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Phase space path integrals as analysis on path space

By

Naoto KUMANO-GO*

Abstract

This survey is based on the talk at RIMS about of our papers [11], [12].

§1. Introduction

Let T > 0 and z € R%. Let U(T,0) be the fundamental solution for the Schrédinger
equation with the Planck parameter 0 < A < 1 such that

(1.1) (maT _H(T,z, ?aw)) U(T,0)=0, U(0,0)=1.

By the Fourier transform with respect to o € R? and the inverse Fourier transform
with respect to & € R?, we can write

d .
: ) / e%(z“ﬂfo).gov(a;o)dxodgo )
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Iv(z) = v(z) = (57-%
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gaxv(w)= <§ﬁ> /de er (=70 80 L50( o) dmodé
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d .
ﬁ) Au e%(x—mo)-ﬁoH(T’ w>§0)v($0)d$0d§0 .

H(T,z, ?&c)v(a:) = (

When T is small, we consider the function U(T,0, z,{q) satisfying

o

d .
(1.2) U(Tﬂ)v(x)s(glh) [ F e SU (02,60 @) dudes.

According to R. P. Feynman [5, Appendix B], we formally write

(1.3) et @=20) (T, 0,1,£) = / ex?lerIDlg p].

2010 Mathematics Subject Classification(s): Primary 81540; Secondary 35S30.
Key Words: Path integrals, Fourier integral operators, Semiclassical approximation
Supported by JSPS KAKENHI(C)24540193

*Division of Liberal Arts, Kogakuin University, Tokyo 163-8677, Japan.




84

NAoTO KUMANO-GO

Here ¢(T') is a position path with ¢(7) = z and ¢(0) = zo, and p(t) is a momentum
path with p(0) = &, ¢[q, p|] is the phase space action defined by

(1.4) ola.p] = /[0 RORZOR /[ , H(ba0. ).

and the phase space path integral f ~ Dlq, p| is a new sum over all the paths (g, p).

As mathematical treatments of the phase space path integrals, H. Kumano-go—H.
Kitada [8], N. Kumano-go [10] and W. Ichinose [7] discussed (1.3) via Fourier integral
operators. I. Daubechies-J. R. Klauder [4] formulated the phase space path integral
via analytic continuation from measure. S. Albeverio-G. Guatteri-S. Mazzucchi [2],
[1, §10.5.3], [13, §3.3] defined it via Fresnel integral transform. O. G. Smolyanov-A.
G. Tokarev-A. Truman [15] treated it via Chernoff formula. However, in the sense of
mathematics, the measure D[g, p] of the path integral (1.3) does not exist. Why can we
say (1.3) is a kind of integral ? Even in the sense of physics, by the uncertain principle,
we can not have the position ¢(t) and the momentum p(t) at the same time t. Why can
we say these are phase space paths? Furthermore, as L. S. Schulman says in his book
[14], ‘in this method, formal tricks of great power can give just plain wrong answer.’

In [11], when T is small, using piecewise constant paths, we proved the existence of
the phase space Feynman path integrals

(1.5) /e%"’[‘”’]F[q,plD[q,p] ,

with general functional F[g,p| as integrand. More precisely, we gave the two general
classes Fg, Fp of functionals such that for any F[q,p] € Fg or Fp, the time slicing
approximation of (1.5) converges uniformly on compact subsets with respect to the
endpoint z of position and the starting point £y of momentum. Furthermore, we proved
some properties of the path integrals (1.5) similar to some properties of integrals.

Remark. (1) We treat (1.3) as one case with Fg,p] =1 of (1.5).

(2) Using polygonal paths of position and piecewise constant paths of momentum,
W. Ichinose [7] discussed for the functionals Fg,p] = Hszl Bi(q(7x),p(%)), 0 < 11 <
79 < -+ < T < T of cylinder type and showed that the time slicing approximation of
(1.5) does not converge when Flq,p] = ¢(t) - p(t). We exclude the functionals of this
type from our classes Fg, Fp to avoid the uncertain principle.

