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Abstract

The multisummability of WKB solutions of singularly perturbed linear ordinary differential
equations is considered. We announce some results on the multisummability of WKB solutions

of a concrete example of a perturbed Schr\"odinger equation and its third-order analogue.

\S 1. Introduction

The one-dimensional Schr\"odinger equation

(1.1) $( \frac{d^{2}}{dz^{2}}-\eta^{2}Q(z))\psi(z, \eta)=0$

with a large parameter $\eta$ admits formal solutions, often called WKB solutions, of the

following form:

(1.2) $\hat{\psi}_{\pm}(z, \eta)=\exp(\pm\eta\int^{z}\sqrt{Q(z)}dz)\sum_{n=0}^{\infty}\psi_{\pm,n}(z)\eta^{-n}.$

In the exact WKB analysis the WKB solutions (1.2) are endowed with an analytic mean-

ing through the Borel resummation technique with respect to $\eta$ . Consequently global

behavior of solutions of (1.1) (e.g., the monodromy group, Stokes multipliers around ir-

regular singular points, etc.) can be explicitly analyzed by using Borel resummed WKB

solutions. (See, for example, [KT].)
However, if some perturbative terms (with respect to $\eta$ ) are added to (1.1) like

$($ 1.3 $)$
$( \frac{d^{2}}{dz^{2}}-\eta^{2}(Q_{0}(z)+\eta^{-1}Q_{1}(z)+\cdots))\psi(z, \eta)=0,$
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then, in general, we need the so-called multisummability, that is, the summability which
is more refined than the Borel summability, to give an analytic meaning to WKB solu-
tions

(1.4) $\hat{\psi}_{\pm}(z, \eta)=\exp(\pm\eta\int^{z}\sqrt{Q_{0}(z)}dz)\sum_{n=0}^{\infty}\psi_{\pm,n}(z)\eta^{-n}$

of (1.3). The purpose of this note is to show this fact by considering some concrete
examples.

Recently R. Sch\"afke ([Sc]) showed that the following first-order inhomogeneous or-
dinary differential equation

(1.5) $( \epsilon\frac{d}{dz}-(z-\epsilon z^{2}))\psi(z, \epsilon)=\epsilon^{2},$

where $\epsilon$ is a small parameter $(i.e., \epsilon=\eta^{-1})$ , has a formal solution which is $(3, 1)-$

multisummable. Inspired by this result and discussions with him, we consider the
following equation

(1.6) $( \frac{d^{2}}{dz^{2}}-\eta^{2}(z-\eta^{-2}z^{2}))\psi(z, \eta)=0$

and its third-order analogue in this note. Our main results (Theorems 3.1 and 3.2) claim
that WKB solutions of these equations are also multisummable (with some appropriate
indices). In this note we only announce the main results; their detailed proofs will be
published elsewhere.

The plan of this note is as follows: First, following the lecture note of Balser [B],
we review the definition of the multisummability in Section 2. Then in Section 3 we
introduce concrete examples of differential equations to be considered and state our
main results on the multisummability of their WKB solutions. In Section 4 we explain
the core part of the proof of the main results. Finally in Section 5, we discuss the
structure of the Borel transform of WKB solutions in question.

\S 2. Borel summability, $k$-summability and multisummability

In this section, following [B], we review the definition of the multisummability and
some fundamental properties for it. We basically employ the same notation as [B]
and use a small parameter $\epsilon=\eta^{-1}$ instead of a large parameter $\eta$ as an asymptotic
parameter in this section.

First, let us recall the definition of the $k$-summability.

