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Abstract

We will survey recent progress on Weil-Petersson and Takhtajan-
Zograf metric. After reviewing the backgrounds and the known results
for those metrics, a new estimate of the asymptotic behavior of the
Takhtajan-Zograf metric near the boundary of the moduh space of
punctured Riemann surfaces is stated without proof.

CONTENTS

1 Backgrounds on Weil-Petersson and Takhtajan-Zograf metrics
2 Known results for the asymptotic behaviors of the Weil-Petersson and
Takhtajan-Zograf metrics
3 Degenerate families of punctured Riemann surfaces and A test Eisenstein
series
4 $A$ new estimate for the Takhtajan-Zograf metric

1 Backgrounds on Weil-Petersson and Takhtajan-
Zograf metrics

$T_{g,n}$ denotes the Teichm\"uller space of Riemann surfaces of genus $g$

with $n$ marked points $(2g-2+n>0)$ . Let $C_{g_{)}n}$ be the Teichm\"uller

curve over $T_{g,n}$ with the projection $\pi$ : $C_{g,n}arrow T_{g,n}$ which has $n$ sections
$P_{1},$

$\ldots,$
$P_{n}$ corresponding to $n$ marked points. Consider $\Omega_{C_{g,n}}^{1}$ (resp. $\Omega_{T_{g,n}}^{1}$ )

the sheaf of holomorphic 1-forms on $C_{g,n}$ (resp. $T_{g,n}$). The sheaf of relative
differential forms on $C_{g,n}$ is defined as

$\omega_{C_{g,n}/T_{g,n}}:=\Omega_{C_{g,n}}^{1}/\pi^{*}\Omega_{T_{g,n}}^{1}$ . (1.1)
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Then the determinant line bundle $\lambda_{l}$ on $T_{g,n}(l\in N)$ is defined as

$\lambda_{l} :=\max\wedge R^{0}\pi_{*}\omega_{C_{g,n}/T_{g,n}}^{\otimes l}((l-1)(P_{1}+\cdots+P_{n}))$ . (1.2)

For a point $s\in T_{g,n},$ $S$ $:=\pi^{-1}(s)$ is a compact Riemann surface. Set
$S^{0}$ $:=S-\{P_{1}(s), \ldots, P_{n}(s)\}$ and $P_{p}$ $:=P_{p}(s)(p=1, \ldots, n)$ .

Here we can see

$R^{0}\pi_{*}\omega_{C_{g,n}/T_{g,n}}^{\otimes l}((l-1)(P_{1}+\cdots+P_{n}))|_{s}=\Gamma(S, K_{S}^{\otimes l}\otimes \mathcal{O}_{S}(P_{1}+\cdots+P_{n})^{\otimes(l-1)})$

$\simeq\{$meromorphic $l$ differentials on $S$ with possibly poles of order at most $l-1$

only at the marked points}.

Pick a basis of local holomorphic sections $\phi_{1},$

$\ldots,$
$\phi_{d(l)}$

for $R^{0}\pi_{*}\omega_{C_{g,n}/T_{g,n}}^{\otimes l}((l-1)(P_{1}+\cdots+P_{n}))$ , where

$d(l)=\{\begin{array}{ll}g (l=1)(2l-1)(g-1)+(l-1)n (l>1) .\end{array}$

$\langle\phi_{i}, \phi_{j}\rangle :=\iint_{S^{0}}\phi_{i}\overline{\phi_{j}}\rho_{\mathcal{S}^{0}}^{(l-1)}(i,j=1, \ldots, d(l))$ (1.3)

is called the Petersson product, where $\rho_{S^{0}}$ is the hyperbohc area element
on $S^{0}.$

We set

$\Vert\phi_{1}\wedge\cdots\wedge\phi_{d(l)}\Vert_{L^{2}}:=|\det(\langle\phi_{i},\phi_{j}\rangle)|^{1/2}$ , (1.4)

$\Vert\phi_{1}\wedge\cdots\wedge\phi_{d(l)}\Vert_{Q}:=\Vert\phi_{1}\wedge\cdots\wedge\phi_{d(l)}\Vert_{L^{2}}Z_{S^{0}}(l)^{-\frac{1}{2}}$ (1.5)