(3) Inspired by the forward and backward approach of J.-C. Zambrini [3, Part 2],
we use left-continuous paths and right-continuous paths. Furthermore, inspired by L.
S. Schulman [14, §31], we pay attention to the operations which are valid in the phase
space path integrals.

§ 2. Phase space path integrals exist

Our assumption for the Hamiltonian function H(t,z,£) of (1.1) is the following.
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Figure 1.

Assumption 1 (Hamiltonian function). H (¢, z,£) is a real valued function of (¢, z, £)
in R x R% x R%. For any multi-indices «, 8, 8;"8? H(t,z,€) is continuous and there
exists a positive constant C, 3 such that

0202 H(t, 2, )] < Cayp(1 + Ja| + [g])mex@=latalo),

Example 1 (Hamiltonian operator).

h d h,. h h
H(t, Z, ;ax) = Z <aj7k(t)?8xj ;ka -+ bj7k(t).'l,‘j ;3xk + Cj,k(t)mjl'k)

7,k=1
d A
+3° (aj (£)50, +b; (t)xj) +c(t, z).
j=1
Here a;x(t), bjk(t), c;k(t), a;(t), b;j(t) and 8%c(t, ) with any multi-index a are real-
valued, continuous and bounded functions.
Let Aro = (Ts11,Ty,...,T1,Tp) be any division of the interval [0, T] given by
AT,O:T:TJ.{_]_ >T;>--->Ty >Tp=0.
Set z741 = z. Let z; € R% and £ €Réforj=1,2,...,J. We define the position path
qAT,o = qAT,o(ta Tj41,L Ty, T1, 1'0)
by gar,(0) = o, gar,(t) = z;, Tj—1 < t < T; and the momentum path
PAry = DPAry (tl §Ja s >€17£0)

by par,(t) =&i—1, Tjo1 <t <Tjfor j =1,2,...,J,J + 1 (Figure 1).

Definition 1 (Two spaces Q, P of piecewise constant paths).
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(1) We write g € Q if ¢ is left-continuous and piecewise constant, i.e., ¢ = gar -
(2) We write p € P if p is right-continuous and piecewise constant, i.e., p = pas,-

Definition 2.1 (Two classes Fg, Fp of functionals F'[g,p]). Let F[q,p] be a func-
tional of ¢ € Q and p € P.

(1) We write F|q,p] € Fg if F[q,p] satisfies Assumption 3 (1).
(2) We write F|q,p] € Fp if F|q, p] satisfies Assumption 3 (2).

Remark. For simplicity, we will state Assumption 3 (1)(2) in §13.

Then ¢[gas o, PAro)s Fldare,Par,) are the functions ¢ar,, Far, given by

J+1

¢[qAT,0’pAT,0] = Z (/ DPary - dQAT‘O (t) - / H(t?qAT,O’pAT.O)dt)
j=1 \Y[Ti-1,T3) (T5-1,T;)
J+1

= ((Ij‘xj—l)'fj—l —/[T‘ T')H(tamjafj—l)dt)

J=1
= ¢AT,0(1"J+1’£J,$J’ s ,51,371,50;1?0)»

F[qAT,o’pAT,D] = FAT,O (-’BJ+17€J, TJyeens 61) 1‘1,60, xO) .
Let t; =T; —T;1 and |AT,0‘ = maxj<;<J+1 tj.

Theorem 1 (Existence of phase space path integrals). Let T be sufficiently small.
Then, for any Flq,p| € Fg or Fp,

(2.1) /e%¢[q’p]F[q,p]D[q,p]

dJ J
: 1 i
= lim (%> /Rw e hd’[qAT,o’pAT,o]F[qAT’O,pAT’O] H dz;d¢;

|AT,0|—0 =1

converges uniformly on compact sets of R3¢ with respect to (z,£,%0), i.¢e., the phase

space path integral (2.1) is well-defined.

