Recent progress on Takhtajan-Zograf and Weil-Petersson metrics

小櫃 邦夫 (鹿児島大学) Kunio OBITSU (Kagoshima University)

Abstract

We will survey recent progress on Weil-Petersson and Takhtajan-Zograf metric. After reviewing the backgrounds and the known results for those metrics, a new estimate of the asymptotic behavior of the Takhtajan-Zograf metric near the boundary of the moduli space of punctured Riemann surfaces is stated without proof.

<u>CONTENTS</u>

1 Backgrounds on Weil-Petersson and Takhtajan-Zograf metrics

2 Known results for the asymptotic behaviors of the Weil-Petersson and Takhtajan-Zograf metrics

3 Degenerate families of punctured Riemann surfaces and A test Eisenstein series

4 A new estimate for the Takhtajan-Zograf metric

1 Backgrounds on Weil-Petersson and Takhtajan-Zograf metrics

 $T_{g,n}$ denotes the **Teichmüller space** of Riemann surfaces of genus g with n marked points (2g - 2 + n > 0). Let $C_{g,n}$ be the **Teichmüller** curve over $T_{g,n}$ with the projection $\pi : C_{g,n} \to T_{g,n}$ which has n sections $\mathbf{P}_1, \ldots, \mathbf{P}_n$ corresponding to n marked points. Consider $\Omega^1_{C_{g,n}}(\text{resp. }\Omega^1_{T_{g,n}})$ the sheaf of holomorphic 1-forms on $C_{g,n}$ (resp. $T_{g,n}$). The sheaf of **relative** differential forms on $C_{g,n}$ is defined as

$$\omega_{C_{g,n}/T_{g,n}} := \Omega^{1}_{C_{g,n}} / \pi^* \Omega^{1}_{T_{g,n}}.$$
 (1.1)

Then the **determinant line bundle** λ_l on $T_{g,n}$ $(l \in \mathbf{N})$ is defined as

$$\lambda_l := \bigwedge^{\max} R^0 \pi_* \omega_{C_{g,n}/T_{g,n}}^{\otimes l} \big((l-1)(\mathbf{P}_1 + \dots + \mathbf{P}_n) \big).$$
(1.2)

For a point $s \in T_{g,n}$, $S := \pi^{-1}(s)$ is a compact Riemann surface. Set $S^0 := S - \{\mathbf{P}_1(s), \ldots, \mathbf{P}_n(s)\}$ and $P_p := \mathbf{P}_p(s) \ (p = 1, \ldots, n)$.

Here we can see

$$R^{0}\pi_{*}\omega_{C_{g,n}/T_{g,n}}^{\otimes l}((l-1)(\mathbf{P}_{1}+\cdots+\mathbf{P}_{n}))|_{s}=\Gamma(S,K_{S}^{\otimes l}\otimes\mathcal{O}_{S}(P_{1}+\cdots+P_{n})^{\otimes (l-1)})$$

 \simeq {meromorphic *l* differentials on *S* with possibly poles of order at most *l*-1 only at the marked points}.

Pick a basis of local holomorphic sections $\phi_1, \ldots, \phi_{d(l)}$ for $R^0 \pi_* \omega_{C_{g,n}/T_{g,n}}^{\otimes l} ((l-1)(\mathbf{P}_1 + \cdots + \mathbf{P}_n))$, where

$$d(l) = \left\{egin{array}{cc} g & (l=1)\ (2l-1)(g-1)+(l-1)n & (l>1). \end{array}
ight.$$

$$\langle \phi_i, \phi_j \rangle := \iint_{S^0} \phi_i \,\overline{\phi_j} \,\rho_{S^0}^{-(l-1)} \,(i,j=1,\ldots,d(l)) \tag{1.3}$$

is called the **Petersson product**, where ρ_{S^0} is the hyperbolic area element on S^0 .