$(l\geq 2. For l=1,$ employ $Z_{S^{0}}’(1)$ in place of $Z_{S^{0}}(1)=0$). Here, $Z_{S}o(l)$

denotes the special value of $Z_{S^{0}}(\cdot)$ on $S^{0}$ at $l$ integer, which will be defined
below. Then $\lambda_{l}arrow T_{g,n}$ is a Hermitian holomorphic line bundle equipped
with the Quillen metric $\Vert\cdot\Vert_{Q}$ (see [7]). Here

$Z_{S^{0}}(s) := \prod_{\{\gamma\}}\prod_{m=1}^{\infty}(1-e^{-(s+m)L(\gamma)})$ (1.6)
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is the Selberg Zeta function for $S^{0},$ ${\rm Re}(s)>1$ , where $\gamma$ runs over all
oriented primitive closed geodesics on $S^{0}$ , and $L(\gamma)$ denotes the hyperbolic
length of $\gamma$ . It extends meromorphically to the whole plane in $s.$

In the late $80’ s$ , we have discovered the following important formulae
for the curvature forms of the determinant line bundles with respect to the
Quillen metrics.

Theorem 1.1 (Belavin-Knizhnik$+Wolpert(1986),$ $[1],$ $[8]$ ).

$c_{1}( \lambda_{l}, \Vert\cdot\Vert_{Q})=\frac{6l^{2}-6l+1}{12\pi^{2}}\omega_{WP} (n=0)$ .

Theorem 1.2 (Takhtajan-Zograf (1988, 1991), [7]).

$c_{1}( \lambda_{l}, \Vert\cdot\Vert_{Q})=\frac{6l^{2}-6l+1}{12\pi^{2}}\omega_{WP}-\frac{1}{9}\omega_{TZ}(n>0)$.

Here, $\omega_{WP},\omega_{TZ}$ are the Kahler forms of the Weil-Petersson, the Takhtajan-
Zograf metrics respectively.

Here remind us of the definitions of the Weil-Petersson and the Takhtajan-
Zograf metrics. By the deformation theory of Kodaira-Spencer and the
Hodge theory, for $[S^{0}]\in T_{g,n}$ , we have

$T_{[S^{0}]}T_{g,n}\simeq HB(S^{0})$ , (1.7)

where $HB(S^{0})$ is the space of harmonic Beltrami differentials on $S^{0}.$

By the Serre duality, one has

$T_{[S^{0}]}^{*}T_{g,n}\simeq Q(S^{0})$ , (1.8)

where $Q(S^{0})$ is the space of holomorphic quadratic differentials on $S^{0}$ with
finite the Petersson-norm, which is dual to $HB(S^{0})$ .

The inner product of the Weil-Petersson metric at $T_{[S^{0}]}T_{g,n}$ is defined
to be

$\langle\alpha, \beta\rangle_{WP}([S^{0}]):=\int\int_{S^{0}}\alpha\overline{\sqrt{}}\rho_{S^{0}}$ , (1.9)

where $\alpha,$
$\beta$ are in $HB(S^{0})\simeq T_{[S^{0}]}T_{g,n}.$

The inner products of the Takhtajan-Zograf metrics are defined to
be

$\langle\alpha,\beta\rangle_{p}([S^{0}]) :=\iint_{S^{0}}\alpha\overline{\sqrt{}}E_{p}(\cdot, 2)\rho_{S^{0}}, (p=1, \ldots, n)$ . (1.10)
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Here, $E_{p}(\cdot, 2)$ is the Eisenstein series associated with the p-th marked point
with index 2. Moreover, we set

$\langle\alpha,\beta\rangle_{TZ}([S^{0}]) :=\sum_{p=1}^{n}\langle\alpha,\beta\rangle_{p}([S^{0}])$. (1.11)

The Eisenstein series associated with the p-th marked point with index
2 is defined to be

$E_{p}(z, 2):= \sum_{A\in\Gamma_{p}\backslash \Gamma}\{{\rm Im}(\sigma_{p}^{-1}A(z))\}^{2}$
, for $z\in H$ , (1.12)

where $H$ is the upper-half plane, $\Gamma$ is a uniformizing FNtchsian group for
$S^{0}$ and $\Gamma_{p}$ is the parabolic subgroup associated with the p-th marked point,
and $\sigma_{p}\in$ PSL(2, $R$) is a normalizer. $E_{p}(z, 2)$ assumes the infinity at the
p-th marked point and vanishes at the other marked points. In addition,
the Eisenstein series satisfy

