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CONFORMALLY FLAT LORENTZ PARABOLIC
MANIFOLD

YOSHINOBU KAMISHIMA

ABSTRACT. The purpose of this note is to introduce Lorentz par-
abolic structure on smooth manifolds. First we revisit (G, X)-
structure on manifolds. Secondly we study Lorentz similarity struc-
ture and Fefferman-Lorentz parabolic structure.

1. INTODUCTION

In the first part of this paper we review (G, X)-structure intro-
duced by Thurston, Kulkarni et al. Many results are known when
(G, X) is a homogeneous Riemannian geometry. In 1980-90s non-
Riemannian homogeneous geometries have been studied intensively.
Specifically conformally flat geometry, spherical C R-geometry and flat
quaternionic C'R-geometry. Those geometries are obtained on the
projective limit of the isometric actions of hyperbolic spaces. Sim-
ilarly, another kind of non-Riemannian homogeneous geometry is ob-
tained as the the boundary behavior of the isometric actions on pseudo-
hyperbolic spaces. The typical example is conformally flat Lorentz ge-
ometry. In the second part of this paper, we introduce conformally flat
Lorentz parabolic geometry. A Lorentz parabolic structure contains
Lorentz similarity structure and Fefferman-Lorentz structure. It is ex-
plained that the fundamental group of a compact complete Lorentz
similarity manifold M is virtually polycyclic. It turns out that a fi-
nite cover of M admits a Lorentz parabolic structute. We discuss
Fefferman-Lorentz parabolic geometry. The conformally flat Lorentz
geometry (O(2n + 2,2), S x S?**1) contains this as a subgeometry
(U(n+1,1),8*x5?*1). Let I' be a discrete subgroup of U(n+1,1) act-
ing properly discontinuously on a domain # of S x S?"*!, We present a
classification of compact conformally flat Fefferman-Lorentz parabolic
manifolds #/I" admitting a 1-parameter group H < Conf(#/T"). This
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class contains S* x N'/A where N is a 3-dimensional Heisenberg nil-
manifold. Finally we discuss the deformation space of conformally flat
Fefferma-Lorentz parabolic structures on the proudet S* x N//A.

2. (G, z)-STRUCTURE

Our geometry is a pair (G, X) where G is a finite dimensional Lie
group with finitely many components and X is an n dimensional ho-
mogeneous space of G. A geometric structure ((G, X)-structure) on
a smooth n dimensional manifold M is a maximal collection of charts
{(Us, $a) }acar Whose coordinate changes belong to G. More precisely,
M = aLeJA Uy, ¢a : U, — X is a diffeomorphism onto its image. If

U,NUg # 0 then it satisfies that there exists a unique element g, € G
such that gop - o = ¢ on U,NUs. We say that M is uniformized over
X with respect to G (or simply, M is locally modelled on (G, X)). An
n-manifold M is called a (G, X)-manifold if M is uniformized over X
with respect to G. Using a collection of charts {(Uy, #a)}aca We can
construct a geometric invariant (p,dev) called a developing pair of M.
(See [5].)

Lemma 2.1. Given a (G, X)-structure on a smooth n-manifold M,
there ezists a pair (p,dev) : (my (M), M) = (G, X) unique up to con-
jugation of elements of G, where dev is a (G, X)-structure preserving

immersion and p is a homomorphism such that the diagram is commu-
tative for each element vy € m(M);

M= X
(2.1) Wl ip(v)
M

dev X.

Proof. Let {(Uy, ¢a) }aca be a geometric structure on M. In the union

LEJA(UQ x X), we define the following equivalence relation; for (p, z) €

Uy X X, (q,y) € Ug x X, then
(p,x) ~ (g,y) if and only if p = ¢ € U, NUp, gapT = ¥,
(P gap € G).
Put £ = g(Ua x X)) ~. Let m : E — M be the map defined by

7([p, z]) = p if p € U,. Then it is easy to see that E — M is a fiber
bundle with fiber X. Recall that E is determined by the transitive
functions {g,s}. Since goe = 1 and gag * ggy = Gy o0 U, NUg NU,,
{gap} is a l-cocycle in the first cohomology H'(M;G). Here G is

(2.2)



viewed as the sheaf of germs of G-valued functions. Since H'(M;G) ~

Hom(m (M), G), {gap} determines a homomorphism p : (M) = G.