Remark. Even when FJ[q,p] = 1, each integral of the right hand side

dJ ) T J

1 i NI (g )y — [ o b

(2.2) |A71~i£1|1—>0 (ﬁ,) /R%J e'ﬁ Z:_1=1 ((zj—=zj-1)&; fT_.,-_l H(t,x;,£5-1)dt) H d(I?jdfj ’
b j=1

of (2.1) does not converge absolutely, i.e., [g2s d€;dz; = co. Furthermore, the number
J of integrals (division points) tends to oo, i.e., 00 X 00 X 00 X 00 X =+ -+ -- , J — oo.
Therefore, we treat the multiple integral of (2.1) as an oscillatory integral (cf. H.
Kumano-go [9, §1.6]) to use the forms ga, o, Par, of paths in the multiple integral.
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Remark. If d =1, H(t,z,€) = 2%/2 + ¢%/2 and F[q,p] = 1, we have

ek (@m0 (T, 0,1, ) = / e*?erIDlg, ]

_ 1 i 2z - & — (22 + £2)sinT
~ (cosT)'/? eXph( Zo-Cot 2cosT )

As we will see in §12, if we use piecewise the bicharacteristic paths of [12] instead of the
piecewise constant paths of [11], we calculate U(T, 0, z, &) directly.

§3. We can produce many functionals F[q,p] € Fg or Fp

Typical examples of Fq,p] € Fg or Fp are the following.
Example 2 (F[q,p] € Fg or Fp). Let m be a non-negative integer.

(a) Assume that for any multi-index o, 82 B(t,z) is continuous in R x R? and there
exists a positive constant Cy, such that |02B(t, z)] < Cy(1+ |z|)™. Then the values
at the fixed time ¢, 0 <t < T,

Flgl = B(t,q(t)) € Fo, Flp]=B(tp(t)) € Fp.

In particular, Flg,p] =1 € Fg N Fp.

(b) Let 0 < T < T” < T. Assume that for any multi-indices a, £, 858?3@, z,§) is
continuous in R x R? x R? and there exists a positive constant Ca, such that
’8?8?3(1&, z,8)| < Ca,p(1+ |z| + |€])™. Then the integral

Flarl= [ Blta(0).p)it€ Fon Fp.
[T7,7)
(c) Assume that for any multi-indices o, 3, 02 8? B(t,z,€) is continuous on R x R¢x R4
and there exists a positive constant C, s such that ]633? B(t,z,£)| < Cq,5. Then
F[q,p] — ef[T,’TH) B(t»Q(t)»p<t))dt (= fQ N f,P .

Remark. To avoid the uncertain principle, we do not treat the position g(¢) and the
momentum p(t) at the same time ¢, i.e., g(¢t) € Fo, p(t) € Fg and q(t) & Fp, p(t) € Fp.

To state the algebra on the classes Fg, Fp, we explain the functional derivatives.
Definition 2 (Fuctional derivatives). For any division Ar g, we assume that
FlgaroPAre) = Faro(Zi41,€0,24,. .., &0, T0) € C°(RUZHI)
For any g, ¢ € Q and any p, p’ € P, we define the functional derivatives Dy F|q, p] and
Dy Flg, p] by

0 , 0
D, Flq,p] = %F[q+9q , D] , Dy Flq,p] = %F[q,p+9p’] e
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The position paths ¢ and ¢’ The momentum path p
Figure 2.

Remark. For any ¢, ¢ € Q and p € P, choose Ar o which contains all times when
q, ¢’ or p jumps (Figure 2). Set ¢(T}) = zj, ¢'(T;) = z; and p(Tj-1) = §;—1. Since
(g+609')(0) = xo+0xf, (q+6q')(t) = x;+0x) on (Tj_1,T;] and p(t) = £;-1 on [T}-1,Tj),
we have

F[q + aq,ap] = FAT‘O(-’L'J—FI + 0x{]+17§J,xJ + 01/{], e ,50,:”0 + 9(E6) )

Hence we can treat Dy Flg,p| as a finite sum of functions, i.e.,

J+1

= Z(a:erAT,o)(xJ+la£Ja ER 7€0ax0) : x_lg :
6=0 =0

0
Dy Flq,p) = %F[q + 64¢', p]

Theorem 2 (Smooth algebra on Fg, Fp).

(1) For any Flq,p|, Glg,p} € Fg, any ¢’ € Q, any p’ € P and any real d x d matrices
A, B, we have

Flq,p) + Glg,p) € Fo, Flg,plGlg,p| € Fo, Flg+d,p+p'] € Fo,
F[Aq,Bp] € Fg, Dy Flq,p] € Fo, Dy Flg,p] € Fo.