$\triangle_{hyp}E_{p}(z, 2)=2E_{p}(z, 2)$ , (1.13)

where $\triangle_{hyp}$ is the negative hyperbolic Laplacian on $S^{0}$ . Especially $E_{p}(z, 2)$

is a positive subharmonic function on $S^{0}.$

$Mod_{g,n}$ denotes the mapping class group of surfaces of genus $g$ with
$n$ marked points. Then the moduli space $\mathcal{M}_{g,n}$ of Riemann surfaces of
genus $g$ with $n$ marked points is described as $\mathcal{M}_{g,n}=T_{g,n}/Mod_{g,n}.$ $\lambda_{l}$ and
all metrics we defined are compatible with the action of $Mod_{g,n}$ , thus they
all naturally descend down to $\mathcal{M}_{g,n}$ as orbifold line sheaves and orbifold
metrics respectively.

Let $\overline{\mathcal{M}}_{g,n}$ denote the Deligne-Mumford compactification of $\mathcal{M}_{g,n}.$

We have known the relations of the $L^{2}$ -cohomology of $\mathcal{M}_{g,n}$ with respect
to the Weil-Petersson metric and the second cohomology $of\overline{\mathcal{M}}_{g,n}.$

Theorem 1.3 (Saper (1993) [6]). For $g>1,$ $n=0,$

$H_{(2)}^{*}(\mathcal{M}_{g},\omega_{WP})\simeq H^{*}(\overline{\mathcal{M}}_{g}, R)$.

Here, the left hand $\mathcal{S}ide$ is the $L^{2}$ -cohomology with respect to the Weil-
Petersson metric.
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2 Known results for the asymptotic behaviors of
the Weil-Petersson and Takhtajan-Zograf met-
rics

The proof of Theorem 1.3 is based on the asymptotic behavior of the
Weil-Petersson metric near the boundary of the moduli space which we will
review now.

Here we set $D$ $:=\overline{\mathcal{M}}_{g,n}\backslash \mathcal{M}_{g,n}$ the compactffication divisor. Now take
$X_{0}\in D$ a degenerate Riemann surface of genus $g$ with $n$ marked points and
$k$ nodes (we regard the marked points as deleted from the surface).

Each node $q_{i}(i=1,2, \ldots, k)$ has a neighborhood

$N_{i}=\{(z_{i}, w_{i})\in C^{2}||z_{i}|, |w_{i}|<1, z_{i}w_{i}=0\}.$

$X_{t}$ denotes the smooth surface gotten from $X_{0}$ after cutting and pasting
$N_{i}$ under the relation $z_{i}w_{i}=t_{i},$ $|t_{i}|$ small. Then, $D$ is locally described as
$\{t_{1}\cdots t_{k}=0\}$ (see 3. in more details).

$D$ hae locally the pinching coordinate $(t_{\mathcal{S}})=(t_{1}, \ldots,t_{k}, s_{k+1}, \ldots, s_{3g-3+n})$

around $[X_{0}]$ . Set $\alpha_{i}=\partial/\partial t_{i},$ $\beta_{\mu}=\partial/\partial s_{\mu}\in T_{(t,s)}(T_{g,n})$ . We define the Rie-
manmian tensors for the Weil-Petersson metric

$g_{i\overline{j}}(t, s):=\langle\alpha_{i}, \alpha_{j}\rangle_{WP}(t, s)$ ,

$g_{\overline{\iota\mu}}(t, s):=\langle\alpha_{i},\beta_{\mu}\rangle_{WP}(t, s)$ ,
$g_{\mu\overline{\nu}}(t, s):=\langle\beta_{\mu},\beta_{\nu}\rangle_{WP}(t, s)$ ,

$(i,j=1,2, \ldots, k, \mu, \nu=k+1, \ldots, 3g-3+n)$ .