Definition 2.1 ( $k$ -summability). Let $k>0$ be a positive real number and $\hat{f}=$

$\sum_{n}f_{n}\epsilon^{n}$ be a formal power series of a small parameter $\epsilon$ . Then $\hat{f}$ is said to be k-
summable in the direction $d$ if and only if $\mathcal{L}_{k}^{d}\hat{\mathcal{B}}_{k}\hat{f}$ is well-defined.
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Here $\hat{\mathcal{B}}_{k}\hat{f}$denotes the formal Borel transform with index $k$ (or “formal $k$-Borel trans-
form” for short) of $\hat{f:}$

(2.1) $( \hat{\mathcal{B}}_{k}\hat{f})(y) :=\sum_{n=0}^{\infty}\frac{f_{n}}{\Gamma(1+n/k)}y^{n},$

and $\mathcal{L}_{k}^{d}g$ denotes the Laplace transform with index $k$ (or $k$-Laplace transform” for
short) of $g$ in the direction $d$ :

(2.2) $( \mathcal{L}_{k}^{d}g)(\epsilon) :=\epsilon^{-k}\int_{0}^{\infty e^{id}}\exp(-(\frac{y}{\epsilon})^{k})g(y)d(y^{k})$ ,

where the integration from $0$ to $\infty$ is done along $\arg y=d.$

Note that the 1-summability exactly coincides with the Borel summability.
It is well-known that the $k$-summability of $\hat{f}$ is equivalent to the existence of an

analytic function whose Gevrey asymptotic expansion of order $k$ is given by $\hat{f}$ in a sector
with sufficiently large opening. To be more specific, $\hat{f}$ is $k$-summable in the direction $d$

if and only if there exists an analytic function $f(\epsilon)$ in a sector $S$ with bisecting direction
$d$ and opening larger than $\pi/k$ such that the asymptotic expansion of Gevrey order $k$

of $f(\epsilon)$ is given by $\hat{f}$:

(2.3) $f( \epsilon)\cong_{k}\hat{f}=\sum_{n=0}^{\infty}f_{n}\epsilon^{n}$ as $\epsilonarrow 0$ in $S,$

that is, for every closed subsector $\overline{S_{1}}$ of $S$ and every non-negative integer $N$

(2.4) $|f( \epsilon)-\sum_{n=0}^{N-1}f_{n}\epsilon^{n}|\leq CK^{N}\Gamma(1+N/k)$

holds in $\epsilon\in\overline{S_{1}}$ with positive constants $C,$ $K>0$ independent of $N.$

In some cases, to define the summability of a given formal power series, we need to
consider the $k_{j}$ -summability with several different indices $k_{j}$ simultaneously. Roughly
speaking, the multisummability deals with such situations. ( $A$ typical example is a
formal solution near an irregular singular point of a higher-order ordinary differential
equation.) The precise definition of the multisummability is given as follows:

Definition 2.2 (multisummability). Let $k=(k_{1}, \ldots, k_{q})$ be a $q$-tuple of positive
real numbers $\{k_{j}\}(1\leq j\leq q)$ satisfying $k_{1}>k_{2}>\cdots>k_{q}>0$ and $\hat{f}=\sum_{n}f_{n}\epsilon^{n}$ be
a formal power series of a small parameter $\epsilon$ . Then $\hat{f}$ is said to be $k$-multisummable in
the direction $d$ if and only if the following functions $\{f_{j}\}(0\leq j\leq q)$ are successively
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well-defined:

$f_{q}:=\hat{\mathcal{B}}_{k_{q}}\hat{f,}$

$f_{q-1}:=\mathcal{A}_{k_{q-1},k_{q}}^{d}f_{k_{q}},$

(2.5)

$f_{1}:=\mathcal{A}_{k_{1},k_{2}}^{d}f_{2},$

$f_{0}:=\mathcal{L}_{k_{1}}^{d}f_{1}.$

Here $\mathcal{A}\frac{d}{k},k=\mathcal{B}_{\overline{k}}\circ \mathcal{L}_{k}^{d}$ denotes the acceleration operator introduced by Ecalle, that is,

(2.6) $( \mathcal{A}\frac{d}{k},kg)(\epsilon) :=\epsilon^{-k}\int_{0}^{\infty e^{id}}C_{\overline{k}/k}((\frac{y}{\epsilon})^{k})g(y)d(y^{k})$ ,

where the integration is done along $\arg y=d$ from $0$ to $\infty$ and the kernel function
$C_{\alpha}(z)(\alpha>1)$ is given as follows:

