such scaling
laws is expected to be useful in remarkably accelerating the development of
science and technology through the solution of important industrial problems.

Furthermore, the concept of scaling law combining micro- and macroscopic
aspects is closely related to that of multi-scale modeling, the application of which
is rapidly expanding in material science, chemistry, and other widely varied fields.
The present study is expected to lead to proposals of new mathematical concepts
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and methodologies for multi-scale modeling, bringing about new problem
recognition and methodology to mathematics.

“Mathematics for industry” will be the key for combining mathematics with
industrial technology. Mathematical science can be understood as mathematics for
nature; it is aimed at extracting fundamental principles behind different natural
phenomena and engineering problems, and crystallizing them into mathematical
stmctures.

Beyond the simple numerical operation of physical model equations, a
methodology based on the principles and mles of mathematics makes it possible to
constmct mathematical models that describe the essence of a phenomenon
selectively. Such mathematical models serve as important basis for understanding
and controlling a phenomenon. When a mathematical model describes the essence
of a phenomenon as simply and comprehensibly as possible (a minimum necessary
model), it becomes easier for engineers and researchers from a variety of technical
fields to study, and it becomes easier to conce.ive ideas that can lead to innovations.

In order to constmct such a minimum necessary mathematical model that
describes the essence of a phenomenon efficiently, a framework is required for the
joint work of mathematicians and engineers from academic and industrial fields
where they can thoroughly discuss subject phenomena and define suitable targets
and milestones for different study stages. In addition, it is indispensable to
mutually confilm work progress. At present, however, applied mathematics in
Japan, compared with other developed countries, seems to lack such teamwork
experience that helps to combine a phenomenon with mathematical methodology.
In order to solve a problem as promptly as required in industry, it is too late to
begin studying methodology after posing of the problem. It is necessary to
continue to improve the skill to combine a phenomenon with mathematical
methodology for its prompt application, and in this respect, each individual must
improve their qualification to be “the right person” who can meet the above
conditions and the role.

It is desirable that both mathematics and industry foster people capable of
working jointly with each other from the viewpoint of“mathematics for nature”
through academic-industrial collaboration. Towards this end, it is necessary to
create a new framework independent of the stmcture of present industry and
academic organizations. We must reinterpret and reconstmct the fundamental
concept of manufactuning based on field practice, which constitutes the
competitive edge in developed countries, from the standpoin$t$ of mathematical
methodology while leaming about interdisciplinary collaboration from abroad. By
so doing, we will be able to command the most advanced industrial technology of
the world.
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