Furthermore, we define the Riemannian tensors for the Takhtajan-Zograf
metric

$h_{i\overline{j}}(t, s):=\langle\alpha_{i}, \alpha_{j}\rangle_{TZ}(t, s)$ ,
$h_{\overline{\iota\mu}}(t, s):=\langle\alpha_{i},\beta_{\mu}\rangle_{TZ}(t, s)$ ,

$h_{\mu\overline{\nu}}(t, s):=\langle\sqrt{}\mu,\beta_{\nu}\rangle\tau z(t, s)$ ,

$(i,j=1,2, \ldots, k, \mu, \nu=k+1, \ldots, 3g-3+n)$ .
The following theorem is a pioneering result for the asymptotic behavior

of the Weil-Petersson metric near the boundary of the moduli space.
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Theorem 2.1 (Masur (1976), [2]). As $t_{i},$ $\mathcal{S}_{\mu}arrow 0,$

i $)$ $g_{i\overline{i}}(t, s) \approx\frac{l}{|t_{i}|^{2}(-\log|t_{i}|)^{3}}$ for $i\leq k,$

$ii$ ) $g_{i\overline{j}}(t, s)=O( \frac{1}{|t_{i}||t_{j}|(\log|t_{i}|)^{3}(\log|t_{j}|)^{3}})$

for $i,j\leq k,$ $i\neq j,$

iii) $g_{\overline{\iota\mu}}(t, s)=O( \frac{l}{|t_{i}|(-\log|t_{i}|)^{3}})$

for $i\leq k,$ $\mu\geq k+1,$

iv) $g_{\mu\overline{\nu}}(t, s)arrow g_{\mu\overline{\nu}}(O,0)$ for $\mu,$ $\nu\geq k+1.$

Recently, we updated Masur’s result by improving Wolpert’s formula for
the asymptotic of the hyperbolic metric for degenerating Riemann surfaces.

Theorem 2.2 (Obitsu and Wolpert (2008), [5]). We can improve iv) in
Theorem 2.1 as follows;

$iv)’g_{\mu\overline{\nu}}(t, s)=g_{\mu\overline{\nu}}(0, s)+ \frac{4\pi^{4}}{3}\sum_{i=1}^{k}(\log|t_{i}|)^{-2}\langle\beta_{\mu},$ $(E_{i,1}+E_{i,2})\beta_{\nu}\rangle_{WP}(0, s)$

$+O( \sum_{i=1}^{k}(\log|t_{i}|)^{-3})$

as $tarrow 0$ , for $\mu,$ $\nu\geq k+1.$

Here, $E_{i,1},$ $E_{i,2}$ denote a pair of the $Eisen\mathcal{S}tein$ series with index 2 $as\mathcal{S}ociated$

with the i-th node of the limit surface $X_{0}.$

That is, the Takhtajan-Zograf metrics have appeared from degeneration
of the Weil-Petersson metric. On the other hand, we have a result for
asymptotics of the Takhtajan-Zograf metric near the boundary of the moduli
space. Before stating the result, we need the following definition.

Definition 2.3. Let $X_{0}$ be a degenemte Riemann $\mathcal{S}$urface with $n$ punctures
$p_{1},$ $\cdots,p_{n}$ and $m$ nodes $q_{1},$ $\cdots,$ $q_{m}.$

A node $q_{i}$ is said to be adjacent to punctures (resp. a puncture
$p_{j})$ if the component of $X_{0}\backslash \{q_{1}, \cdots, q_{i-1}, q_{i+1}, \cdots, q_{m}\}$ containing $q_{i}$ also
contains at least one of the $p_{j}s$ (resp. the puncture $p_{j}$). Otherwise, it is
$\mathcal{S}aid$ to be non-adjacent to punctures (resp. the puncture $p_{j}$).