More precisely it follows that £ =~ M x X in which each element v €
P

m(M) acts on 3 x X by (7, (6,2)) = (b, p(7)2).
We construct a developing map. Let s : M — E be a section defined
by s(p) = [p, ¢a(p)] if p € U,. Consider the pull back of the bundle:

m(M) —» P*E — E
(2.3) 1 15

mM) - M —> M.
As before the bundle P*E is determined by a lift {gns} of {gas}. Since

HY(M;G) = {1}, the bundle P*E is trivial. Choose a trivialization
W : P*E — M x X. The section s extends to a section 3 : M — P*E.
Put dev = Pry- W -5: M — X. It is an immersion and preserves the
(G, X)-structure. The map dev depends on the choice of sections and
trivializations, however dev is unique up to elements of G.

On the other hand, we note that for (p,z) € U, x X, (§,4) € Usx X
in PPE = U(U x X), it follows that (p,z) ~ (¢,v) iff vp = §, p(y)y =
9apz and p = q € U, NUp for some v € m1(M) and gop € G. It is easy
to see that

dev -y = p(7y) - dev for everyy € m(M).
O

If Aut(M ) is the group of all (G, X)-structure preserving diffeomor-
phisms on M. Then note that 7y (M) < Aut(M ) and p extends natu-
rally to a continuous homomorphism p : Aut(M) — G.

Definition 2.2. The map dev is called a developing map for a (G, X)-
manifold M and the map p is called a holonomy homomorphism of
M.

Let #(M ) be the space consisting of all possible developing pairs
(p,dev). A topology on #(M) is given by the following subbasis.

e N(U) = {U} where U is an open subset of Map(M, X) in the
compact open topology of Map(M, X).
o N(K) = {dev € (M) | dev|K is embedding} for a compact
subset K C M.
(Compare [1].) Recall that the deformation space 7 (M) is a space of
(G, X)-structures on marked manifolds homeomorphic to M. T (M)
consists of equivalence classes of diffeomorphisms f : M — M’ from



M to a (G, X)-manifolds M’. Two such diffeomorphisms f; : M — M;
(i = 1,2) are equivalent if and only if there is an isomorphism (i.e.a
(G, X)-structure preserving diffeomorphism) h : M; — M, such that
h o fi is isotopic to f,.

M I oM
(24) J2 \l = ~Ir h
M,

Denote by Diff’(M) the subgroup of Diff(M) whose elements are
isotopic to the identity map. Put m = m;(M). Consider the following
exact sequences of the diffeomorphism groups, where Np;q( M)(’IT) (resp.

Chig(sry (7)) is the normalizer (resp. centralizer) of m in Diff (M)

T T

Chigny () —— Diff’(M)

Put Diff(M) = 7~ (Diff(M)) and let Difi (M) be the identity compo-
—— —~0
nent. Then 5(Diff(M)) = Diff°(M) and Diff (M) < Coigr(iry (7). The

natural right action of I/)l?f(M ) and the left action of G on 74 M) are
given by

(p,dev) o f = (p o u(f),dev o f),
go(p,dev) = (gopog™, godev),

where p(f) : m = 7 is an isomorphism defined by u(f)(7) = foyofL.
Obviously both actions commute.

It is noted that two developing pairs (p;,dev;) (i = 1,2) represent
the same structure on M if and only if there exists an element g € G

such that g o dev; = devy. Put

(2.5)

~ =0
#M) = #M)/Diff (M).
The action of G induces an action of #{M). Then it is easy to show
that

Lemma 2.3. The elements of T(M) are in one-to-one correspondence

with the orbits of G\ #{M).

If f: M — M’ is a representative element of T(H, M) then there
is a developing pair (p,dev) : (m(M’),M’) — (G, X). We have the



holonomy representation po fy : # — G up to conjugate by an element
of G. We then obtain a map hol : T(M) — Hom(n, G)/G which assigns
to a marked structure its holonomy representation. By the definition
hol lifts to a map kol : # M) — Hom(n, G) which makes the following
diagram commute.

