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Recent progress on Takhtajan-Zograf and
Weil-Petersson metrics
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Abstract

We will survey recent progress on Weil-Petersson and Takhtajan-
Zograf metric. After reviewing the backgrounds and the known results
for those metrics, a new estimate of the asymptotic behavior of the
Takhtajan-Zograf metric near the boundary of the moduli space of
punctured Riemann surfaces is stated without proof.
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1 Backgrounds on Weil-Petersson and Takhtajan-
Zograf metrics

Tyrn denotes the Teichmiiller space of Riemann surfaces of genus g
with n marked points (29 — 2+ n > 0). Let Cy, be the Teichmiiller
curve over T, with the projection 7 : Cy,, — Ty, which has n sections
P,,...,P, corresponding to n marked points. Consider Q};g’n (resp. Q}rg’n)
the sheaf of holomorphic 1-forms on Cg, (resp. Ty ). The sheaf of relative
differential forms on Cj,, is defined as

ng,n/Tg,n = Q].Cg,n/”r*Qf]i-‘g,n' (1'1)
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Then the determinant line bundle A; on Ty, (I € N) is defined as

/\R%*wc T (=1 (P1+--- +Py)). (1.2)

For a point s € Typ, S := 7 !(s) is a compact Riemann surface. Set
80 :=8~{P1(s),...,Pn(s)} and P, :=P,(s) (p=1,...,n).
Here we can see

Row*wggl,n/Tg,n (I=1)(P1+ - +Py))|s = (S, K& ®Og(Py +- - -+ P,)®¢~D)

~{meromorphic [ differentials on S with possibly poles of order at most [ —1
only at the marked points}.

Pick a basis of local holomorphic sections ¢, ... » Pd(1)
for Row*wc o/ Toum (I =1)(P1+ - +Pyp)), where

(D) = { g =1
@—-1)(g-1)+1-Dn (>1).

(b5, d5) = //SO bi ?b;pgél‘l) (G,5=1,...,d(0)) (1.3)

is called the Petersson product, where pgo is the hyperbolic area element
on SY.

We set

l¢1 A= A dayll2 == | det ({5, $;))|*?, (1.4)
161 A~ Adayllg = |1 A~ A dapllz2 Zso(1) 2 (1.5)

(I > 2. For l = 1, employ Z:,;O(l) in place of Zgo(1) = 0). Here, Zgo(l)
denotes the special value of Zgo(-) on S° at I integer, which will be defined
below. Then A\, — T, is a Hermitian holomorphic line bundle equipped
with the Quillen metric || - ||g (see [7]). Here

Zgo(s) := H ﬁ (1- e~ (stm)L(Y) ) (1.6)

{n} m=1



32

is the Selberg Zeta function for S°, Re (s) > 1, where ~ runs over all
oriented primitive closed geodesics on S°, and L(v) denotes the hyperbolic
length of 7. It extends meromorphically to the whole plane in s.
In the late 80’s, we have discovered the following important formulas
for the curvature forms of the determinant line bundles with respect to the
Quillen metrics.

Theorem 1.1 (Belavin-Knizhnik+Wolpert(1986), [1], [8]).

612 —6l+ 1
a(An - ll) = 9.2 WWP (n=0).

Theorem 1.2 (Takhtajan-Zograf (1988, 1991), [7] ).

612 — 60+ 1 1

asll-lle) = 3. WWP ~ gWIZ (n > 0).

Here, wy p,wrz are the Kihler forms of the Weil-Petersson, the Takhtajan-

Zograf metrics respectively.

Here remind us of the definitions of the Weil-Petersson and the Takhtajan-
Zograf metrics. By the deformation theory of Kodaira-Spencer and the
Hodge theory, for [S°] € Ty ., we have

TisoTyn ~ HB(S°), (1.7)

where HB(S°) is the space of harmonic Beltrami differentials on S°.
By the Serre duality, one has

TisoyTom = Q(S°), (18)

where Q(S?) is the space of holomorphic quadratic differentials on S° with
finite the Petersson-norm, which is dual to HB(S?).