We set

$$\|\phi_1 \wedge \dots \wedge \phi_{d(l)}\|_{L^2} := |\det(\langle \phi_i, \phi_j \rangle)|^{1/2},$$
 (1.4)

$$\|\phi_1 \wedge \dots \wedge \phi_{d(l)}\|_Q := \|\phi_1 \wedge \dots \wedge \phi_{d(l)}\|_{L^2} Z_{S^0}(l)^{-\frac{1}{2}}$$
(1.5)

 $(l \geq 2.$ For l = 1, employ $Z'_{S^0}(1)$ in place of $Z_{S^0}(1) = 0$). Here, $Z_{S^0}(l)$ denotes the special value of $Z_{S^0}(\cdot)$ on S^0 at l integer, which will be defined below. Then $\lambda_l \to T_{g,n}$ is a Hermitian holomorphic line bundle equipped with the **Quillen metric** $\|\cdot\|_Q$ (see [7]). Here

$$Z_{S^{0}}(s) := \prod_{\{\gamma\}} \prod_{m=1}^{\infty} \left(1 - e^{-(s+m)L(\gamma)} \right)$$
(1.6)

is the **Selberg Zeta function** for S^0 , Re (s) > 1, where γ runs over all oriented primitive closed geodesics on S^0 , and $L(\gamma)$ denotes the hyperbolic length of γ . It extends meromorphically to the whole plane in s.

In the late 80's, we have discovered the following important formulas for the curvature forms of the determinant line bundles with respect to the Quillen metrics.

Theorem 1.1 (Belavin-Knizhnik+Wolpert(1986), [1], [8]).

$$c_1(\lambda_l, \|\cdot\|_Q) = rac{6l^2 - 6l + 1}{12\pi^2} \omega_{WP} \quad (n = 0).$$

Theorem 1.2 (Takhtajan-Zograf (1988, 1991), [7]).

$$c_1(\lambda_l, \|\cdot\|_Q) = rac{6l^2 - 6l + 1}{12\pi^2} \omega_{WP} - rac{1}{9} \omega_{TZ} \ (n > 0).$$

Here, ω_{WP} , ω_{TZ} are the Kähler forms of the Weil-Petersson, the Takhtajan-Zograf metrics respectively.

Here remind us of the definitions of the Weil-Petersson and the Takhtajan-Zograf metrics. By the deformation theory of Kodaira-Spencer and the Hodge theory, for $[S^0] \in T_{q,n}$, we have

$$T_{[S^0]}T_{g,n} \simeq HB(S^0),$$
 (1.7)

where $HB(S^0)$ is the space of harmonic Beltrami differentials on S^0 .

By the Serre duality, one has

$$T^*_{[S^0]}T_{g,n} \simeq Q(S^0),$$
 (1.8)

where $Q(S^0)$ is the space of holomorphic quadratic differentials on S^0 with finite the Petersson-norm, which is dual to $HB(S^0)$.

The inner product of the Weil-Petersson metric at $T_{[S^0]}T_{g,n}$ is defined to be

$$\langle \alpha, \beta \rangle_{WP}([S^0]) := \iint_{S^0} \alpha \overline{\beta} \ \rho_{S^0},$$
 (1.9)

where α, β are in $HB(S^0) \simeq T_{[S^0]}T_{g,n}$.

The inner products of the **Takhtajan-Zograf metrics** are defined to be

$$\langle \alpha, \beta \rangle_p([S^0]) := \iint_{S^0} \alpha \overline{\beta} E_p(\cdot, 2) \ \rho_{S^0}, \quad (p = 1, \dots, n).$$
 (1.10)

Here, $E_p(\cdot, 2)$ is the Eisenstein series associated with the *p*-th marked point with index 2. Moreover, we set

$$\langle \alpha, \beta \rangle_{TZ}([S^0]) := \sum_{p=1}^n \langle \alpha, \beta \rangle_p([S^0]).$$
 (1.11)

