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Quasi-Subdifferential Operators and
Quasi-Subdifferential Evolution Equations
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(Nagoya Institute of Technology, Japan)

1. INTRODUCTION

Based on our previous paper [13], we introduce some use-
ful concepts for studying variational and quasi-variational
problems associated with a general, i.e., not Euler-Lagrange,
partial differential operator.

Consider the following elliptic variational inequality:

(uweK,

(VI) « /Q {a(u, Va) - V(u — 2) + ao(u)(u — 2)} dz
\ <(f,u—2) VzeK,

where K C H()) is a closed convex set, @ C RY(N > 1)
is a bounded domain, f € L%(2) is a given function, (-,-)
denotes the inner product in L*(Q), a(r,p) = dpa(r, p),
a € CYR x R¥), and ap € C(R) with appropriate growth
conditions.

If it holds that

a(r, p) is convex jointly in (r,p) € R x RN and a¢ = 0,4,

(1)

then we have
(VI) <= (f,z—u) <9(2) —¥(u) Vz€K,
= Op(u) 3 f,
where 01 is the subdifferential of a proper, lower-semi-
continuous (Ls.c.), and convex function 9 : L*(2) — RU
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{400} defined by

a(z,Vz)dz, if z € K,
o= |
~+00, otherwise.

However, condition (1) is too restrictive for a general case.
We have, in general:

(VI) <= (f,z—u) < p(u;2) —p(u;u) Vz€ K
= do(u;u) 3 f,

where Oy is the subdifferential with respect to the second

variable of a parameterized convex function ¢ : L*() x
L*(2) — RU {+o0} given by

( a(v, Vz)dx + / ag(v)zdz,
Q Q
p(v; 2) = 4 if v e H(2) and z € K,
\ +00, otherwise.

Thus, we are led to the notion of a quasi-subdifferential
operator, which we define in the next section.
2. QUASI-SUBDIFFERENTIAL OPERATORS (QSOs)

In the following, H denotes a real Hilbert space with
norm | - |g and inner product (-, -).

Definition 2.1. ([13, Definition 2.1]) A (possibly multi-
valued) map A : H — H is called a quasi-subdifferential
operator (QSO) if
Au = Op(u;u) for u € D(A)
where ¢ : H x H — RU {400} satisfies:
® p(v;-) : H— RU{+o0} is L.s.c. and convex Vv € H.
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e D(A) :; (gv € H| p(v;-) £ +0o, v € D(0p(v;-))}

We call ¢ the defining convex function of A, and write
A? when this needs to be specified.

We have the following existence theorem for an equation
with a quasi-subdifferential operator.

Theorem 2.2. ([13, Theorem 2.2]) Let A be a QSO de-
fined by p. Let X be a reflerive Banach space with compact
embedding X C H, and K be a closed convex subset of X.
Assume that D(p(v;-)) C K for allv € K, and that there
exist C1,Cy,C3 > 0, p > q > 1 satisfying the following
conditions.

(A1) There exists zg € H such that for allv € K

p(v; 20) < C (ol +1).
(A2) For allve K and z € X
p(v;2) 2 Colzlx — Ca (vl +1).
(A3) For allv e K
D(p(v;+)) 2 z — p(v; 2) is strictly convex.

(Ad) If K 5 v, — v weakly in X, then p(vy;-) — ¢(v;-)
in the sense of Mosco.
Then, for each f € H, there exists u € K satisfying

Au > f.

The idea of the proof of this theorem is as follows. For
each v € K, assumptions (A2) and (A3) mean that there
exists a unique z, € K minimizing p(v;2) — (f,2) (z €
H). By (A1) and (A2), the map v — z,, if restricted to
an appropriate compact and convex set KCcK , maps to
itself. By (A4), this map is continuous with respect to
the topology of H. Therefore, from Schauder’s fixed point
theorem, it follows that there is a fixed point u that is a



solution of the desired equation. We refer to [13] for the
detail.

We note that, under different assumptions, we can use
another type of fixed point theorem to obtain an existence
theorem of a different type. In the next section, we intro-
duce a concept based on such an argument.

This theorem can be applied to (VI) as well as to the
following quasi-variational inequality (cf. [13, Section 3]):

[ u € K(u),
(QVI) 4 i {a(u, Vu) - V(u — 2) + ap(u)(u — 2)} dx
\ <(f,u—=2) Vz € K(u)

Here, K(v) C H'(Q) is a closed convex set depending on
v. We have

(QVI) <= Au> f,

where A is a QSO defined by

;o .
/ a(v, Vz)dx + / ag(v)zdz,
' . 4 0 Q
p(v; 2) = if v € H'(Q) and 2z € K(v),
x +00, otherwise.

For a pseudo-monotone operator approach to (VI) and
(QVI), we refer to Kenmochi et al. [10, 5]. For an earlier
study of elliptic quasi-variational inequalities, see Joly and
Mosco [4].
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3. QUASI-VARIATIONAL PRINCIPLES

A variational principle is expressed using a proper, l.s.c.,
and convex function 1 and its subdifferential as follows:

0Y(u) 20 <= ¢(u) = mzin ¥(2).