(2.7) $C_{\alpha}(z):= \frac{1}{2\pi i}\int u^{1/\alpha-1}\exp(u-zu^{1/\alpha})du,$

where $\gamma$ is a path going $from-\infty to-\delta(\delta>0)$ along the negative real axis, encircling
the $origin\wedge$ anti-clockwise once, and returning $to-\infty$ again along the negative real axis.
When $f$ is $k$-summable, the function $f_{0}$ defined by (2.5) is called the $k$ -sum of $\hat{f.}$

The multisummability is usually defined in the multidirection $d=(d_{1}, \ldots, d_{q})$ , that
is, in defining the function $f_{j}$ in (2.5), we use different directions at each level (i.e.,
$f_{j-1}=\mathcal{A}_{k_{j-1},k_{j}}^{d_{j}}f_{k_{j}}$ for $2\leq j\leq q$ and $f_{0}=\mathcal{L}_{k_{1}^{1}}^{d}f_{1}$ ). In this paper, however, we only
consider the multisummability in a fixed single direction $d$ for the sake of simplicity.

The following proposition clearly shows that the multisummability of $\hat{f}$ means the
necessity of considering the $k_{j}$ -summability with several different indices $k_{j}$ simultane-
ously.

$Proposition\wedge 2.3$ $( [B, \S 6.2 and \S 6.3])$ . Suppose $k_{q}>1/2$ . Then a formal power se-
ries $f$ is $(k_{1}, \ldots, k_{q})$ -multisummable in the direction $d$ if and only if $\hat{f}$ can be decomposed
into the sum of $k_{j}$ -summable series $\hat{f_{j}}$ in the direction $d$ , that is,

(2.8) $\hat{f}=\sum_{j=1}^{q}\hat{f_{j}}$ where $\hat{f_{j}}:k_{j}$ -summable in $d.$

\S 3. Main results

From now on we discuss the multisummability of WKB solutions of some concrete
examples of singularly perturbed linear ordinary differential equations.
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First, let us consider the following perturbed Schr\"odinger equation:

(3.1) $( \frac{d^{2}}{dz^{2}}-\eta^{2}(z-\eta^{-2}z^{2}))\psi(z, \eta)=0.$

If we ignore the term $\eta^{-2}z^{2}$ , Equation (3.1) becomes the Airy equation. Otherwise
stated, (3.1) is a perturbation of the Airy equation. On the other hand, by the scaling

(3.2) $z=\eta^{2}x,$

(3.1) is transformed into

(3.3) $( \frac{d^{2}}{dx^{2}}-(\eta^{4})^{2}(x-x^{2}))\psi=0,$

which is nothing but the Weber equation. Making use of the well-known fact that the
Weber equation has an integral representation of solutions, we then find that (3.1) also
has the following integral representation of solutions:

(3.4) $\psi(z, \eta)=\int\exp(-\eta^{4}g(t;z, \eta))t^{-1/2}dt,$

where the phase function $g(t;z, \eta)$ is given by

(3.5) $g(t;z, \eta)=\frac{i}{8}(2t^{2}-4t(1-2\eta^{-2}z)+\log t+(1-2\eta^{-2}z)^{2})$ .

Let $t=t\pm$ be a saddle point of $g(t;z, \eta)$ , that is, $t=t\pm$ are zeros of

(3.6) $\frac{\partial g}{\partial t}=\frac{i}{8}(4t-4(1-2\eta^{-2}z)+\frac{1}{t})$ ,

more explicitly,

(3.7) $t \pm=\frac{(1-2\eta^{-2}z)\pm\sqrt{(1-2\eta^{-2}z)^{2}-1}}{2}.$

Note that

(3.8) $t_{+}-t_{-}=O(\eta^{-1}) , g(t_{+};z, \eta)-g(t_{-};z, \eta)=O(\eta^{-3})$ .