The **Eisenstein series** associated with the p-th marked point with index 2 is defined to be

$$E_p(z,2) := \sum_{A \in \Gamma_p \setminus \Gamma} \left\{ \operatorname{Im}(\sigma_p^{-1}A(z)) \right\}^2, \quad \text{for } z \in \mathbf{H},$$
(1.12)

where **H** is the upper-half plane, Γ is a uniformizing Fuchsian group for S^0 and Γ_p is the parabolic subgroup associated with the *p*-th marked point, and $\sigma_p \in \text{PSL}(2, \mathbb{R})$ is a normalizer. $E_p(z, 2)$ assumes the infinity at the *p*-th marked point and vanishes at the other marked points. In addition, the Eisenstein series satisfy

$$\Delta_{hyp} E_p(z,2) = 2E_p(z,2), \tag{1.13}$$

where Δ_{hyp} is the negative hyperbolic Laplacian on S^0 . Especially $E_p(z,2)$ is a positive subharmonic function on S^0 .

 $\operatorname{Mod}_{g,n}$ denotes the mapping class group of surfaces of genus g with n marked points. Then the moduli space $\mathcal{M}_{g,n}$ of Riemann surfaces of genus g with n marked points is described as $\mathcal{M}_{g,n} = T_{g,n}/\operatorname{Mod}_{g,n}$. λ_l and all metrics we defined are compatible with the action of $\operatorname{Mod}_{g,n}$, thus they all naturally descend down to $\mathcal{M}_{g,n}$ as orbifold line sheaves and orbifold metrics respectively.

Let $\overline{\mathcal{M}}_{g,n}$ denote the **Deligne-Mumford compactification** of $\mathcal{M}_{g,n}$. We have known the relations of the L^2 -cohomology of $\mathcal{M}_{g,n}$ with respect to the Weil-Petersson metric and the second cohomology of $\overline{\mathcal{M}}_{g,n}$.

Theorem 1.3 (Saper (1993) [6]). For g > 1, n = 0,

$$H^*_{(2)}(\mathcal{M}_g, \omega_{WP}) \simeq H^*(\overline{\mathcal{M}}_g, \mathbf{R}).$$

Here, the left hand side is the L^2 -cohomology with respect to the Weil-Petersson metric.

2 Known results for the asymptotic behaviors of the Weil-Petersson and Takhtajan-Zograf metrics

The proof of Theorem 1.3 is based on the asymptotic behavior of the Weil-Petersson metric near the boundary of the moduli space which we will review now.

Here we set $D := \overline{\mathcal{M}}_{g,n} \setminus \mathcal{M}_{g,n}$ the compactification divisor. Now take $X_0 \in D$ a degenerate Riemann surface of genus g with n marked points and k nodes (we regard the marked points as deleted from the surface).

Each node q_i (i = 1, 2, ..., k) has a neighborhood

$$N_i = \{(z_i, w_i) \in \mathbf{C}^2 \mid |z_i|, |w_i| < 1, z_i w_i = 0\}.$$

 X_t denotes the smooth surface gotten from X_0 after cutting and pasting N_i under the relation $z_i w_i = t_i$, $|t_i|$ small. Then, D is locally described as $\{t_1 \cdots t_k = 0\}$ (see 3. in more details).

D has locally the pinching coordinate $(t, s) = (t_1, \ldots, t_k, s_{k+1}, \ldots, s_{3g-3+n})$ around $[X_0]$. Set $\alpha_i = \partial/\partial t_i, \beta_\mu = \partial/\partial s_\mu \in T_{(t,s)}(T_{g,n})$. We define the Riemannian tensors for the Weil-Petersson metric

$$g_{i\overline{j}}(t,s) := \langle lpha_i, lpha_j
angle_{WP}(t,s),$$

 $g_{i\overline{\mu}}(t,s) := \langle lpha_i, eta_\mu
angle_{WP}(t,s),$
 $g_{\mu\overline{
u}}(t,s) := \langle eta_\mu, eta_
u
angle_{WP}(t,s),$
 $(i, j = 1, 2, \dots, k, \ \mu, \nu = k + 1, \dots, 3g - 3 + n).$

Furthermore, we define the Riemannian tensors for the Takhtajan-Zograf metric

$$egin{aligned} h_{i\overline{j}}(t,s) &:= \langle lpha_i, lpha_j
angle_{TZ}(t,s), \ h_{i\overline{\mu}}(t,s) &:= \langle lpha_i, eta_\mu
angle_{TZ}(t,s), \ h_{\mu\overline{
u}}(t,s) &:= \langle eta_\mu, eta_
u
angle_{TZ}(t,s), \end{aligned}$$