HM) % Hom(r,G)

l l

T(M) - Hom(r,G)/G.
Thurston has shown the following. (See [Lo],[J-M],[Th] for the proof.)

Theorem 2.4 (Holonomy Theorem). kol : #{M) — Hom(w,G) is a
local homeomorphism.

3. EXAMPLES OF NON-RIEMANNIAN HOMOGENEOUS GEOMETRY

3.1. Homogeneous Riemannian geometry. Let X = G,\G be the
simply connected homogeneous space (z € X). If G, is compact, then
(G, X) is called homogeneous Riemannian geometry. If M is a compact
manifold which admits a (G, X)-structure, then it follows that M =
X/p(m) where p: # = (M) — G is a discrete faithful representation.
This is obtained by the following lemma.

Lemma 3.1. If f : M — N is a Riemannian immersion and M is
complete, then f is a covering map.

A Riemannian manifold is complete if every Cauchy sequence con-
verges relative to the Riemannian metric. Specifically a compact Rie-
manniam manifold is complete.

Thus the deformation space 7 (M) is identified with the set of equiv-
alence classes of discrete faithful representations R(w,G)/G. For ex-
ample, when we take G = Isom(Hf) the full isometry group of the
K-hyperbolic space where K = R, C,H or Q. The Mostow rigidity the-
orem says that R(m, G)/G is a single point. By Margulis-Mostow rigid-
ity, the same result holds for a noncompact semisimple Lie group G of
R-rank > 2. If X = K\G, then X/T is a compact nonpositively curved
Riemannian manifold. On the other hand, if M is noncompact, there
occurs a remarkably distinct feature, one is Thurston bending while
the other is Margulis super rigidity. After Thurston’s hyperboliza-
tion theory several non-Riemannian homogeneous geometry surround-
ing hyperbolic geometry came to our interest in 1980s~1990s. The K-
hyperbolic space Hg™ has the projective compactification B]HI%Jrl which



is diffeomorphic to the sphere SK!(*+1)~1 Tt is well known that the iso-
metric action Isom(HZ2) extends to a smooth action on S¥I(*+1)-1_ This
phenomenon occurs also for Hadamard manifolds (complete simply
connected Riemannian manifold of nonpositive curvature). In general,
an extended action on the boundary sphere is topological. But the above
actions on OHEt! are known to be analytic. Denote Aut(SKIr+1)-1)
the (extended) action of Isom(HZ) on SXI+)-1 Tt is known that
Aut(SKIm+D)-1y acts transitively on SKI+D-1 with noncompact sta-
bilizer Aut(SX!(»+1)-1)  such that

SlKl(n+1)—1 — Aut(SIKl(n+1)~1)oo\Aut(S|K|(n+1)—1)

where co € SKI(®+1)-1 Hence we have a non-Riemannian homogeneous
geometry (Aut(SIKl(n+D)-1) GKI(n+1)-1) = According to whether K =
R, C, Hi, it is said to be

Conformally flat geometry (PO(n+1,1),5™)
(3.1) Spherical C R-geometry (PU(n +1,1), §2n*1)
Quaternionic flat CR-geometry (PSp(n + 1,1), $4+3)

It is an excellent result by Gromov-Lawson-Yau that a nontrivial S*-
bundle M? over a closed surface 34 of genus g > 1 admits a conformally
flat structure. It is trivial that the product S* x ¥ is a conformally flat
manifold. On the other hand, in spherical C R-geometry (PU(2, 1), §3),
the complement of geometric circle S® — S* has an invariant subgroup
U(1,1) = P(U(1,1) x U(1)). Choosing a discrete cocompact subgroup
I' < U(1,1), we get a spherical C R-manifold S® — S!/T" which is a non-
trivial S*-bundle: S* — U(1)\U(1,1)/T — U(1)\PU(1,1)/P(T). Here
U(1)\PU(1,1)/P(T") = H{/P(T') = £,. However, to our knowledge,
the following problem hasn’t been yet proved rigorously.

Problem. Does the product S* x £, admit a spherical CR-structure?