Let $r_{\pm}$ be a steepest descent path of $\Re(-\eta^{4}g)$ passing through the saddle point $t\pm,$

respectively, and let $\psi_{\pm}(z, \eta)$ denote a solution of (3.1) defined by

(3.9) $\psi_{\pm}(z, \eta)=\int_{r_{\pm}}\exp(-\eta^{4}g(t;z, \eta))t^{-1/2}dt,$

Then, by considering the asymptotic expansion of $\psi_{\pm}(z, \eta)$ with respect to $\eta$ (for fixed
$z)$ , we obtain $a$ (suitably normalized) WKB solution $\hat{\psi}_{\pm}(z, \eta)$ of (3.1):

(3.10) $\psi_{\pm}(z, \eta)\cong\hat{\psi}_{\pm}(z, \eta)=\exp(\pm\eta\int^{z}\sqrt{z}dz)\sum_{n=0}^{\infty}\psi_{\pm,n}(z)\eta^{-n}.$
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We denote the formal power series part of $\hat{\psi}_{\pm}(z, \eta)$ by $\hat{\varphi}\pm(z, \eta)$ , that is,

(3.11) $\hat{\psi}_{\pm}(z, \eta)=\exp(\pm\eta\int^{z}\sqrt{z}dz)\hat{\varphi}\pm(z, \eta)$ .

Our first main result is the following:

Theorem 3.1. The formal power series part $\hat{\varphi}\pm(z, \eta)$ of the $WKB$ solution $\hat{\psi}_{\pm}(z, \eta)$

of (3.1) is (4, 1)-multisummable with respect to $\eta$ . To be more precise, for each fixed $z$

$\hat{\varphi}\pm(z, \eta)\dot{u}(4,1)$ -multisummable with respect to $\eta$ (or $\eta^{-1}$ ) except for a finite number
of singular directions.

As a second example, let us next $co$nsider the following third-order differential equa-
tion:

(3.12) $( \frac{d^{3}}{dz^{3}}+(z\eta^{-3})\eta\frac{d^{2}}{dz^{2}}+(3+2z\eta^{-1})\eta^{2}\frac{d}{dz}+2i(z+1)\eta^{3})\psi(z, \eta)=0.$

Similarly to (3.1), as Equation (3.12) is the $so$-called Laplace type equation, (3.12) also
has the following integral representation of solutions:

(3.13) $\psi(z, \eta)=\int\exp(-\eta^{8}h(t;z, \eta))dt,$

where

(3.14) $h(t;z, \eta)=tz\eta^{-5}-\int^{t}\frac{u^{3}+(3\eta^{-4}-2\eta^{-8})u-2i\eta^{-6}+2\eta^{-8}}{u^{2}-2u+2i\eta^{-1}}du.$

In this case the phase function $h(t;z, \eta)$ has three saddle points, which are denoted by
$t=t_{j}(j=0,1,2)$ . Let $\psi_{j}(z, \eta)(j=0,1,2)$ be a solution of (3.12) defined by

(3.15) $\psi_{j}(z, \eta)=\int_{\Gamma_{j}}\exp(-\eta^{8}h(t;z, \eta))dt,$

where $\Gamma_{j}(j=0,1,2)$ is a steepest descent path of $\Re(-\eta^{8}h)$ passing through the saddle
point $t=t_{j}$ . Then, in parallel to the above discussion for (3.1), by considering the
asymptotic expansion of $\psi_{j}(z, \eta)$ with respect to $\eta$ , we obtain a WKB solution $\hat{\psi}_{j}(z, \eta)$

of (3.12):

(3.16) $\psi_{j}(z, \eta)\cong\hat{\psi}_{j}(z, \eta)=\exp(\pm\eta\int^{z}\zeta_{j}(z)dz)\sum_{n=0}^{\infty}\psi_{j,n}(z)\eta^{-n},$

where $\zeta_{j}(z)(j=0,1,2)$ is a root of the cubic equation

(3.17) $\zeta^{3}+3\zeta+2i(z+1)=0.$
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Let $\hat{\varphi}_{j}(z, \eta)$ denote the formal power series part of $\hat{\psi}_{j}(z, \eta)$ :

(3.18) $\hat{\psi}_{j}(z, \eta)=\exp(\pm\eta\int^{z}\zeta_{j}(z)dz)\hat{\varphi}_{j}(z, \eta)$ .