 $(i, j = 1, 2, \dots, k, \ \mu, \nu = k + 1, \dots, 3g - 3 + n).$

The following theorem is a pioneering result for the asymptotic behavior of the Weil-Petersson metric near the boundary of the moduli space. **Theorem 2.1** (Masur (1976), [2]). As $t_i, s_{\mu} \to 0$,

$$\begin{array}{ll} i) \quad g_{i\overline{i}}(t,s) \approx \frac{1}{|t_i|^2(-\log|t_i|)^3} \quad for \, i \leq k, \\ ii) \quad g_{i\overline{j}}(t,s) = O\left(\frac{1}{|t_i||t_j|(\log|t_i|)^3(\log|t_j|)^3}\right) \\ for \, i, j \leq k, i \neq j, \\ iii) \quad g_{i\overline{\mu}}(t,s) = O\left(\frac{1}{|t_i|(-\log|t_i|)^3}\right) \\ for \, i \leq k, \mu \geq k+1, \\ iv) \quad g_{\mu\overline{\nu}}(t,s) \longrightarrow g_{\mu\overline{\nu}}(0,0) \quad for \, \mu, \nu \geq k+1. \end{array}$$

Recently, we updated Masur's result by improving Wolpert's formula for the asymptotic of the hyperbolic metric for degenerating Riemann surfaces.

Theorem 2.2 (Obitsu and Wolpert (2008), [5]). We can improve iv) in Theorem 2.1 as follows;

$$\begin{split} iv)' \ g_{\mu\overline{\nu}}(t,s) &= g_{\mu\overline{\nu}}(0,s) + \frac{4\pi^4}{3} \sum_{i=1}^k (\log|t_i|)^{-2} \Big\langle \beta_{\mu}, (E_{i,1} + E_{i,2}) \beta_{\nu} \Big\rangle_{WP}(0,s) \\ &+ O\Big(\sum_{i=1}^k (\log|t_i|)^{-3} \Big) \\ as \ t \to 0, \ for \ \mu, \nu \ge k+1. \end{split}$$

Here, $E_{i,1}, E_{i,2}$ denote a pair of the Eisenstein series with index 2 associated with the *i*-th node of the limit surface X_0 .

That is, the Takhtajan-Zograf metrics have appeared from degeneration of the Weil-Petersson metric. On the other hand, we have a result for asymptotics of the Takhtajan-Zograf metric near the boundary of the moduli space. Before stating the result, we need the following definition.

Definition 2.3. Let X_0 be a degenerate Riemann surface with n punctures p_1, \dots, p_n and m nodes q_1, \dots, q_m .

A node q_i is said to be adjacent to punctures (resp. a puncture p_j) if the component of $X_0 \setminus \{q_1, \dots, q_{i-1}, q_{i+1}, \dots, q_m\}$ containing q_i also contains at least one of the p_j 's (resp. the puncture p_j). Otherwise, it is said to be non-adjacent to punctures (resp. the puncture p_j).

Theorem 2.4 (Obitsu-To-Weng (2008), [3]). As $(t, s) \rightarrow 0$, we observe the followings:

i) For any , > 0, there exists a constant $C_{1,\varepsilon}$ such that

$$h_{i\overline{i}}(t,s) \leq rac{C_{1,arepsilon}}{|t_i|^2(-\log|t_i|)^{4-arepsilon}} \quad \textit{for } i \leq k;$$

For any , > 0, there exists a constant $C_{2,\varepsilon}$ such that $h_{i\overline{i}}(t,s) \ge \frac{C_{2,\varepsilon}}{|t_i|^2(-\log|t_i|)^{4+\varepsilon}}$ for $i \le k$ and the node q_i adjacent to punctures; ii) $h_{i\overline{j}}(t,s) = O\left(\frac{1}{|t_i||t_j|(\log|t_i|)^3(\log|t_j|)^3}\right)$ for $i, j \le k, i \ne j$; iii) $h_{i\overline{\mu}}(t,s) = O\left(\frac{1}{|t_i|(-\log|t_i|)^3}\right)$ for $i \le k, \mu \ge k+1$; iv) $h_{\mu\overline{\nu}}(t,s) \longrightarrow h_{\mu\overline{\nu}}(0,0)$ for $\mu, \nu \ge k+1$.