The inner product of the Weil-Petersson metric at Tjs0T,, is defined
to be

(@ Bwr(1s%) = [[ 0B psn (19)

where a, 3 are in HB(S°) =~ TigoTgn.
The inner products of the Takhtajan-Zograf metrics are defined to
be

(@015 = [[ BB, oo, =1,...,m) (1.10)



Here, Ep(-,2) is the Eisenstein series associated with the p-th marked point
with index 2. Moreover, we set

(a)ﬂ>TZ([SO]) = Z(a,,@)p([SO]) (111)

The Eisenstein series associated with the p-th marked point with index
2 is defined to be

Ey(2,2) := Z {Im(U;IA(z))}2, for z € H, (1.12)
AET,\T

where H is the upper-half plane, I' is a uniformizing Fuchsian group for
S0 and I',, is the parabolic subgroup associated with the p-th marked point,
and o, € PSL(2,R) is a normalizer. FEp(z,2) assumes the infinity at the
p-th marked point and vanishes at the other marked points. In addition,
the Eisenstein series satisfy

Ahyp Ep(z’ 2) = 2EP(27 2)a (113)

where Apyy is the negative hyperbolic Laplacian on S°. Especially E,(z,2)
is a positive subharmonic function on .S°.

Mod, ,, denotes the mapping class group of surfaces of genus g with
n marked points. Then the moduli space M, of Riemann surfaces of
genus g with n marked points is described as Mg, = Ty ,/Mody,. A; and
all metrics we defined are compatible with the action of Modg ,,, thus they
all naturally descend down to Mg, as orbifold line sheaves and orbifold
metrics respectively.

Let My, denote the Deligne-Mumford compactification of Mg n.
We have known the relations of the L2—cohomology of Mgy n with respect
to the Weil-Petersson metric and the second cohomology of ﬂg,n.

Theorem 1.3 (Saper (1993) [6] ). Forg>1,n=0,
Hipy (Mg, wwp) =~ H* (Mg, R).

Here, the left hand side is the L?—cohomology with respect to the Weil-
Petersson metric.
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2 Known results for the asymptotic behaviors of
the Weil-Petersson and Takhtajan-Zograf met-
rics

The proof of Theorem 1.3 is based on the asymptotic behavior of the
Weil-Petersson metric near the boundary of the moduli space which we will
review now.

Here we set D := My ,\ M, the compactification divisor. Now take
Xo € D a degenerate Riemann surface of genus g with n marked points and
k nodes (we regard the marked points as deleted from the surface).

Each node ¢; (1 =1,2,...,k) has a neighborhood
N; = {(Z»,,,’wz) € Cz ‘ |Z'L|, |’w,,,| <1, zw; = 0}

X; denotes the smooth surface gotten from X after cutting and pasting
N; under the relation z;w; = ¢;, [¢t;| small. Then, D is locally described as
{t1---tx, = 0} (see 3. in more details).

D has locally the pinching coordinate (¢,s) = (¢1,...,tk, Sk+1,- - - » S3g—3+n)
around [Xo]. Set o; = 8/0¢;, B8, = 8/0s;, € T(y 4)(Tyn). We define the Rie-
mannian tensors for the Weil-Petersson metric

gi}(t’ s) = <ai7 O‘J'>WP(t’ S),

9in(t, ) == (o4, Bu)wp(t,s),
g[.lfﬁ(t’s) = (ﬂ“,,@V)WP(t,S),
(,j=1,2,....k, yv=k+1,...,3g—3+n).

Furthermore, we define the Riemannian tensors for the Takhtajan-Zograf
metric
hiz(t,5) := (o, 5)12(¢, 5),

hig(t, s) :== (o, Bu)12 (2, 5),
huﬁ(tv S) = <:3/J,7 ,3V>TZ (t, S)a

(t,7=1,2,...,k, pv=k+1,...,3g—3+n).
The following theorem is a pioneering result for the asymptotic behavior
of the Weil-Petersson metric near the boundary of the moduli space.