(2) For any Flq,p], Glg,p] € Fp, any ¢ € Q, any p’' € P and any real d X d matrices
A, B, we have

Flq,p) + Glg,p) € Fp, Flq,p|Gla,p| € Fp, Flg+4,p+0] € Fp,
F[Aq,Bp| € Fp, Dy Flq,p] € Fp, Dy Flg,p] € Fp.

Remark. The two classes Fg, Fp are closed under addition, multiplication, trans-
lation, real linear transformation and functional differentiation. Therefore, if we apply
Theorem 2 to Example 2, we can produce many functionals F[g,p] € Fg or Fp which
are phase space path integrable.
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§4. However, we must note which operations are valid

As we will see in Theorems 3 and 5, because ¢’ € Q, p’ € P are piecewise constant,
the part f[O,T) p(t) - dq(t) of ¢[g,p] does not always have good properties under the
operations in Theorem 2. Therefore, we must pay attention to which operations are
valid in the phase space path integrals [ erdlarl [¢,p]D]g, p|.

§5. Translation

Theorem 3 (Translation).

(1) For any p’ € P, we have ex(@lap+p'1=¢lar) ¢ £,
Furthermore, let T be sufficiently small. Then for any Flq,p] € Fo, we have

/ ex? PP Ip(g p+ p'|Dlg, pl
q(T)=z!p(0)=§07Q(o)=$0

/ e%9P Flg, p|Dlg, p] .
q(T)==,p(0)=¢&o+p’(0),q(0)=z0

(2) For any ¢’ € Q, we have e#(¢la+d'pl=dla.p) ¢ £,
Furthermore, let T be sufficiently small. Then for any F|q,p] € Fp, we have

/ ex?latd' FIpg 4 o, pID[q, p]
4(T)=2,p(0)=£0,9(0)=20

%1971 Flg, p|Dlg, p] .

/q(T)=w+q’ (T),p(0)=£0,9(0)=z0+4’(0)

Proof of Theorem 3 (1). For simplicity, we omit the proof of e# (¢[e:p+P'1-¢la.p]) ¢ Fo.
By Theorem 1 and 2 (1), we have

(5.1) / e*lartP1plg b + p'|Dlg, p|
q(T)=z,p(0)=¢&0,g(0)=x0

/ e%¢[q,p1e%(¢[q,p+p’]~¢[q,p])p[q,p + p'|D]q, p]
9(T)==,p(0)=£0,9(0)=x0

dJ J

o ]. R /

= larao (Eﬁ) /R RO one T Flanr pary + 2] [[ dsde;
, j=1

with ga, o (Tj) = z; and pa,,(T;) = &;. Choose Ar,o which contains all times when

the path p’ jumps (Figure 3). Set p/(t) = i—1on [T;_1,T;). Since



90

NaoTo KUMANO-GO

¢ — D
¢ ' :‘)
qAT;O
—e ¢ S
& pAT 0 ¢ ¢
(0, IO )" : (0, £0) \.:4 pl ) ) |
0 "' T 0 T
The position path ga, The momentum paths pa,., and p’
Figure 3.

(Paro +P')(t) =&-1+ &5, on [Tj-1,T;), we can write

dJ
= lim 1 / e%(ﬁAT,o(xJ+1ny+ff],$J;---7£1+fi ,21,60+€0,%0)
|AT,0]—0 2wh R2dJ

J
X FAT,O(:EJ+1’€J +§.I]ax.]’ v a£1 +§1,.’E1,€0 +€(l)al'0) Hd{?dxj )
j=1

By the change of variables: §; + &} — §;,j=1,2,...,J, we have

dJ ,
— 1' 1 %¢AT‘0(wJ+11€Jy$J1"'7£1axl1€0+669$0)
oo ()
Ar,o|—0 \ 2T R24J

J
X Faro(@41,€0,%0, .., &1, 21,& + &, 70) [ [ d€;dz;
Jj=1

e%‘b[q’p]F[q,p]D[q,p} 0O

‘/q'(T) =z,p(0)=E€o0+p’(0),9(0)==z0

Remark. By ek (Bla.ptr']-dlar)) ¢ Fo, Theorem 1 guarantees the existence of the
phase space path integral of (5.1), i.e., the definition ”=" of (5.1) for any Arg with
|Ar0| — 0. Note that we do not treat the case with e#(¢lata’.p+p'l-dla.2])