3 Degenerate families of punctured Riemann surfaces and A test Eisenstein series

First of all, let us review the construction of degenerating punctured hyperbolic surfaces. We recall the construction of the plumbing family (see 2 [5]). Considerations begin with the *plumbing variety* $\mathcal{V} = \{(z, w, t) \mid zw = t, |z|, |w|, |t| < 1\}$. The defining function zw - t has differential z dw + w dz - dt. Consequences are that \mathcal{V} is a smooth variety, (z, w) are global coordinates, while (z, t) and (w, t) are not. Consider the projection $\Pi : \mathcal{V} \to D$ onto the *t*-unit disc. The projection Π is a submersion, except at (z, w) = (0, 0); we consider $\Pi : \mathcal{V} \to D$ as a (degenerate) family of open Riemann surfaces. The *t*-fiber, $t \neq 0$, is the hyperbola germ zw = t or equivalently the annulus $\{|t| < |z| < 1, w = t/z\} = \{|t| < |w| < 1, z = t/w\}$. The 0-fiber is the intersection of the unit ball with the union of the coordinate axes in \mathbb{C}^2 ; on removing the origin the union becomes $\{0 < |z| < 1\} \cup \{0 < |w| < 1\}$. Each fiber of $\mathcal{V}_0 = \mathcal{V} - \{0\} \to D$ has a complete hyperbolic metric.

Consider X_0 a finite union of hyperbolic surfaces with cusps. A plumbing family is the fiberwise gluing of the complement of cusp neighborhoods in X_0 and the plumbing variety $\mathcal{V} = \{(z, w, t) \mid zw = t, |z|, |w|, |t| < 1\}$. For a positive constant $c_* < 1$ and initial surface X_0 , with puncture p with cusp coordinate z and puncture q with cusp coordinate w, we construct a family $\{X_t\}$. For $|t| < c_*^4$ the resulting surface X_t will be independent of c_* ; the constant c_* will serve to specify the overlap of coordinate charts and to define a *collar* in each X_t .

We first describe the gluing of fibers. For $|t| < c_*^4$, remove from X_0 the punctured discs $\{0 < |z| \le |t|/c_*\}$ about p and $\{0 < |w| \le |t|/c_*\}$ about q to obtain a surface X_{t/c_*}^* . For $t \ne 0$, form an identification space X_t , by identifying the annulus $\{|t|/c_* < |z| < c_*\} \subset X_{t/c_*}^*$ with the annulus $\{|t|/c_* < |w| < c_*\} \subset X_{t/c_*}^*$ by the rule zw = t. The resulting surface X_t is the plumbing for the prescribed value of t. We note for |t| < |t'|that there is an inclusion of X_{t'/c_*}^* in X_{t/c_*}^* ; the inclusion maps provide a way to compare structures on the surfaces. The inclusion maps are a basic feature of the plumbing construction. We next describe the plumbing family. Consider the variety $\mathcal{V}_{c_*} = \{(z, w, t) \mid zw = t, |z|, |w| < c_*, |t| < c_*^4\}$ and the disc $D_{c_*} = \{|t| < c_*^4\}$. The complex manifolds $M = X_{t/c_*}^* \times D_{c_*}$ and \mathcal{V}_{c_*} have holomorphic projections to the disc D_{c_*} . The variables z, w denote prescribed coordinates on X_{t/c_*}^* and on \mathcal{V}_{c_*} . There are holomorphic maps of subsets of M to \mathcal{V}_{c_*} , commuting with the projections to D_{c_*} , as follows

$$(z,t) \xrightarrow{\hat{F}} (z,t/z,t) \text{ and } (w,t) \xrightarrow{\hat{G}} (w,t/w,t)$$

The identification space $\mathcal{F} = M \cup \mathcal{V}_{c_*}/\{\hat{F}, \hat{G} \text{ equivalence}\}$ is the *plumbing* family $\{X_t\}$ with projection to D_{c_*} (an analytic fiber space of Riemann surfaces in the sense of Kodaira. For $0 < |t| < c_*^4$, the *t*-fiber of \mathcal{F} is the surface X_t constructed by overlapping annuli N_t .