4. CONFORMALLY FLAT LORENTZ GEOMETRY

It is natural to consider how the isometry group of the pseudo-
hyperbolic space acts on the compactification. Put V™% = {z €
R™4 | B(z,z) = 22 + -+ + 22,5 — 22,3 — 22,4 < 0} If Py :
R™+4 {0} — RP™*3 is the canonical projection, then the real pseudo-
hyperbolic space Hg+>' is defined to be Pr(V™>?). For this reason,
the m+3-dimensional quadrics V"}t?* = {z € R™* | 224 .. 422, —
z2 .5 — x2,, = —1} with Lorentz metric g is the complete pseudo-
Riemannian manifold of signature (m+ 1, 1) and of constant curvature
~1 such that Pr(V™??) = Br(V™?). Since Py : V77%? — Hpt?!



is a two-fold covering, so Hg’ t2lisa complete pseudo-hyperbolic space
form. The action O(m + 2,2) on V™**? induces an action on Hgt?".
The kernel of this action is the center Z/2 = {£1} whose quotient
is called real pseudo-hyperbolic group PO(m + 2,2). The projective

compactification of Hig">" is obtained by taking the closure Hg ! in
RP™3. Consider the commutative diagram:

(GL(m + 4,R),R™* — {0}) ——  (PGL(m + 4, R), RP™+3)
U | U
(O(m+2,2),V™22UV,) —Z (PO(m + 2,2), HI 21y gm+it)

Here Vp = V0m+2’1 ={zeR™* |22 4+... 4 51372n+2 - 3772n+3 - -'szn+4 = 0}.
It follows that

W _ Hm+2,1 U Sm+1,1
R - R .

From this viewpoint, the pseudo-hyperbolic action of PO(m + 2,2) on
Hg ! extends to conformal action of S™+1!. We obtain conformally
flat Lorentz geometry (PO(m + 2,2), ™). This is of course non-
Riemannian homogeneous geometry.

Let (1,0,...,0,1) € Vp be a null vector. Put co = P(1,0,...,0,1) €
S™+L1 which is called the point at infinity. The stabilizer PO(m+2, 2)&
is R™*2%(0O(m+1,1) xR*) up to conjugacy. When h € PO(m+2,2)«,
the differential map h, : T, S™tH! — T 8™+ is an isomorphism,
h. € Aut(Ts,S™HY) = O(m + 1,1) x R*. Thus the structure group
of (PO(m + 2,2),S™*b1) is O(m + 1,1) x R*. Originally as a G-
structure, conformal Lorentz structure is an O(m+1, 1) x R*-structure.
In addition, an integrable O(m+1, 1) x R*-structure is conformally flat
Lorentz structure. (Equivalently, the Weyl conformal curvature tensor
vanishes.) When {oo} is the point at infinity of S™ = JHZ!, we
can consider the minimal parabolic group O(m + 1,1)s which is an
amenable Lie subgroup of O(m + 1,1). We remark that O(m + 1,1) s
is isomorphic to the similarity group Sim(R™).

Definition 4.1. If the structure group of a conformally flat Lorentz
(m 4+ 2)-manifold M belongs to O(m +1,1), X RT, then M is said to
be a conformally flat Lorentz parabolic manifold.

We study a special class of conformally flat Lorentz parabolic mani-
folds called Lorentz similarity manifold of dimension m+2 and Fefferman-
Lorentz manifold of dimension 2n + 2.



5. LORENTZIAN SIMILARITY GEOMETRY

Recall that R™*2 is the euclidean space with Lorentz inner product
sitting in S™1! — {c0}. Then PO(m+2,2)g = R™"2? x (0O(m+1,1) x
R*). We define Simy,(R™*?) = R™*? x (O(m + 1,1) x R*). The pair
(Simy, (R™*2), R™+2) is said to be Lorentz similarity geometry. In (3]
we proved the following.

Theorem 5.1. If M is a compact complete Lorentz similarity manifold
of dimension m + 2, then the fundamental group of M is virtually
polycyclic. Furthermore, M is diffeomorphic to an infrasolvmanifold.