§ 6. Orthogonal transformation

Theorem 4 (Orthogonal transformation). Let T be sufficiently small. Then for any
Flq,p) € Fg or Fp and any d x d orthogonal matriz Q,

/ e##1R.QPI F[Qq, Qp|D[q, ]
o(T)=2,p(0)=t0,q(0)=z0
e*?la?] Flq, p|Dlg, p] .

/q(T)=Qw,p(0)=Q£o,q(0)=Qwo
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§ 7. Integration by parts with respect to functional differentiation

Theorem 5 (Integration by parts).
(1) For any p’ € P, we have Dy ¢|q,p] € Fg. Furthermore, let T be sufficiently small.
Then for any Flq,p] € Fo and any p' € P with p'(0) = 0,

endlap] (Dp F)[q,p)Dlg,p] = L 6%¢[q’p](Dp’¢) lg, p] (g, p|Dlg, p] .-
h

(2) For any q' € Q, we have Dy ¢[q,p] € Fp. Furthermore, let T be sufficiently small.
Then for any F(q,p] € Fp and any ¢’ € Q with ¢'(T) = ¢'(0) = 0,

i i i
[ R Dy F)ig.1Dla sl = —1 [ 397Dy )la,pIFlg p1Dlg, -
Remark (Analogues of canonical equations). Set F[g,p] = 1. Note that
darl= [ p0)-da®)- [ Ha0.p0)dt.
[0,T) [0,T)

Then we can rewrite Theorem 5 as follows:
(1) For any p’ € P with p’(0) = 0, we have

0= /e%¢[q71’1 (/[O o p'dg — (BeH)(t, q,p)p'dt) Dlq,p] .

(2) For any ¢’ € Q with ¢/(T) = ¢’(0) = 0, we have

0= /e%¢[q,l’] </[ )pdq/ — (8wH)(t, q,p)q'dt) D[q,p] .
0, T

Note that the inner parts of the phase space path integrals are similar to the canonical
equations: 8tQ(t) = (8§H)(t’ Q:p), 8tp(t) = ”“(81-H)(t, Qap)

§ 8. Theorem of Fubini’s type

Because the measure of (2.1) does not exist, we state a theorem of Fubini-type.

Theorem 6 (Fubini-type). Let m be a non-negative integer. Assume that for any
multi-index o, 02 B(t, z) is continuous in R x R? and there exists a positive constant
Cqo such that |03B(t,z)| < Co(l + |z|)™. Furthermore let T be sufficiently small. Let
0<T' <T"<T. Then we have the following:
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(1) For any F(q,p] € Fg including F(q,p] = 1, we have

/ eholar) / B(t, q(t))dtFlg, p|Dlg, ]
[T’,T“)
_ / / ek?19P1B(t,¢(t)) Flg, pDlg, pldt .
[/,Tu)

(2) For any Flq,p] € Fp including Flq,p] = 1, we have

/ ot olar] / B(t, p(t))dtFg, p|Dlg, p]
[T',T”)
_ / / e# 91971 B(¢, p(t)) Flg, plDlg, pldt .
[ ’,T”)

Remark. To avoid the uncertain principle, we do not treat the position ¢(t) and the
momentum p(t) at the same time ¢.