We set two anului

$$\Omega_t^1 := \left\{ z \in \mathbf{C} \mid \frac{|t|}{e^{a^0} c^*} < |z| < e^{a^0} c^* \right\} \quad \text{for } |t| < (c^*)^4, \tag{3.1}$$

$$\Omega_t^2 := \left\{ w \in \mathbf{C} \mid \frac{|t|}{e^{a^0} c^*} < |w| < e^{a^0} c^* \right\} \quad \text{for } |t| < (c^*)^4.$$
(3.2)

Here $0 < c^* < 1, a_0 < 0$ are the constants in [5].

When $t \neq 0$, on can identify as an annulus via coordinate projections as

$$N_t \longleftrightarrow \Omega^1_t \longleftrightarrow \Omega^2_t. \tag{3.3}$$

And we may write $N_t = N_t^1 \cup N_t^2$, where

$$N_t^1 = \left\{ z \in \mathbf{C} \mid |t|^{\frac{1}{2}} \le |z| < e^{a^0} c^* \right\}, N_t^2 = \left\{ w \in \mathbf{C} \mid |t|^{\frac{1}{2}} \le |w| < e^{a^0} c^* \right\}.$$
(3.4)

For t = 0, define the cusp neighborhood

$$N_0 := \Omega_0^1 \cup \Omega_0^2. \tag{3.5}$$

In another word, we may consider that Ω_t^1 embed into X_t holomorphically for t, z. (See 2 in [5])

Here, remember the test function which is defined in [3]. For $t \neq 0$ one defines for $z \in \Omega_t^1$,

$$E_t^*(z) := rac{-\pi}{\log |t| \sin \left(rac{\pi \log |z|}{\log |t|}
ight)}, \quad
ho_t^*(z) := rac{\pi^2}{|z|^2 \log^2 |t| \sin^2 \left(rac{\pi \log |z|}{\log |t|}
ight)},$$

for $t = 0, z \in \Omega^1_t$,

$$E_0^*(z):=rac{-1}{\log|z|}, \quad
ho_0^*(z):=rac{1}{|z|^2\log^2|z|}$$

It is easy to see that for $t \neq 0$, E_t^*, ρ_t^* have similar expressions for w in Ω_t^2 via the rule zw = t. Thus, E_t^*, ρ_t^* can be considered as functions on the manifolds N_t for $t \neq 0$. And one defines for $w \in \Omega_0^2$, $E_0^*(w), \rho_0^*(w)$ as the same expression as $E_0^*(z), \rho_0^*(z)$. Furthermore, we can easily observe that

$$\rho_0^* \le \rho_t^* \quad \text{on } N_t \quad \text{for } |t| < (c^*)^4.$$
(3.6)

Masur showed in (6.5) [2] that there exists a positive constant K such that

$$\rho_t^* \le K \rho_0^* \quad \text{on } N_t \quad \text{for } |t| < (c^*)^4.$$
(3.7)

From now, we always assume that the smooth surfaces X_t have at least one punctures. We are ready to consider a function

$$\varphi_t := rac{E_t}{E_t^*}, \quad ext{on } N_t, \quad ext{for } |t| < (c^*)^4,$$

where E_t is the intrinsic Eisenstein series on a punctured hyperbolic surface X_t associated with a puncture.