This theorem is originally proved by T. Aristide. Once m1(M) turns
out to be virtually polycyclic, the holonomy group L(7;(M)) belongs to
either O(m+1,1)o xR or O(m+1) xO(1) xR*. Here O(m+1,1)s =
Sim(R™) = R™ x (O(m) x R*). Since I' acts freely as a’ ne motions on
R™*+2, the matrix of holonomy group has no eigenvalue 1. The latter
case shows that L(m(M)) < O(m + 1) x O(1) so that M reduces to a
compact euclidean space form. Then m;(M) is a Bieberbach group.

Corollary 5.2. A finite cover of a compact complete Lorentz similarity
manifold M is a conformally flat Lorentz parabolic manifold.

We shall give a sketch of proof of Theorem 5.1. Put M = R™?/T
where I' < Simg(R™*2). There is the exact sequence: 1 — R™?
Simg (R™?) -2 O(m + 1,1) x Rt — 1. If R™2 N T is nontrivial,
say Z¥, then a properly discontinuous action of I' induces a properly
discontinuous action of L(I') on R™* as in the same argument of (3,
(1) Proposition 2.2]. Then I is virtually polycyclic by induction. So
we assume

(5.1) R™?NT = {1}.

Note also that (R™*2xR*)NI" = {1} because each element has the form
(a,\-I). AsT acts freely on R™*2, X = 1. It follows (R™"2 xR*)NT =
R™2NT.

Consider the following exact sequence:

(5.2) 1— R™? xR - Simy(R™?) 2 O(m+1,1) — 1.

If p(T) is discrete in O(m + 1,1), then the cohomological dimension

cdp(l’) < m+ 1. As R™?/T" is compact, cdI" = m + 2. On the other

hand, ' & p(T') by (5.1), cdI" = cd p(I') which yields a contradiction.
Suppose that p(I") is indiscrete in O(m + 1,1). Then the identity

component of the closure p(I') is solvable in O(m + 1, 1).



Case 1. If it is noncompact, then it belongs to the maximal amenable

subgroup Sim(R™) up to conjugate. The normalizer of p(I') is con-
tained in Sim(R™). In particular, p(I') < Sim(R™). (5.2) induces an
exact sequence:

1= R™? xRt = p~}(Sim(R™)) 2 Sim(R™) — 1

in which p~!(Sim(R™)) is an amenable Lie subgroup. Any discrete
subgroup of an amenable Lie group is virtually polycyclic so is I'.

Case II. Suppose that mo is compact, say T¢. We consider actions
of subgroups of O(m + 1,1) on Hg*!' U S™. If T* has no fixed point
in S™, then T* has a unique fixed point 0 € Hg™ so that p(I') <
O(m + 1) x O(1). Thus I' < Sim(R™*2). R™*2/T" turns out to be a
compact complete similarity manifold and so I is virtually abelian (a
Bieberbach group).

Suppose that T* has the fixed point set S* in S™ for some k < m.
As p(T') leaves invariant the complement S™ — S* = HEM x Sm—F-1 T
follows p(T') < O(k+1,1) x O(m—k) for which T* = B(T)O < O(m—k).
If Pr: O(k+1,1) x O(m—k) — O(k+1,1) is the canonical projection,
then Pr(p(I")) is discrete. Note that Ker Prop = R™*2 x (O(m — k) x
R*). Put

(5.3) A = (R™2 % (O(m — k) x R*)) NT.

It is nontrivial, because if trivial, I' & Pr(p(I')) so m + 2 = cdT' =
cd Pr(p(T")) but cd Pr(p(T')) < k + 1 which is impossible by the in-
equality k£ < m.

Since T* is a maximal torus in O(m —k), Nogm—) (T¢)/T* is finite for
the normalizer Nogn_x)(T%). As p(T') normalizes T*, there exists a finite

index normal subgroup H of p(I") which centralizes T* with H® = T*.
Note that H N p(T') is of finite index in p(T"). Put I'; = p~1(H N p(T))
which is a finite index subgroup of T.

Let p; : R™2 x (O(m — k) x Rt) — O(m — k) be the projection.
Then p;(A) < O(m — k) such that p;(A) is a torus in O(m — k) from

(5.3). Since p;(A) is a finite extension of p;(A) , we choose A; such

——0 — 0 _ ——0
that pi(A1) = pi(A) Npi(A). As pi(A;) < p(T), pr(A1) < p(T) .
Noting that p(I'y) < H and p(A;) < p(I') for which H centralizes

T = mﬁ as above, it follows that p(I';) centralizes p(A;).