Our second main result is then the following:

Theorem 3.2. The formal power series part $\hat{\varphi}_{j}(z, \eta)(j=0,1,2)$ of the $WKB$ so-
lution $\hat{\psi}_{j}(z, \eta)$ of (3.12) is (8, 5, 1)-multisummable with respect to $\eta.$

Theorem 3.2 shows that, in addition to the index 1, two other different indices 8
and 5 appear in the description of the multisummability of WKB solutions of (3.12).
Roughly speaking, this is a consequence of the fact that (3.12) admits the following two
different scalings: Firstly, by the scaling $z=\eta^{3}x_{1}(3.12)$ is transformed into

(3.19) $( \frac{d^{3}}{dx_{1}^{3}}+(x_{1}\eta^{-1})\eta^{5}\frac{d^{2}}{dx_{1}^{2}}+(3\eta^{-2}+2x_{1})\eta^{10}\frac{d}{dx_{1}}+2i(x_{1}+\eta^{-3})\eta^{15})\psi=0$

and, secondly, by the scaling $z=\eta^{5}x_{2}(3.12)$ is transformed into

(3.20) $( \frac{d^{3}}{dx_{2}^{3}}+x_{2}\eta^{8}\frac{d^{2}}{dx_{2}^{2}}+(3\eta^{-4}+2x_{2})\eta^{16}\frac{d}{dx_{2}}+2i(x_{2}\eta^{-1}+\eta^{-6})\eta^{24})\psi=0.$

\S 4. $A$ sketch of the proof of the main results

In this section we explain the core part of the proof of the main results.
Since Theorem 3.2 is proved in a manner similar to Theorem 3.1, we only consider

Theorem 3.1, that is, we only discuss (3.1). In the proof of Theorem 3.1, i.e., in the
study of the multisummability of its WKB solutions $\hat{\psi}_{\pm}(z, \eta)$ (or its formal power series
part $\hat{\varphi}\pm(z, \eta))$ , the most important step is to investigate what kind of Stokes phenomena
occurs with $\hat{\psi}_{\pm}(z, \eta)$ when $\arg\eta$ varies from $0$ to $2\pi$ for fixed $z$ . In view of the integral
representation (3.9) of the analytic realization $\psi_{\pm}(z, \eta)$ of $\hat{\psi}_{\pm}(z, \eta)$ , we find that this can
be explicitly done by analyzing the change of the configuration of the steepest descent
paths $r_{\pm}$ when $\arg\eta$ varies from $0$ to $2\pi$ . For example, for $z=1+i$ we can confirm
that the following two different types of Stokes phenomena occur with the formal power
series part $\hat{\varphi}_{-}(z, \eta)$ of $\hat{\psi}_{-}(z, \eta)$ :

Proposition 4.1. Let $z=1+i$ be fixed. Then, when $\arg\eta$ varies from $0$ to $2\pi$ , the
following two types of Stokes phenomena occur with $\hat{\varphi}_{-}(z, \eta)$ .

(type A)

(4.1) $\varphi_{-}(z, \eta)-\tilde{\varphi}_{-}(z, \eta)=O(\exp(-c\eta^{4}))$ ,
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where $\varphi_{-}(z, \eta)$ and $\tilde{\varphi}_{-}(z, \eta)$ denote the analytic realizations of $\hat{\varphi}_{-}(z, \eta)$ in neighboring
two sectors, respectively, and $c$ is a constant. This type of Stokes phenomena occurs at
$\arg\eta=k\pi/4$ with $k=0,1,$ $\ldots,$

$5.$

(type B)

(4.2) $\varphi_{-}(z, \eta)-\tilde{\varphi}_{-}(z, \eta)=O(\exp(-c\eta))$ .