We have already seen in the proof of Proposition 4.2.2 in [3] that on Ω_t^1 ,

$$\Delta E_t(z) = 2\rho_t(z)E_t(z), \qquad (3.8)$$

$$\Delta E_t^*(z) = \left(1 + \cos^2\left(\frac{\pi \log|z|}{\log|t|}\right)\right) \rho_t^*(z) E_t^*(z), \tag{3.9}$$

where $\Delta := 4 \frac{\partial^2}{\partial z \partial \overline{z}}$, $\rho_t(z)$ is the intrinsic hyperbolic area element on X_t , and $\rho_t^*(z)$ is the restriction to Ω_t^1 of the complete hyperbolic metric $r(z)|dz|^2$ of an annulus $\{z \in \mathbb{C} \mid |t| < |z| < 1\}$. It should be noted that $\rho_t^*(z)$ on Ω_t^1 is strictly smaller than the complete hyperbolic metric of Ω_t^1 . Now a straightforward calculation leads the following proposition (see [4] for the proof).

Proposition 3.1. The function $\varphi_t(z)$ satisfies the following equation on Ω_t^1

$$\begin{split} -\Delta\varphi_t(z) &+ \frac{\pi}{\log|t|} \cot\left(\frac{\pi \log|z|}{\log|t|}\right) \left(\frac{2}{z} \frac{\partial\varphi_t(z)}{\partial\bar{z}} + \frac{2}{\bar{z}} \frac{\partial\varphi_t(z)}{\partial z}\right) \\ &+ \left\{ 2\rho_t(z) - \left(1 + \cos^2\left(\frac{\pi \log|z|}{\log|t|}\right)\right) \rho_t^*(z) \right\} \varphi_t(z) = 0. \end{split}$$

We need the following result which is a special case of [5] Theorem 1. **Theorem 3.2.** On N_t , ρ_t has the expansion for $t \to 0$,

$$\rho_t = \rho_t^* \left(1 + \frac{4\pi^4}{3} \left(E_{t,1}^{\dagger} + E_{t,2}^{\dagger} \right) \frac{1}{(\log|t|)^2} + Q(t) \right),$$

where Q(t) has the estimate

$$Q(t) = O\left(\left. rac{1}{(\log |t|)^3} \right) \quad \textit{for } t o 0.$$

The function $E_{t,1}^{\dagger}$, $E_{t,2}^{\dagger}$ is the modified Eisenstein series. The O-term refers to the intrinsic C^1 -norm of a function on X_t . The bounds depend on the choice of c^* , a_0 and a lower bound for the injectivity radius for the complement of the cusp regions in X_0 .

The functions $E_{t,1}^{\dagger}, E_{t,2}^{\dagger}$ are constructed as follows (see Definition 1 in [5]). First, consider the case where the pinching curve is non-dividing. Now we may assume that for t = 0, our coordinates z, w are so-called the standard coordinate (see Remark-Definition 2.1.2 in [3]). Take the two Eisenstein series $E_{0,1}, E_{0,2}$ on X_0 associated with the node. Set $E_{0,1}^{\sharp} = E_{0,1} - (\log |z|)^2$ on Ω_0^1 , $E_{0,1}^{\sharp} = E_{0,1}$ otherwise. $E_{0,2}^{\sharp} = E_{0,2} - (\log |w|)^2$ on Ω_0^2 , $E_{0,2}^{\sharp} = E_{0,2}$ otherwise. Set $E_{t,1}^{\dagger} = E_{0,1}^{\sharp}(z) + E_{0,1}^{\sharp}(\frac{t}{z})$ on N_t . Similarly set $E_{t,2}^{\dagger} = E_{0,2}^{\sharp}(w) +$ $E_{0,2}^{\sharp}(\frac{t}{w})$ on N_t . These functions are smooth, bounded and strictly positive on N_t for $|t| < (c^*)^4$. In the dividing case, we consider $E_{0,1}$ be just 0 on the other component, follow the construction in the non-dividing case. It should be noted that $E_{0,1}^{\sharp}, E_{0,2}^{\sharp}$ on N_t is independent of t. Furthermore, we should remark that in the construction of [5], $E_{0,1}^{\sharp}, E_{0,2}^{\sharp}$ are modified except for the factor $(\log |z|)^2$, $(\log |w|)^2$ just on $\{e^{a_0}c^* < |z| < c^*\} \simeq \{\frac{|t|}{c^*} < |w| < \frac{|t|}{e^{a_0}c^*}\}$ and $\{\frac{|t|}{c^*} < |z| < \frac{|t|}{e^{a_0}c^*}\} \simeq \{e^{a_0}c^* < |w| < c^*\}$ so that the modified function be smooth, thus in our case, $E_{0,1}^{\sharp}, E_{0,2}^{\sharp}$ is exactly $E_{0,1}, E_{0,2}$ on X_0 except for the factor $(\log |z|)^2$, $(\log |w|)^2$ respectively.