Theorem 2.4 ($O$bitsu-To-Weng (2008), [3]). As $(t, s)arrow 0$ , we observe the
followings:
i $)$ For $any,$ $>0$ , there exists a constant $C_{1,\epsilon}$ such that
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$h_{i\overline{i}}(t, s) \leq\frac{C_{l,\epsilon}}{|t_{i}|^{2}(-\log|t_{i}|)^{4-\epsilon}}$ for $i\leq k$ ;

For $any,$ $>0$ , there exists a constant $C_{2,\epsilon}$ such that
$h_{i\overline{i}}(t, s) \geq\frac{C_{2,\epsilon}}{|t_{i}|^{2}(-\log|t_{i}|)^{4+\epsilon}}$ for $i\leq k$

and the node $q_{i}$ adjacent to punctures;

ii) $h_{i\overline{j}}(t, s)=O( \frac{1}{|t_{i}||t_{j}|(\log|t_{i}|)^{3}(\log|t_{j}|)^{3}})$

for $i,j\leq k,i\neq j$ ;

iii) $h_{\overline{\iota\mu}}(t, s)=O( \frac{l}{|t_{i}|(-\log|t_{i}|)^{3}})$

for $i\leq k,$ $\mu\geq k+1$ ;

iv) $h_{\mu\overline{\nu}}(t, s)arrow h_{\mu\overline{\nu}}(O, 0)$ for $\mu,$ $v\geq k+1.$

3 Degenerate families of punctured Riemann sur-
faces and A test Eisenstein series

First of all, let us review the construction of degenerating punctured
hyperbolic surfaces. We recall the construction of the plumbing family (see
2 [5] $)$ . Considerations begin with the plumbing variety $\mathcal{V}=\{(z, w, t)$

$zw=t,$ $|z|,$ $|w|,$ $|t|<1\}$ . The defining function $zw-t$ has differential
$zdw+wdz-dt$. Consequences are that $\mathcal{V}$ is a smooth variety, $(z, w)$ are
global coordinates, while $(z, t)$ and $(w, t)$ are not. Consider the projection
$\Pi$ : $\mathcal{V}arrow D$ onto the $t$-unit disc. The projection $\Pi$ is a submersion, except
at $(z, w)=(O, 0)$ ; we consider $\Pi$ : $\mathcal{V}arrow D$ as $a$ (degenerate) family of open
Riemann surfaces. The t-fiber, $t\neq 0$ , is the hyperbola germ $zw=t$ or
equivalently the annulus $\{|t|<|z|<1, w=t/z\}=\{|t|<|w|<1,$ $z=$

$t/w\}$ . The 0-fiber is the intersection of the unit ball with the union of the
coordinate axes in $\mathbb{C}^{2}$ ; on removing the origin the union becomes $\{0<|z|<$
$1\}\cup\{0<|w|<1\}$ . Each fiber of $\mathcal{V}_{0}=\mathcal{V}-\{0\}arrow D$ has a complete
hyperbolic metric.

Consider $X_{0}$ a finite union of hyperbolic surfaces with cusps. $A$ plumbing
family is the fiberwise gluing of the complement of cusp neighborhoods in
$X_{0}$ and the plumbing variety $\mathcal{V}=\{(z, w, t)|zw=t, |z|, |w|, |t|<1\}$ . For
a positive constant $c_{*}<1$ and initial surface $X_{0}$ , with puncture $p$ with
cusp coordinate $z$ and puncture $q$ with cusp coordinate $w$ , we construct a
family $\{X_{t}\}$ . For $|t|<c_{*}^{4}$ the resulting surface $X_{t}$ will be independent of $c_{*}$ ;
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the constant $c_{*}$ will serve to specify the overlap of coordinate charts and to
define a collar in each $X_{t}.$

We first describe the gluing of fibers. For $|t|<c_{*}^{4}$ , remove from $X_{0}$ the
punctured discs $\{0<|z|\leq|t|/c_{*}\}$ about $p$ and $\{0<|w|\leq|t|/c_{*}\}$ about
$q$ to obtain a surface $X_{t/c_{*}}^{*}$ . For $t\neq 0$ , form an identification space $X_{t},$

by identifying the annulus $\{|t|/c_{*}<|z|<c_{*}\}\subset X_{t/c_{*}}^{*}$ with the annulus
$\{|t|/c_{*}<|w|<c_{*}\}\subset X_{t/c_{*}}^{*}$ by the rule $zw=t$. The resulting surface
$X_{t}$ is the plumbing for the prescribed value of $t$ . We note for $|t|<|t’|$