Remark. If |03 B(t, z)| < Cq, we have the perturbation expansion:

/e%¢[q,1’]+‘% Jio.y B(T’q(r))dTD[q,P]

= Z (%’) / dTn/ d’l’n_l o / dT1
n=0 [O’T) [Oan) [0v7'2)

y /e%zﬂq,p]B(Tn, q(72))B(Ta-1,q(Tn—1)) - - - B(11, q(71))D[q, 2] -

§9. Semiclassical approximation of Hamiltonian type as / | 0

Let T be sufficiently small. Let g(t) = (¢, z, &) and p(t) = p(t, x, &) be the solution
of the canonical equations

0:q(t) = (0 H)(¢, q(t), p(t)) , 0:p(t) = —(8:H)(2,q(t),p(t)), 0<t<T,

with the boundary conditions ¢(7") = = and p(0) = &. We define the bicharacteristic
paths qb = qb(t’ z, 507 "L‘O) and pb = pb(t, x)f()) by

_(t’ma50)a 0<t ST,

" (0) = =y, q
f’(taxa§0)a 0 S t<T

¢ (t) =

p(t)=

Figure 4). Let (z%,£%,...,x7,£7) be the stationary point of ¢a.., given by
JrSJT 1261 T,0

(8(€J,$J ,,,,, 61,x1)¢AT,0)(IJ+1v€;ax37 cee ,Eik,l'iaﬁo) =0.
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(T,2)

(0,$0)jl (0,60)1
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The bicharacteristic path ¢’ The bicharacteristic path p®

Figure 4.

Set & = x741. We define D(T,z,&) by

D(T,z,&) = IAiiﬁ?ﬁo(—l)dJ det(0fg, .. 61,21 D070 (741,25, €5, -, 21, € Eo)

Theorem 7 (Semiclassical approximation of Hamiltonian type as i | 0). Let T be
sufficiently small. Then, for any F|q,p] € Fg or Fp, we have

[ #9051 Flg, piDlg,p) = 45" #) (D(T, 2,60) 2 Fld, ] + KT (1, T, 60,20))
Here for any multi-indices o, (3, there exists a positive constant Cqo g such that

10208, Y (, T, 2, &0, %0)| < Ca (1 + || + o] + o)™

§10. Proof for Theorems 1 and 2

In order to prove the convergence of the multiple integral

dJ J
1 i
(10'»1) (%) /dej ehqs[qAT‘O,pAT’O]F[QAT,o’pAT,OJ I I dfjdmja
Jj=1

as |Ar,| — 0, we have only to add many assumptions to the function

FAT‘O ($J+17€JaxJ, v 7',1"1750,1:0) = F[qAT,oapAT,o] .

and define Fg, Fp by them. Do not consider other things. Then Fg, Fp will be larger
as a set. If lucky, Fg, Fp will contain at least one example F[g,p] = 1.

Our proof consists of 3 steps: As the first step, by an estimate of H. Kumano-go-
Taniguchi’s type [9, p.360, (6.94)], we control the multiple integral (10.1) by C” with a
positive constant C' as J — co. As the second step, by a stationary phase method of
Fujiwara’s type [6], we control the multiple integral (10.1) by C with a positive constant

93
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(0’50)*)5 (Tg—lﬁj_x) .

(0, l'()):

0 T,.; T 0o T, T
The piecewise bicharacteristic path ga,, The piecewise bicharacteristic path par,

Figure 5.

C independent of J — 0o. As the last step, we add assumptions so that the multiple
integral (10.1) converges as |Arpo| — 0.

For the properties of the phase space path integrals, we have only to prove the
properties which we can prove.

§11. Assumption via piecewise bicharacteristic paths

The piecewise constant paths are rougher as an approximation. In order to make the
calculation for the convergence more easily, we use the piecewise bicharacteristic paths
instead of the piecewise constant paths.

Let |A1,| be small. We define the bicharacteristic paths gr; r;,_, = dr;,1,_, (t,zj,&5-1)
and pr;,1;_, = D1} ,Tj_l(t,xj,gj_l), T;—1 <t < T} by the canonical equation

(11.1) 01qr;,1;_, (t) = (O¢H)(¢, qr;,1;_1» PT;,T5-1);
Oebr; 1;_, (t) = —(0:H)(t, q1;,1;_, PT;.15_, )y Tj—1 St < Ty,

with ¢r, 7,_, (T;) = z; and pr; 1,_, (Tj-1) = &-1. Using qr;,1;_, and pr;,1;_,, we define

the piecewise bicharacteristic paths gar, = gar (8, Zs+1,€5,24,...,&1, 71,80, To) and
pAT,() = pAT,o (t> TJj+1, é.J, TJjy..- )é‘la T, 60) by
(11'2) dAT o (t) = qu;Tj—l(t’mj’Ej—l)’ Tj—l <t= TJ" qAT,O(O) = Zo,