Remark 3.3. As mentioned before, ρ_t^* is strictly smaller than the complete hyperbolic metric of Ω_t^1 . Thus, the claim of Theorem 3.2 does not contradict the implication of the classical Schwarz lemma.

4 A new estimate for the Takhtajan-Zograf metric

We are ready to state a new estimate of the intrinsic Eisenstein series which is an improvement of Proposition 4.2.2 in [3]. Detailed proofs will appear in [4]. Here we quote a lemma (Lemma 1[5]).

Lemma 4.1. There exist a positive constant C^* such that

$$E_0 \le C^* E_0^* \quad on \ \Omega_0^1.$$

We are now in a position to generalize Lemma 4.1 for any t.

Proposition 4.2. Assume that in the family $\{X_t\}$, N_0 has the intersection with the component attached to the cusp where the Eisenstein series E_0 has a singularity. Then there exists a positive constant C, C' independent of t such that

$$E_t \leq CE_t^*$$
 on N_t for $|t|$ sufficiently small, (4.1)

$$E_t \leq C'E_0^*$$
 on N_t for $|t|$ sufficiently small. (4.2)

Applying Proposition 4.2, we can improve (i) of Theorem 1 in [3].

Theorem 4.3. For the simplicity of description, we assume that the degenerating family of a punctured hyperbolic surface X_t has only one pinching curve. Then there exists a positive constant C such that the Takhtajan-Zograf inner product has the estimate

$$g^{TZ}(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}) \leq \frac{C}{|t|^2 (\log |t|)^4} \quad \text{for } t \to 0.$$

That is, we have removed, in (i) of Theorem 1 in [3].

References

- [1] Belavin, A. A. Knizhnik, V. G.: Complex geometry and the theory of quantum strings, *Sov. Phys. JETP.* 64 (1986), 214-228.
- [2] Masur, H.: Extension of the Weil-Petersson metric to the boundary of Teichmüller space, *Duke Math. J.* 43 (1976), 623-635.

- [3] Obitsu, K., To, W.-K. and Weng, L.: The asymptotic behavior of the Takhtajan-Zograf metric, *Commun. Math. Phys.* **284** (2008), 227-261.
- [4] Obitsu, K., To, W.-K. and Weng, L.: The asymptotic behavior of the Takhtajan-Zograf metric II, *in preparation*.
- [5] Obitsu, K. and Wolpert, S.A.: Grafting hyperbolic metrics and Eisenstein series, *Math. Ann.* **341** (2008), 685-706.
- [6] Saper, L.; L^2 -cohomology of the Weil-Petersson metric Contemp. Math., 150 (1993), Amer. Math. Soc, 345-360.
- [7] Takhtajan, L. A. and Zograf, P. G.: A local index theorem for families of $\overline{\partial}$ -operators on punctured Riemann surfaces and a new Kähler metric on their moduli spaces, *Commun. Math. Phys.* **137** (1991), 399-426.
- [8] Wolpert, S.A.: Chern forms and the Riemann tensor for the moduli space of curves, *Invent. Math.* 85 (1986), 119-145.
- [9] Wolpert, S.A.: The hyperbolic metric and the geometry of the universal curve, J. Differential Geom. **31** (1990), 417-472.

Kunio Obitsu

Department of Mathematics and Computer Science, Faculty of Science, Kagoshima University, 21-35 Korimoto 1-Chome, Kagoshima 890-0065, Japan e-mail: obitsu@sci.kagoshima-u.ac.jp