Theorem 2.1 (Masur (1976), [2]). Ast;,s, — 0,

1

) ealho) N pE g TSR

.e 1
) 9:(t;s) =0 ( |:]|t;|(log |t;])3(log |2;])3 )
fori,j < k,i# j,
e l
i) gm(t,s) =0 ( |t:] (— log [t:])3 )
fori<k,u>k+1,

W) gup(t,s) — guw(0,0) forp,v>k+1.

Recently, we updated Masur’s result by improving Wolpert’s formula for
the asymptotic of the hyperbolic metric for degenerating Riemann surfaces.

Theorem 2.2 (Obitsu and Wolpert (2008), [5]). We can improve i) in
Theorem 2.1 as follows;

At &
) gurlt ) = 9uo(0,5) + - 3 (log|ti) (B (Bia + Ei)B,) _(0,)
i=1

+0( 3 (og 1))

=1

ast — 0, foru,v>k+1.

Here, E; 1, E; 2 denote a pair of the Eisenstein series with indez 2 associated
with the i-th node of the limit surface Xp.

That is, the Takhtajan-Zograf metrics have appeared from degeneration
of the Weil-Petersson metric. On the other hand, we have a result for
asymptotics of the Takhtajan-Zograf metric near the boundary of the moduli
space. Before stating the result, we need the following definition.

Definition 2.3. Let Xy be a degenerate Riemann surface with n punctures
P1,: - ,Pn and m nodes q1,-- - , Q.

A node ¢; is said to be adjacent to punctures (resp. a puncture
p;) if the component of Xo\{q1, - ,¢i—1,Gi+1,"** ,qm} containing ¢; also
contains at least one of the p;’s (resp. the puncture p;). Otherwise, it is
said to be non-adjacent to punctures (resp. the puncture Pj)-

Theorem 2.4 (Obitsu-To-Weng (2008), [3]). As (¢,5) — 0, we observe the
followings:
i) For any, > 0, there exists a constant C1,¢ such that
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Cle .
=(t < ) < feo
hilt$) S ERCIog i TSk

For any , > 0, there exists a constant C ¢ such that
C2 €
h-(t > : < k
i) 2 oy 7S
and the node q; adjacent to pulnctures;

i) hyj(t,) = O ( [til]23](log [¢:])3 (log [¢])® )
fori,j <k,i#j;

e 1
i) hae(t,3) = O ( = iogiaye )

fori <k,u>k+1;

w) hys(t,s) — huw(0,0) forp,v>k+1.

3 Degenerate families of punctured Riemann sur-
faces and A test Eisenstein series

First of all, let us review the construction of degenerating punctured
hyperbolic surfaces. We recall the construction of the plumbing family (see
2 [5] ). Considerations begin with the plumbing variety V = {(z,w,t) |
2w = t, |2|,|w|,[t| < 1}. The defining function zw — ¢t has differential
zdw + wdz — dt. Consequences are that V is a smooth variety, (z,w) are
global coordinates, while (z,t) and (w,t) are not. Consider the projection
II : V — D onto the t-unit disc. The projection II is a submersion, except
at (z,w) = (0,0); we consider II : V — D as a (degenerate) family of open
Riemann surfaces. The t-fiber, ¢t # 0, is the hyperbola germ zw = ¢ or
equivalently the annulus {|t| < |z| < L, w = t/2} = {|t| < |w| < 1,2 =
t/w}. The O-fiber is the intersection of the unit ball with the union of the
coordinate axes in C?; on removing the origin the union becomes {0 < |z| <
1} U {0 < |w| < 1}. Each fiber of Vo = V — {0} — D has a complete
hyperbolic metric.

Consider X a finite union of hyperbolic surfaces with cusps. A plumbing
family is the fiberwise gluing of the complement of cusp neighborhoods in
Xo and the plumbing variety V = {(z,w,t) | 2w = ¢, |2|,|w]|,|¢| < 1}. For
a positive constant ¢, < 1 and initial surface X, with puncture p with
cusp coordinate z and puncture ¢ with cusp coordinate w, we construct a
family {X;}. For |t| < c? the resulting surface X; will be independent of c,;



the constant c, will serve to specify the overlap of coordinate charts and to
define a collar in each X;.