that there is an inclusion of $X_{t/c_{*}}^{*}$ in $X_{t/c_{*}}^{*}$ ; the inclusion maps provide a
way to compare structures on the surfaces. The inclusion maps are a basic
feature of the plumbing construction. We next describe the plumbing family.
Consider the variety $\mathcal{V}_{c_{*}}=\{(z, w, t)|zw=t, |z|, |w|<c_{*}, |t|<c_{*}^{4}\}$ and the
disc $D_{c_{*}}=\{|t|<c_{*}^{4}\}$ . The complex manifolds $M=X_{t/c_{*}}^{*}\cross D_{c_{*}}$ and $\mathcal{V}_{c_{*}}$

have holomorphic projections to the disc $D_{c_{*}}$ . The variables $z,$ $w$ denote
prescribed coordinates on $X_{t/c_{*}}^{*}$ and on $\mathcal{V}_{c_{*}}$ . There are holomorphic maps of
subsets of $M$ to $\mathcal{V}_{c_{*}}$ , commuting with the projections to $D_{c_{*}}$ , as follows

$(z,t)arrow\hat{F}(z,t/z,t)$ and $(w, t)arrow\hat{G}(w,t/w, t)$ .
The identification space $\mathcal{F}=M\cup \mathcal{V}_{c_{*}}/$ { $\hat{F},\hat{G}$ equivalence} is the plumbing
family $\{X_{t}\}$ with projection to $D_{c_{*}}$ (an analytic fiber space of Riemann
surfaces in the sense of Kodaira. For $0<|t|<c_{*}^{4}$ , the t-fiber of $\mathcal{F}$ is the
surface $X_{t}$ constructed by overlapping annuli $N_{t}.$

We set two anului

$\Omega_{t}^{1}$ $:= \{z\in C|\frac{|t|}{e^{a^{0}}c^{*}}<|z|<e^{a^{0}}c^{*}\}$ for $|t|<(c^{*})^{4}$ , (3.1)

$\Omega_{t}^{2}$ $:= \{w\in C|\frac{|t|}{e^{a^{0}}c^{*}}<|w|<e^{a^{0}}c^{*}\}$ for $|t|<(c^{*})^{4}$ . (3.2)

Here $0<c^{*}<i,$ $a_{0}<0$ are the constants in [5].
When $t\neq 0$ , on can identify as an annulus via coordinate projections as

$N_{t}\ovalbox{\tt\small REJECT}\Omega_{t}^{1}\ovalbox{\tt\small REJECT}\Omega_{t}^{2}$ . (3.3)

And we may write $N_{t}=N_{t}^{1}\cup N_{t}^{2}$ , where

$N_{t}^{1}=\{z\in C||t|^{\frac{1}{2}}\leq|z|<e^{a^{0}}c^{*}\},$ $N_{t}^{2}=\{w\in C||t|^{\frac{1}{2}}\leq|w|<e^{a^{0}}c^{*}\}.$

(3.4)
For $t=0$ , define the cusp neighborhood

$N_{0}:=\Omega_{0}^{1}\cup\Omega_{0}^{2}$ . (3.5)
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In another word, we may consider that $\Omega_{t}^{1}$ embed into $X_{t}$ holomorphically
for $t,$ $z$ . (See 2 in [5])

Here, remember the test function which is defined in [3]. For $t\neq 0$ one
defines for $z\in\Omega_{t}^{1},$

$E_{t}^{*}(z):= \frac{-\pi}{\log|t|\sin(\frac{\pi\log|z|}{\log|t|})},$
$\rho_{t}^{*}(z):=\frac{\pi^{2}}{|z|^{2}\log^{2}|t|\sin^{2}(\frac{\pi\log}{\log}\lceil tT|z|)},$

for $t=0,$ $z\in\Omega_{t}^{1},$

$E_{0}^{*}(z):= \frac{-1}{\log|z|}, \rho_{0}^{*}(z):=\underline{1}$

$|z|^{2}\log^{2}|z|.$

It is easy to see that for $t\neq 0,$ $E_{t}^{*},$ $\rho_{t}^{*}$ have similar expressions for $w$ in
$\Omega_{t}^{2}$ via the rule $zw=t$ . Thus, $E_{t}^{*},$ $\rho_{t}^{*}$ can be considered as functions on the
manifolds $N_{t}$ for $t\neq 0$ . And one defines for $w\in\Omega_{0}^{2},$ $E_{0}^{*}(w),$ $\rho_{0}^{*}(w)$ as the
same expression as $E_{0}^{*}(z),$ $\rho_{0}^{*}(z)$ . Furthermore, we can easily observe that