Here, the equation (or inclusion) d¢¥(u) > 0 represents
a variational inequality or a differential equation with a
boundary condition according to the constraint posed by
the function 1. This principle has played an important role
in mathematical physics and related fields. However, there
is a simple limitation to the principle, since it can only
be applied to problems associated with Euler-Lagrange-
type differential operators. Problems associated with non-
Euler—Lagrange-type differential operators, e.g., the Navier—
Stokes equations, the diffusion equation with a convection
term and so on, are not derived directly from the variational
principle.
Let us consider the following idea:

u is a fixed point of v +— 2, :

) — min. ofv- (2)
©(v; 2,) = min, p(v; 2).
Here, we have a function ¢ : H x H — R U {+o00} such
that ¢(v;-) : H - RU {400} is Ls.c. and convex for each
v € H and proper for some v € H. In (2), Op denotes the

subdifferential with respect to the second variable. Hence,
we have

Op(u;u) 30 <= {

Op(u;u) 30 < A¥ 30,

where A% is the QSO defined by ¢. We call the idea in (2)
a quasi-variational principle (QVP). Thus, QVP is closely
related to QSOs. A similar concept to this (2) was used by
Joly and Mosco [4] to study quasi-variational inequalities,
that is, variational inequalities with constraints depend-
ing on the unknown functions. However, the idea can be
applied to various problems with non-Euler-Lagrange-type



differential operators. In fact, the proof of Theorem 2.2 is
based on QVP and can be applied to variational and quasi-
variational inequalities with non-Euler-Lagrange-type dif-
ferential operators.

In addition to this, QVP plays an essential role in a
standard proof of the existence theorem for the station-
ary Navier—Stokes equations. These are stated below in a
slightly abstract form.

Theorem 3.1. (abstract Navier—Stokes equations) LetV C
H C V* be a Hilbert triplet with compact embeddings, {-,-,)
be the duality pairing, and F : V — V* be the duality map.
Let B:V — V* be a compact map satisfying (B(z),z) =0
forallz€e V. Let A: H — H be a QSO defined by

1
5l2l + (B(v), 2), fv,z€V,

o(v; 2) ==
+00, otherwise.
Then, for each f € H, there exists a u € H such that
Au = f.

This theorem can be proved as follows. For each v € V,
there exists a unique z, € V such that

P, #(v; 2y) = min @) f(v; 2),
where, for A € [0, 1], we define

1 . .
B, (0:7) = 4 2PV TABO)2) = (f,2), Hv.zeV,

+00, otherwise.
That is, we have
2y + AF1 (B(’U) — f)=0.

By Leray—Schauder’s fixed point theorem, we can show that
there exists a fixed point u of the map v — 2z, that is a
desired solution to the equation.
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4. QUASI-SUBDIFFERENTIAL EVOLUTION EQUATIONS

In this section, we study quasi-subdifferential evolution
equations (QSEs), which are evolution equations related to
QSOs. We consider two types of QSE. The first is given as
follows:

(QSE1)  «'(t) + A(t)u(t) 20 ae. t € (0,T).

Here, A(t) (0 <t < T) is a QSO defined by ¢* : H x H —
R U {+00}. Consider the following conditions:

(®1) ©(v;2) > G(|2|x) V(v,2) € H x H, where X
is a Banach space with compact embedding X C H and
lim,_, 400 G(r) = +00.

(®2) There are two functions « € W%(0,T) and 8 €
Wh1(0,T) such that, for all v,w € H,0 < s <t < T and
z € D(¢*(v;-)), there exists z € D(¢*(v;-)) satisfying the
following inequalities:

|2 — 2li < la(t) — o(s)] (9°(v32))2,

o' (w; 2) — ¢*(v; 2)

< 18(8) = B(s)le* (v; 2) + lw — o] (°(v5 2)) /2.
Put K(t) := {z € H| ¢'(z; ) < +oo}.
Theorem 4.1. ([13, Theorem 4.1]) Assume (®1) and ($2).

Then, for each uy € K(0), there exists a solution u €
W2(0,T; H) of (QSE1) satisfying u(0) = up.

The idea of this theorem has been developed by Ken-
mochi, Kubo, Yamazaki, Shirakawa and Fukao [12, 16,
20, 17, 18, 2, 15, 3] and is based on the theory of time-
dependent subdifferential evolution equations (TSEs). In
fact, by assumption (®2), for each v € WH2(0,T; H) the
function

t > &(t) := ' (v(t); )



satisfies the condition of the standard theory of TSEs de-
veloped by Kenmochi [8, 9] and Yamada [19]. Hence, there
exists a unique solution of the problem:

{ ' (t) + @ (u(t);u(®) 20 ae te(0,T),
u(0) = wuy.

Using assumption (®1) and the energy inequality derived

by TSE theory, we can show that there is a fixed point of

the map v — u that gives a desired solution of (QSE1).
The second type of QSE is given as follows:

(QSE2)  Lyu+Au>0 in'H.

Here, H := L*(0,T; H), A: H — H is a QSO, L,u := o/,
and D(L,,) := {w € WY(0,T; H)| w(0) = up}.

This type of problem arises in hysteresis models, non-
local obstacle problems, and so on (cf. [11, 1, 14, 6]). In
particular, Kano, Murase and Kenmochi [7] studied this
type of abstract problem by employing the theory of TSEs.
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