We first describe the gluing of fibers. For |t| < ¢, remove from X the
punctured discs {0 < |z| < [t|/c.} about p and {0 < |w| < |t|/cs} about
q to obtain a surface X t*/ c.- For t # 0, form an identification space Xj,
by identifying the annulus {|t|/c. < |2| < e} C X}/, with the annulus
{ltl/ex < |w| < e} C X¢.. by the rule zw = ¢. The resulting surface
Xt is the plumbing for the prescribed value of t. We note for [t| < ||
that there is an inclusion of X Jes in X;"/ . the inclusion maps provide a
way to compare structures on the surfaces. The inclusion maps are a basic
feature of the plumbing construction. We next describe the plumbing family.
Consider the variety V., = {(z,w,t) | 2w = t, 2|, |w| < cx, [t| < ¢t} and the
disc D, = {|t| < ct}. The complex manifolds M = X t/c, X De, and Ve,
have holomorphic projections to the disc D.,. The variables z,w denote
prescribed coordinates on X t*/ ., and on Ve,. There are holomorphic maps of
subsets of M to V,,, commuting with the projections to D,,, as follows

(5:8) 5 (2,/2,¢) and (w,8) S (w,t/w,1).

The identification space F = M U V,, /{F,G equivalence} is the plumbing
family {X;} with projection to D., (an analytic fiber space of Riemann
surfaces in the sense of Kodaira. For 0 < |t| < c%, the t-fiber of F is the
surface X; constructed by overlapping annuli N;.

We set two anului

QF := {z €C l 'fl <z < eaoc*} for [t] < (c*)4, (3.1)
ea C*

Q2 := {w eC ‘ If' < |lw| < eaoc*} for Jt| < (c*)*. (3.2)
e c* ;

Here 0 < c* < 1,ap < 0 are the constants in [5].
When ¢ # 0, on can identify as an annulus via coordinate projections as
N; s Q) — Q2. (3.3)
And we may write N; = N} U N?, where
N} ={zeC I |t|% <|z| < e“oc*},Nt2 ={weC | |t|% < |w| < e“oc*}.

(3.4)
For ¢t = 0, define the cusp neighborhood

No :=Q}u Q2. (3.5)

37



38

In another word, we may consider that (2} embed into X; holomorphically
for t,z. (See 2 in [5])

Here, remember the test function which is defined in [3]. For ¢ # 0 one
defines for z € Q,

2
- T
Bi(z) = ;) = ,
log|t|sin (5e5H) af2 10g? |t} sin? (T84

fort=0,z€Qt1,

-1 1
E}(2) i= —— 5(2) 1= ———.
0( ) pO( ) IzlzlogZ IZI

log ||’
It is easy to see that for ¢t # 0, Ef, pf have similar expressions for w in
2 via the rule zw = ¢t. Thus, E}, p; can be considered as functions on the
manifolds N; for ¢ # 0. And one defines for w € Q2, E}(w), p§(w) as the
same expression as Ej(z), p5(z). Furthermore, we can easily observe that

pe < pt onN; for|t| < (c*)* (3.6)
Masur showed in (6.5) [2] that there exists a positive constant K such that
pt < Kpy onN; for|t| < (c*) (3.7)

From now, we always assume that the smooth surfaces X; have at least
one punctures. We are ready to consider a function

E
Ot 1= E_;" on N;, for t| < (c*)*,

where F; is the intrinsic Eisenstein series on a punctured hyperbolic surface
X, associated with a puncture.
We have already seen in the proof of Proposition 4.2.2 in [3] that on Q},

AEt(Z) = 2pt(Z)Et(Z), (38)

) ) Pi(@E: (), (3.9)

wlog |z|

* . 2
AFE; (2) —( 1+ cos ( Tog ]

where A := 432;—5, pt(z) is the intrinsic hyperbolic area element on X;, and
pi(2) is the restriction to ©} of the complete hyperbolic metric r(z)|dz|?
of an annulus {2z € C | |t| < |2|] < 1}. It should be noted that p;(z) on
Q! is strictly smaller than the complete hyperbolic metric of 2}. Now a
straightforward calculation leads the following proposition (see [4] for the
proof).
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Proposition 3.1. The function ¢i(2) satisfies the following equation on Q}

—Agot(z) +

mwlog|z|\ / 20pi(2) 2 0p4(2)
(10g|t])(; (';2 +_z: 6tz )

og
+{2pt(2)— (1+"°SZ (ﬁioglzl) ) pZ‘(Z)}sOt(Z) =0

gt|

We need the following result which is a special case of [5] Theorem 1.