$\rho_{0}^{*}\leq\rho_{t}^{*}$ on $N_{t}$ for $|t|<(c^{*})^{4}$ . (3.6)

Masur showed in (6.5) [2] that there exists a positive constant $K$ such that

$\rho_{t}^{*}\leq K\rho_{0}^{*}$ on $N_{t}$ for $|t|<(c^{*})^{4}$ . (3.7)

From now, we always assume that the smooth surfaces $X_{t}$ have at least
one punctures. We are ready to consider a function

$\varphi_{t}$

$:=\underline{E_{t}}$ on $N_{t}$ , for $|t|<(c^{*})^{4},$

$E_{t}^{*}$

’

where $E_{t}$ is the intrinsic Eisenstein series on a punctured hyperbolic surface
$X_{t}$ associated with a puncture.

We have already seen in the proof of Proposition 4.2.2 in [3] that on $\Omega_{t}^{1},$

$\Delta E_{t}(z)=2\rho_{t}(z)E_{t}(z)$ , (3.8)

$\Delta E_{t}^{*}(z)=(1+\cos^{2}(\frac{\pi\log|z|}{\log|t|}))\rho_{t}^{*}(z)E_{t}^{*}(z)$ , (3.9)

where $\Delta$ $:=4 \frac{\partial^{2}}{\partial z\partial\overline{z}},$ $\rho_{t}(z)$ is the intrinsic hyperbolic area element on $X_{t}$ , and
$\rho_{t}^{*}(z)$ is the restriction to $\Omega_{t}^{1}$ of the complete hyperbolic metric $r(z)|dz|^{2}$

of an annulus $\{z\in C||t|<|z|<1\}$ . It should be noted that $\rho_{t}^{*}(z)$ on
$\Omega_{t}^{1}$ is strictly smaller than the complete hyperbolic metric of $\Omega_{t}^{1}$ . Now a
straightforward calculation leads the following proposition (see [4] for the
proof).
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Proposition 3.1. The function $\varphi_{t}(z)$ satisfies the following equation on $\Omega_{t}^{1}$

$- \triangle\varphi_{t}(z)+\frac{\pi}{\log|t|}\cot(\frac{\pi\log|z|}{\log|t|})(\frac{2}{z}\frac{\partial\varphi_{t}(z)}{\partial\overline{z}}+\frac{2}{\overline{z}}\frac{\partial\varphi_{t}(z)}{\partial z})$

$+ \{2\rho_{t}(z)-(1+\cos^{2}(\frac{\pi\log|z|}{\log|t|}))\rho_{t}^{*}(z)\}\varphi_{t}(z)=0.$

We need the following result which is a special case of [5] Theorem 1.

Theorem 3.2. On $N_{t},$
$\rho_{t}$ has the expansion for $tarrow 0,$

$\rho_{t}=\rho_{t}^{*}(1+\frac{4\pi^{4}}{3}(E_{t,1}^{\dagger}+E_{t,2}^{\dagger})\frac{1}{(\log|t|)^{2}}+Q(t))$ ,

where $Q(t)$ has the estimate

$Q(t)=O( \frac{1}{(\log|t|)^{3}})$ for $tarrow 0.$

The function $E_{t,1}^{\dagger},$ $E_{t,2}^{\dagger}\dot{w}$ the modified Eisenstein series. The $0$-term refers
to the intrinsic $C^{1}$ -norm of a function on $X_{t}$ . The bounds depend on the
choice of $c^{*},$ $a_{0}$ and a lower bound for the injectivity mdius for the comple-
ment of the cusp regions in $X_{0}.$