This type of Stokes phenomena occurs only at $\arg\eta=5\pi/8.$

That is, the Stokes phenomenon of type A is that of exponential order 4 and the
Stokes phenomenon of type $B$ is that of exponential order 1. The indices 4 and 1 of
the multisummability of $\hat{\varphi}_{-}(z, \eta)$ described in Theorem 3.1 exactly corresponds to these
exponential orders of the Stokes phenomena for $\hat{\varphi}_{-}(z, \eta)$ .

The proof of Theorem 3.1 is completed by combining Proposition 4.1 with an ar-
gument typical to the asymptotic analysis, i.e., a reasoning based on the use of the
Cauchy-Heine transform. In [Su] the proof of Theorem 3.1 is given along this line when
$z=1+i$ . The complete proof of Theorems 3.1 and 3.2 will be provided elsewhere.

In the subsequent section, instead of giving the proof of the main results, we discuss
the structure of the Borel transform of the WKB solutions $\hat{\psi}_{\pm}(z, \eta)$ of (3.1) by using
the integral representation (3.9).

\S 5. Structure of the Borel transform of WKB solutions

In the case of (3.1) the analytic realization $\psi_{\pm}(z, \eta)$ of the WKB solutions $\hat{\psi}_{\pm}(z, \eta)$

has an integral representation (3.9), i.e.,

(5.1) $\psi_{\pm}(z, \eta)=\int_{\Gamma\pm}\exp(-\eta^{4}g(t;z, \eta))t^{-1/2}dt,$

where $g(t;z, \eta)$ is given by (3.5). On the other hand, as noted in Section 3, (3.1) is
transformed into (3.3) by the scaling $z=\eta^{2}x$ . Corresponding to this scaling, we have
another expression of the integral representation (3.9), that is, if we employ a change
of integration variable

(5.2) $t=i\eta^{-1}s+1/2,$

(3.9) can be written also as

(5.3) $\psi_{\pm}(z, \eta)=\int_{\Gamma_{\pm}}\exp(-\eta f(s;z, \eta))ds,$

where

(5.4) $f(s;z, \eta)=\frac{1}{3}s^{3}-zs-i\eta^{-1}\int^{s}\frac{2u^{3}-\eta^{-1}}{1+2i\eta^{-1}u}du.$

153



EXACT WKB ANALYSIS AND MULTISUMMABILITY

As discussed below, we expect that these two expressions of the integral representa-
tion may enable us to analyze the structure of Borel transforms of the WKB solutions
$\hat{\psi}_{\pm}(z, \eta)$ exphcitly through an argument similar to the discussion employed in [T].

In what follows we omit the suffix $\pm$ and do not specify the path of integration for
the sake of simplicity. First, using a change of integration variable

1 3(5.5) $y=y(s;z):=_{\overline{3}^{\mathcal{S}}}-zs,$

we rewrite (5.3) as

(5.6) $\psi=\int\exp(-\eta y)\chi(y;z)dy$

with

(5.7) $\chi(y;z)=[\exp(i\int^{s}\frac{2u^{3}-\eta^{-1}}{1+2i\eta^{-1}u}du)\frac{1}{\partial y/\partial s}]|_{s=s(y;z)}$

Here $s=s(y;z)$ denotes the inverse function of $y=y(s;z)$ given by (5.5). Then, if
higher order terms of $\chi(y;z)$ with respect to $\eta^{-1}$ can be interpreted in an appropriate
manner, $\chi(y;z)$ is considered to be the 1-Borel transform of the WKB solution $\hat{\psi}$:

(5.8) $\hat{\mathcal{B}}_{1}\hat{\psi}=\chi(y;z)=[\exp(i\int^{s}\frac{2u^{3}-\eta^{-1}}{1+2i\eta^{-1}u}du)\frac{1}{\partial y/\partial s}]|_{s=s(y;z)}$

Similarly, a change of integration variable

(5.9) $w=w(t;z):=g(t;z, \eta)$

in (5.1) leads to

(5.10) $\psi=\int\exp(-\eta^{4}w)\tilde{\chi}(w;z)dw,$

where

(5.11) $\tilde{\chi}(w;z)=[t^{-1/2}\frac{1}{\partial w/\partial t}]|_{t=t(w;z)}$

with $t=t(w;z)$ being the inverse function of $w=w(t;z)$ . Then $\tilde{\chi}(w;z)$ is also considered
to describe the 4-Borel transform of $\hat{\psi}$ or, to be more precise, the image of $\hat{\mathcal{B}}_{1}\hat{\psi}$ through
the acceleration operator $\mathcal{A}_{4,1}$ :

(5.12) $\mathcal{A}_{4,1}(\hat{\mathcal{B}}_{1}\hat{\psi})=\tilde{\chi}(w;z)=[t^{-1/2}\frac{1}{\partial w/\partial t}]|_{t=t(w;z)}$
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It is expected that several properties of the Borel transforms of $\hat{\psi}$ can be derived
from these expressions (5.8) and (5.12). For example, the analysis of the top order part
of (5.8) and (5.12) with respect to $\eta^{-1}$ suggests that the following properties should
hold for the 1-Borel transform $\hat{\mathcal{B}}_{1}\hat{\psi}$ and the 4-Borel transform $\mathcal{A}_{4,1}(\hat{\mathcal{B}}_{1}\hat{\psi})$ :

(5.13) $(\hat{\mathcal{B}}_{1}\hat{\psi})(y;z)$ has singularities at $y=\mp(2/3)z^{3/2}$ (after a suitable
translation in $y$-variable),

(5.14) $(\hat{\mathcal{B}}_{1}\hat{\psi})(y;z)\neq O(e^{c|y|})$ ( $c$ : const) as $yarrow\infty,$

(5.15) $(\mathcal{A}_{4,1}(\hat{\mathcal{B}}_{1}\hat{\psi}))(w;z)$ has singularities at $w=2m\pi i(m\in \mathbb{Z})$ (after a
suitable translation in $w$-variable),

(5.16) $(\mathcal{A}_{4,1}(\hat{\mathcal{B}}_{1}\hat{\psi}))(w;z)=O(e^{c|w|})$ ( $c$ : const) as $warrow\infty.$

Note that the singularities $y=\mp(2/3)z^{3/2}$ of $\hat{\mathcal{B}}_{1}\hat{\psi}$ come from zeros of $\partial y/\partial s=s^{2}-z$

and that the periodic singularities $w=2m\pi i(m\in \mathbb{Z})$ of $\mathcal{A}_{4,1}(\hat{\mathcal{B}}_{1}\hat{\psi})$ originate from the
term of $\log t$ in $g(t;z, \eta)$ . The former singularities $y=\mp(2/3)z^{3/2}$ (resp., the latter
singularities $w=2m\pi i$ ) correspond to the so-called movable singularities (resp., fixed
singularities) of the Borel transform of $\hat{\psi}$. The Stokes phenomena of type A and type
$B$ discussed in the preceding section are induced by these singularities $w=2m\pi i$ of
$\mathcal{A}_{4,1}(\hat{\mathcal{B}}_{1}\hat{\psi})$ and $y=\mp(2/3)z^{3/2}$ of $\hat{\mathcal{B}}_{1}\hat{\psi}$ , respectively. Also, the properties (5.14) and
(5.16) for the exponential growth of the Borel transforms clearly explain why we need
not only 1-summability but (4, 1)-multisummability for the WKB solution $\hat{\psi}$ of (3.1).
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