Theorem 3.2. On Ny, p; has the expansion for t — 0,

4

47 t t 1
Pt = p; ( 1+ _3“(Et,1 + Et,2)m5§ +Q() )’

where Q(t) has the estimate

Q(t)zo((lo_gll-t—ljg) fort — 0.

The function EI’ 17Eg,2 15 the modified Fisenstein series. The O-term refers
to the intrinsic C'—norm of a function on X;. The bounds depend on the
choice of c*, a9 and a lower bound for the injectivity radius for the comple-
ment of the cusp regions in Xo.

The functions EtT’ 15 Etf’ o are constructed as follows (see Definition 1 in [5]).
First, consider the case where the pinching curve is non-dividing. Now we
may assume that for ¢ = 0, our coordinates z,w are so-called the standard
coordinate (see Remark-Definition 2.1.2 in [3]). Take the two Eisenstein

series Fp 1, Fp2 on Xp associated with the node. Set Eg’l = FEy1 — (log |z|)?
on O}, B}, = Ep; otherwise. Egz = Ey 2 — (log|w|)? on Q2 E52 = Fys
otherwise. Set E]\1 = Eg 1(2) -i-E0 1(£) on N;. Similarly set EI 9 = ('w)+
Eo 2(L) on N;. These functions are smooth, bounded and strlctly pos1t1ve
on N; for [¢| < (c*)*. In the dividing case, we consider Eg; be just 0 on the

other component, follow the construction in the non-dividing case. It should
be noted that Eg,l,Eg,2 on N is independent of ¢. Furthermore, we should
remark that in the construction of [5], E'g 1 Eg o are modiﬁed except for the
factor (log|z|)?, (log|w|)? just on {e%c* < |z| < ¢*} ~ { < |lw] < eal(fL*}
and {ltl < |z| < eal(flc*} ~ {e%c* < |w| < ¢*} so that the modified function
be smooth, thus in our case, Eg,l, Eg’z is exactly Ej 1, Fo2 on Xg except for
the factor (log|z|)2, (log |w|)? respectively.
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Remark 3.3. As mentioned before, p} is strictly smaller than the complete
hyperbolic metric of Q}. Thus, the claim of Theorem 3.2 does not contradict
the implication of the classical Schwarz lemma.

4 A new estimate for the Takhtajan-Zograf metric

We are ready to state a new estimate of the intrinsic Eisenstein series
which is an improvement of Proposition 4.2.2 in [3]. Detailed proofs will
appear in [4]. Here we quote a lemma ( Lemma 1[5]).

Lemma 4.1. There exist a positive constant C* such that
Eo < C*E} on Q.
We are now in a position to generalize Lemma 4.1 for any ¢.

Proposition 4.2. Assume that in the family {X;}, No has the intersection
with the component attached to the cusp where the Eisenstein series Ey has
a singularity. Then there exists a positive constant C,C’ independent of t
such that

E. < CEf onN; for|t| sufficiently small, (4.1)

Ey <C'E} onN; for|t| sufficiently small. (4.2)
Applying Proposition 4.2, we can improve (i) of Theorem 1 in [3].

Theorem 4.3. For the simplicity of description, we assume that the degen-
erating family of a punctured hyperbolic surface X; has only one pinching
curve. Then there ezists a positive constant C such that the Takhtajan-
Zograf inner product has the estimate

- V< — .
o 3 = Paognt Tt 0

9

That is, we have removed , in (i) of Theorem 1 in [3].
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