Note that p; : A — pi(A) is injective. In fact, if not, then A N
R™2 » Rt # {1}, so I N R™*2 x R* # {1} which is impossible by
the remark below (5.1). Since I" normalizes A, it is easy to see that I'y
centralizes A;. Consider the exact sequences:
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1 — R™2 5 R™2x0(m—k) —— O(m—k) — 1

T T T

.—0 .
where p(A;) = T* for some s < m — k. It is well known that the
abelian discrete subgroup belongs to the following group (cf. [8]):

(5.4) A15V><T*"={([8],<(I) g)) |CeT’acV)}

such that V x T?®/A, is compact. Here V = RF+2,
Let ' < R™*2 x (O(k+1,1) x O(m — k) x Rt) be as before and

choose an arbitrary element v = ([ ayv ] JA - ( 61 g )) and take an

element o = @ , r0 from A;. As I'; centralizes A;, the
0 0 C

equation Yoy~ = o implies that
A-Aa=a,BCB'=Cand y— BCB ly=0.

The projection P : R**? — {0} — RP**! maps the cone V; onto
Sk. We observe that if (a,a) = 0 with respect to the Lorentz inner
product, then P(a) = [a] € S*. Put [a] = co € S* up to conjugacy.
The equality A - Aa = a implies Aoo = 00 s0 A € O(k + 1,1). This
holds for arbitrary elements of I';. It follows
(5.5) [ <R™2 % (O(k+1,1)0 x O(m — k) x RY)
which is an amenable Lie subgroup. Thus I' is virtually polycyclic.
When (a,a) # 0, as (a,a) = (AAa, A\Aa) = \?(a, a), it follows X = 1.
Thus
(5.6) [ <R™2 % (O(k+1,1) x O(m — k)) < E(m +1,1).

R™*2/T" becomes a compact complete Lorentz flat space form. It is
well known that I is virtually polycyclic. This proves the theorem 5.1.

1

6. CONFORMALLY FLAT FEFFERMAN-LORENTZ GEOMETRY

Let (O(2n + 2,2),S! x §2**1) be the conformally flat Lorentz ge-
ometry (which is a 2-fold cover.) There is the natural embedding
Un+1,1) - O(2n+2,2). U(n+1,1) acts transitively on S* x %!
so we have a subgeometry (U(n + 1,1), S x §2nt1),

Proposition 6.1. A manifold locally modelled on (U(n + 1,1), S x
S+l admits a Lorentz prabolic structure.



Proof. We see that
U(n+1,1)N02n +2,2)% = R?™? % (0(2n+1,1) x R*.

Then the intersection U(n + 1,1), = N x (U(n) x R*) which is
amenable. Here A is the Heisenberg Lie group. So U(n + 1,1)s be-
longs to the maximal amenable group R?**2 x (O(2n + 1,1)s x R*).
Thus the structure group of (U(n + 1,1), S x S?"*!) belongs to the
parabolic group O(2n + 1,1), X R*. So does any manifold modelled
on (U(n+1,1), 8 x §2n+1), O

Definition 6.2. A manifold locally modelled on (U(n + 1,1),5* x
S?"+1) is said to be a conformally flat Fefferman-Lorentz parabolic
manifold.

To the rest of this section we shall give our recent results concerning
compact conformally flat Fefferman-Lorentz parabolic manifolds. The

details will be given elesewhere.
Recall that the center S* acts freely on the 2-fold covering S* x S#*+!
of §2n+1L1 there is the equivariant principal bundle:

(6.1) (S, SY) — (U(n+1,1),8* x 1) (Bp) (PU(n + 1,1), §27+1).

Let X be a domain of S* x S?"*!. If h is an element of the group of
conformal Lorentz transformations Conf(X), then A : X — X extends
uniquely to a conformal diffeomorphism of S* x S?"*! by Liouville’s
theorem. We assume that

(6.2) Conf(X) < U(n+1,1).