Pare(t) = o1y 1y_, (625, &5-1), Ti—1 <t <Tj

for j=1,2,...,J,J +1 (Figure 5). Then the assumption via piecewise bicharacteristic
paths corresponding to Assumption 3 (1) is the following:

Assumption 2 (via piecewise bicharateristic paths). Let m > 0. Let u; > 0, j =
1,2,...,J,J + 1 are non-negative parameters depending on the division Ar o such that
Z;.I;Lll u; = U < oco. For any integer M > 0, there exist positive constants Anr, X
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such that

J+1
(11.3) |(H 50"355 ) FAro (541,65, 2,5 €1, 21, €0, 20)|

J+1 J+1
< Ap (X)) [ ()™ 08 =bD) (1 ) (gl + (€51 ]) + o)™,
Jj=1 j=1

J+1
(114) ’(H 8a]aﬂj 1)6xkFAT0(mJ+1a gJ,-’L'J, cee agla mlaan :I:O)l

J+1
< A (Xan) T ([ )™= 0D) 1+ " (l5] + 1€5-1]) + o)™
J#k J=1

for any A, any multi-indices o, 3j—1 with |oyl, |Bj-1] < M, j=1,2,...,J,J+1
and any 1 <k < J.

Remark. We explain the mechanism of the convergence roughly. As the first step,

we assume
J+1
(11.5) |(H 5“’52’ Az (Trs1, €020, .00, &1, 21, €0, To)|
J+1
< Ap(Xar)" T (1 + Z(|$j| +1&5-1l) + lzo)™
Jj=1

to control (10.1) by CY with a positive constant C as J — oco. As the second step,
we assume (11.3) to control (10.1) by C with a positive constant C independent of
J — o0o0. As the last step, we add (11.4) so that (10.1) converges as |Arg| — O.
Roughly speaking, (11.4) implies that if the difference of two paths is small, then the
difference of two heights is small.

§12. Calculation examples via piecewise bicharacteristic paths

If we use the piecewise bicharacteristic paths, then we can calculate the functions
U(T,0,z,&) of the fundamental solutions U(T, 0) for some equations directly.

Example 12.1. We calculate U(T,0,z,£) when d = 1, H(t,z,£) = 2?/2+¢%/2 and
Flq,p) = 1. Note (9¢H) = £ and (0, H) = z. By the canonical equation

Owqr;,r;_+(t) = Pry,r;_, (), Oubryry_ (t) = —Gr, 1, (1), Tj—1 <t <T;
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(T, )
q
(0, :EO)' H : : : : : (O, 60)' : : H : :
0 Tl Tg : : : T 0 Tl Tg : : T
The path g(ar 1,,0) and z7 The path pay 5, ,0) and &7
Figure 6.

with ¢r; 7,_, (T}) = z; and pr; 7,_, (Tj—1) = &;j—1, we have the bicharacteristic paths

z; cos(t — Tj—1) — §j—1sin(T; — t)

quuTj—l(t) = cos(T; — T;_1) )

_ —xjsin(t — Tj—1) + &_1 cos(T; — t)

PT;,T5 (t) = .
COS(Tj - Tj_l)

Let gar o, Par, be the piecewise bicharacteristic paths of (11.2) (Figure 5). Then the
functional @lgar,,Par,] becomes the function

J+1
$anr.osParo) = Gare = D ¢1,.1, (X5, €5-1,T5-1)
Jj=1
where
2x; - &1 — (22 + &2_))sin(Ty — Tj_1)
013,13 (25,651, 2-1) = —%j-1 &1 + 2cos(T; — Tjj-1) '

Let (£7,z7) be the solution of O¢, ¢,) (1,10 + é11,0) (2, &5, 77, &0) = 0 (Figure 6).
Then we have

b1, 1, (22, &1, 1) + O3y 0(%1, &0, T0)