The functions $E_{t,1}^{\dagger},$ $E_{t,2}^{\dagger}$ are constructed as follows (see Definition 1 in [5]).
First, consider the case where the pinching curve is non-dividing. Now we
may assume that for $t=0$ , our coordinates $z,$ $w$ are so-called the standard
coordinate (see Remark-Definition 2.1.2 in [3]). Take the two Eisenstein
series $E_{0,1},$ $E_{0,2}$ on $X_{0}$ associated with the node. Set $E_{0,1}^{\#}=E_{0,1}-(\log|z|)^{2}$

on $\Omega_{0}^{1},$ $E_{0,1}^{\#}=E_{0,1}$ otherwise. $E_{0,2}^{\#}=E_{0,2}-(\log|w|)^{2}$ on $\Omega_{0}^{2},$ $E_{0,2}^{\#}=E_{0,2}$

otherwise. Set $E_{t,1}^{\dagger}=E_{0,1}^{\#}(z)+E_{0,1}^{\#}( \frac{t}{z})$ on $N_{t}$ . Similarly set $E_{t,2}^{\dagger}=E_{0,2}^{\#}(w)+$

$E_{0,2}^{\#}( \frac{t}{w})$ on $N_{t}$ . These functions are smooth, bounded and strictly positive
on $N_{t}$ for $|t|<(c^{*})^{4}$ . In the dividing case, we consider $E_{0,1}$ be just $0$ on the
other component, follow the construction in the non-dividing case. It should
be noted that $E_{0,1}^{\#},$ $E_{0,2}^{\#}$ on $N_{t}$ is independent of $t$ . Furthermore, we should
remark that in the construction of [5], $E_{0,1}^{\#},$ $E_{0,2}^{\#}$ are modified except for the
factor $(\log|z|)^{2},$ $(\log|w|)^{2}$ just on $\{e^{a0}c^{*}<|z|<c^{*}\}\simeq\{\frac{|t|}{\mathcal{C}^{*}}<|w|<\frac{|t|}{e^{a}0_{\mathcal{C}^{*}}}\}$

and $\{\frac{|t|}{c^{*}}<|z|<\frac{|t|}{e^{a}0_{\mathcal{C}^{*}}}\}\simeq\{e^{a0}c^{*}<|w|<c^{*}\}$ so that the modified function
be smooth, thus in our case, $E_{0,1}^{\#},$ $E_{0,2}^{\#}$ is exactly $E_{0,1},$ $E_{0,2}$ on $X_{0}$ except for
the factor $(\log|z|)^{2},$ $(\log|w|)^{2}$ respectively.
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Remark 3.3. As mentioned before, $\rho_{t}^{*}is$ strictly smaller than the complete
hyperbolic metric of $\Omega_{t}^{1}$ . Thus, the claim of Theorem 3.2 does not $\omega ntmdict$

the implication of the classical Schwarz lemma.

4 $A$ new estimate for the Takhtajan-Zograf metric

We are ready to state a new estimate of the intrinsic Eisenstein series
which is an improvement of Proposition 4.2.2 in [3]. Detailed proofs will
appear in [4]. Here we quote a lemma (Lemma 1[5]).

Lemma 4.1. There estst a positive constant $C^{*}$ such that

$E_{0}\leq C^{*}E_{0}^{*}$ on $\Omega_{0}^{1}.$

We are now in a position to generalize Lemma 4.1 for any $t.$

Proposition 4.2. Assume that in the family $\{X_{t}\},$ $N_{0}$ has the intersection
with the component auached to the cusp where the Eisenstein series $E_{0}$ has
a singularity. Then there enists a positive constant $C,$ $C’$ independent of $t$

such that
$E_{t}\leq CE_{t}^{*}$ on $N_{t}$ $for|t|$ sufficiently small, (4.1)

$E_{t}\leq C’E_{0}^{*}$ on $N_{t}$ $for|t|$ sufficiently small. (4.2)

Applying Proposition 4.2, we can improve (i) of Theorem 1 in [3].

Theorem 4.3. For the simplicity of description, we assume that the degen-
emting family of a punctured hyperbolic surface $X_{t}$ has only one pinching
curve. Then there exists a positive constant $C$ such that the Takhtajan-
Zograf inner product has the estimate

$g^{TZ}( \frac{\partial}{\partial t}, \frac{\partial}{\partial t})\leq\frac{C}{|t|^{2}(\log|t|)^{4}}$ for $tarrow 0.$

That is, we have removed, in (i) of Theorem 1 in [3].
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