Suppose that a discrete subgroup I' of U(n + 1, 1) acts properly dis-
continuously on X such that the quotient X/T" is compact. Note that
there is a covering group extension:

(6.3) 1 —— I' —— Noontxy(I') —— Conf(X/T) — 1.

We shall determine X/I" when X/I" admits a 1-parameter subgroup
H whose lift H to U(n + 1,1) is not the center ZU(n + 1,1).

Theorem 6.3. Let X/I' be a 2n + 2-dimensional compact confor-
mally flat Fefferman-Lorentz parabolic manifold. If X/T' admits a 1-
parameter subgroup H whose lift H to U(n + 1,1) is not the center
ZU(n +1,1), then X/T is a Seifert fiber space over a spherical CR-
orbifold. Moreover X/ is either one of (i),...,(v). As a consequence,
a finite covering of such X/I' is a Fefferman-Lorentz manifold.

(i) X/T' =8 xz, S*™** where Zy < T™.
(i) S' = X/T — N/Q where Q < N x U(n).

11
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(iii) S' = X/T — S*xpS' where F < U(n).
(iv) S' - X/T — S>*/F where F < T,
(v) S' = X/T — (S — L(Q))/Q where
Q <PUKk,1)xUn—-k+1)) (k=1,...,n).

The idea of proof is as follows. Let S* = ZU(n + 1,1) be the center
of U(n +1,1). Then S'-H < U(n + 1,1). There is an equivariant
fibration:

(6.4) (S, 81 —— (S*-A,T,Xx) &2 (q,Q,w)

where we put G = S*-H/S!, Q = T/S'NT and W = X/S. As
Q,G < PU(n+1,1), the quotient W/Q is a spherical C R-orbifold with
CR-action G. To determine X/I" reduces to the classification of CR-
manifolds (@, W) with the 1-parameter group G of C R-transformations.
The classification is accomplished by the result in [4].

When dim X/I" = 4, then Q < U(1,1) so that L(Q) C S* (k = 1).
According to whether L(Q) is a Cantor set in S! or L(Q) = S, it is
well known that S® — L(Q)/Q = S* x S?# ... #S' x 52 or some finite
cover of S® — L(Q)/Q = V3,/Q is a principal S'-bundle with nonzero
euler class over a closed surface of genus g > 2.

6.1. Non Fefferman-Lorentz manifold. It is conceivable whether
some finite cover of any compact conformally flat Fefferman-Lorentz
parabolic manifold is a Fefferman-Lorentz manifold. It is not true in
general. It will be shown

Proposition 6.4. There exists a compact conformally flat Fefferman-
Lorentz parabolic manifold P of dimension 2n+2 (n > 1) but no finite
covering is a Fefferman-Lorentz manifold.

This manifold P supports a principal fiber space: T? - P —»
HZ/Qo where HZ/Qo is a compact complex hyperbolic manifold.

7. REPRESENTATION SPACE

Let X/T be a compact conformally flat Lorentz manifold with S-
action so that X C RxS?"*1, T, 5! < O(m +2,2). If p: O(m + 2,2) —

O(m + 2,2) is the covering homomorphism, put G = p(S!) < O(m +
2,2). We will prove that
e If G is compact, then m = 2n and G = S, C’o(m+2,2)(51) =
U(n+1,1). (S, X/T) is locally modelled on (U(n +1,1),S* x
S?+1) where S* = ZU(n + 1,1), i.e. X/T" is a conformally flat
Fefferman-Lorentz parabolic manifold.



e If G is noncompact, the either I' < R™*2 x O(m + 1,1) and
G=RorT'<O(m+1,1) x Rt and G =R™.
Proposition 7.1. Let X/T' = S x N3/A which is a conformally flat

Lorentz parabolic manifold and T' = Z x A < 0(4,2), # C R x S3,
There are exactly two distinct faithful representations up to conjugate
in O(4,2):

p1: T = R x (N xU(1)), S*is lightlike.

7.1
(7.1) pa: T — R® x (R? x O(2)) < R* x 0(3,1), S*is spacelike.

Then the space of discrete faithful representations R(T', O(4,2)) consists
of two components R(I',R x (N % U(1))), R(T', R x (R? x O(2))).
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