= ¢1,,0(22, 0, Z0) + %a&ml)(mm + é10) [51 - 5{] _ [51 - ET] ,

T —z} T — 3
Note that
_ Sin(Tz —T1 ) _1 0S T
—1) det §2 = (=1 cos(T2—T1) ) = #__
( ) €L O(gy,21) (¢T2,T1 + ¢T1,0) ( ) 1 _ z:)x;((gi :g; costq costy
Using the formula
_ )2
/ phiAza g _ (2mhi) _ 27h ,
R2 det A V(1) det A
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for any 2 x 2 real symmetric matrix A, we have

costg cost; ) 1/2

1 / e%¢T2,T1 (w27§1,11)+%¢n,0($1,§o,mo)dxld£1 — e-,%¢7‘2,0(w2»§0,$0)
R2 cos Ty

21k

Using this relation inductively and taking |Ar| = maxi<j<s+1t; — 0, we have
e%(w—xo)-éo[](T’ 0,z, EO) — /e%¢{<1ap]'D[q,p]

J J
. 1 i sy :
" ane! (27rh> /R f it 5y ma (0 6-0m0) [T day e,

= {AT,OI—?O jzl
J+1 N\ V2
= lim e%qu,O((E,EO’xo) M
|Ar,0]—0 cosT
= 1 i 2x'§0—($2+€3)sinT>
- (cosT)1/2 exph(—xo-&)—%— 2cosT }

Example 12.2. Ifd =1, H(t,z,§) = §*/2+ z - £ + 2?/2 and Flg,p] = 1, we have

i(z—wg)- el \'/? i 2r - &y — T(x? + €2
ek (@ xo)ﬁoU(T, 0,z,&) = (1__’7) eXpﬁ <—$0'§0+ 502(1 +(T) fo)) .

Example 12.3. Even when d = 1, H(t,z,£) = —iz?/2 — i¢?/2 (complex-valued,
i.e., a heat equation) and F[g,p] = 1, in a similar way, we can calculate

i (z—a0)- 1 i 2z - & +i(x? + £€2)sinh T
en(-’v o) §0U(T’ 0’3;’50) = WeXpﬁ <_m0 &+ 0 2COShTO) .

§13. Assumption for two classes Fg, Fp of functionals F[q,p)

Using the functional derivatives of higher order, we rewrite Assumption 2 via the
piecewise bicharacteristic paths to Assumption 3 (1) via piecewise constant paths.
Assumption 3. Let m be a non-negative integer. Let uj, j=1,2,...,J,J+1 and

U be non-negative parameters depending on Az such that Z;.]:ll u; = U < oo. Set

lgll = sup |q(t)| and ||p|| = sup |p(t)|.
0<t<T 0<t<T
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 o—(T}3)

= —

- G daly p Pl 5
(0,z0)8 o ''''' . (0,50)?'—0 60 0@

0 %j—-l %j ML% 0 j—1 %j T

The position paths g, g, The momentum paths p, p;,

Figure 7.

(1) For any non-negative integer M . there exist positive constants Aps, Xas such that

J+1Lg,; J+1Lp,;
( Dg; )( Dy, )Fla,pl| < An(Xa0)” (14 llgll + o)™
§=0 I=1 j=1 l=1
J+1 J+1Lg,; J+1Lp,;
([ (t5)mntEraD ) TT H gl TT T Vesall
j=1 7=0 I=1 j=1 =1
J+1Lg,; J+1Lp;
( Dy, . )( Dy, ) Da Fla, pl| < An(Xar)?* (1 + llgll + lp)™
§=0 =1 i=1 l=1
J+1 J+1Lg,; J+1Lp,;
xuglgel( [T (&)mmEPaD H H lgiall TT 1 lesall
j=1,j5#k §=0 I=1 j=1 I1=1

for any division Arg, any Lo ; =0,1,...,M, any Lp ; =0,1,..., M, any g;; € Q
with g;;(t) = 0 outside (T}j—1,Tj], any gx € Q with gx(t) = 0 outside (Tk—1,Tk),
and any p;; € P with p;;(t) = 0 outside [T;_,,T;) (Figure 7).

(2) is omitted (see [11]).
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