Properties of q－Gaussian measures related to the isoperimetric and concentration profiles

Asuka Takatsu＊
Graduate School of Mathematics，Nagoya University

1 Introduction

This note is devoted to properties related to the isoperimetric profile and the concentra－ tion profile of a non－Gaussian probability measure，in particular q－Gaussian measures， on \mathbb{R}^{n} ．We always assume that any measure and any set are Borel．

On one hand，the isoperimetric profile of a probability measure μ on \mathbb{R}^{n} describes the relation between the volume $\mu(A)$ and the boundary measure $\mu^{+}(A):=\varliminf_{\varepsilon \downarrow 0} \mu\left[A^{\varepsilon} \backslash A\right] / \varepsilon$ of $A \subset \mathbb{R}^{n}$ ，where $A^{\varepsilon}:=\left\{x \in \mathbb{R}^{n}\left|\inf _{a \in A}\right| x-a \mid<\varepsilon\right\}$ denotes the ε－open neighborhood of A with respect to the standard Euclidean metric $|\cdot|$ ．To be precise，the isoperimetric profile $I[\mu]$ is the function on $[0,1]$ defined by

$$
I[\mu](a):=\inf \left\{\mu^{+}(A) \mid A \subset \mathbb{R}^{n} \text { with } \mu(A)=a\right\}
$$

We sometimes consider $I[\mu]$ only on $[0,1 / 2]$ since a given set and its complement may have the same boundary measure under suitable conditions．

On the other hand，the concentration profile of a probability measure μ on \mathbb{R}^{n} estimates the volume of the r－open neighborhood of sets having measure $1 / 2$ ．To be precise，the concentration profile $C[\mu]$ is the function on $[0, \infty)$ defined as

$$
C[\mu](r):=\sup \left\{1-\mu\left(A^{r}\right) \mid A \subset \mathbb{R}^{n} \text { with } \mu(A) \geq 1 / 2\right\}
$$

Note that the both profiles can be defined for a probability measure on a metric space since the definition of the both profiles depend on only a probability measure and a distance function，where we do not take advantage of the Euclidean structure．

It is usually difficult to obtain the isoperimetric profile and the concentration profile of a given probability measure，however the both profiles of the Gaussian measure are known．Here the Gaussian measure γ_{n} is an absolutely continuous measure on \mathbb{R}^{n} with density

$$
\frac{d \gamma_{n}}{d x}(x)=(2 \pi)^{-n / 2} \exp \left(-\frac{|x|^{2}}{2}\right)
$$

with respect to the Lebesgue measure．

[^0]Theorem 1.1 ([3, Theorem 3.1], [11, Corollary 1]) It holds for any $a \in[0,1]$ that

$$
I\left[\gamma_{n}\right](a)=I\left[\gamma_{1}\right](a)=G^{\prime}(\Phi(a))
$$

where Φ is the inverse function of G which is defined for $r \in \mathbb{R}$ by

$$
G(r):=\int_{-\infty}^{r}(2 \pi)^{-1 / 2} \exp \left(-\frac{s^{2}}{2}\right) d s=\gamma_{1}(-\infty, r] .
$$

Theorem 1.1 easily induces

$$
C\left[\gamma_{n}\right](r)=C\left[\gamma_{1}\right](r)=1-G(r)=\int_{r}^{\infty}(2 \pi)^{-1 / 2} \exp \left(-\frac{s^{2}}{2}\right) d s \leq \exp \left(-\frac{r^{2}}{2}\right)
$$

Since the isoperimetric profile and the concentration profile of γ_{n} are dimension free, we denote $I:=I\left[\gamma_{n}\right]$ and $C:=C\left[\gamma_{n}\right]$.

We say that a probability measure μ verifies a Gaussian isoperimetric inequality if there exists a positive constant c such that

$$
I[\mu](a) \geq c I(a)
$$

holds for any $a \in[0,1]$. Similarly, we say that a probability measure verifies a Gaussian concentration inequality if there exist positive constants c and λ such that

$$
C[\mu](r) \leq c \exp \left(-\lambda r^{2} / 2\right)
$$

holds for any $r \geq 0$. If a probability measure verifies a Gaussian isoperimetric inequality, then the probability measure also verifies a Gaussian concentration inequality, which follows from Proposition 1.2 below and the fact that there exists a positive constant c such that

$$
I(a) \geq c a \sqrt{\log 1 / a}
$$

holds for $a \in[0,1 / 2]$.
Proposition 1.2 ([6, Proposition 1.7]) For a continuous function $\sigma:[\log 2, \infty) \rightarrow$ $[0, \infty)$, let α be the inverse function of

$$
r \mapsto \int_{\log 2}^{r} \frac{1}{\widetilde{\sigma}(s)} d s, \quad \widetilde{\sigma}(s)= \begin{cases}\sigma(s) & \text { if } s \geq \log 2, \\ \sigma\left(-\log \left(1-e^{-s}\right)\right) & \text { if } s<\log 2 .\end{cases}
$$

If a probability measure μ on \mathbb{R}^{n} verifies

$$
I[\mu](a) \geq a \sigma(\log 1 / a)
$$

on $[0,1 / 2]$, then it holds for $r \geq 0$ that

$$
C[\mu](r) \leq \exp (-\alpha(r))
$$

More generally, we have the following implication from an isoperimetric inequality to a concentration inequality since the difference of the volumes between a set and its r-open neighborhood is roughly considered as an integral of the boundary measures of the t-open neighborhoods of the given set on $t \in(0, r)$.

Proposition 1.3 ([4, Corollary 2.2]) Let μ be an absolutely continuous probability measure on \mathbb{R}^{n} with respect to the Lebesgue measure. If there exists a strictly increasing, differentiable function v from an interval of \mathbb{R} to $[0,1]$ such that $I[\mu] \geq v^{\prime} \circ u$ holds on $[0,1]$, where u is the inverse function of v, then it holds for every $r>0$ that

$$
C[\mu](r) \leq 1-v(u(1 / 2)+r) .
$$

We thus find that a probability measure verifies a Gaussian concentration inequality if the probability measure verifies a Gaussian isoperimetric inequality.

There are several criteria for a probability measure to verify a Gaussian isoperimetric inequality. For example, given an absolutely continuous logarithmic concave probability measure μ on \mathbb{R}^{n} with respect to the Lebesgue measure, namely there exists a convex function $V: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ such that $d \mu(x) / d x=\exp (-V(x))$ holds on $x \in \mathbb{R}^{n}$, the following equivalent condition is known.

Theorem 1.4 ([1, Theorem 1.3]) For an absolutely continuous logarithmic concave probability measure μ on \mathbb{R}^{n} with respect to the Lebesgue measure, the followings are equivalent to each other:

- μ verifies a Gaussian isoperimetric inequality.
- μ verifies a logarithmic Sobolev inequality, that is there exists a positive constant c such that

$$
\int_{\mathbb{R}^{n}} f^{2} \log \left(f^{2}\right) d \mu-\int_{\mathbb{R}^{n}} f^{2} d \mu \log \left(\int_{\mathbb{R}^{n}} f^{2} d \mu\right) \leq c \int_{\mathbb{R}^{n}}|\nabla f|^{2} d \mu
$$

holds for every locally Lipschitz function f on \mathbb{R}^{n} with its distributional gradient ∇f.

- μ verifies a Herbst necessary condition, that is there exists a positive constant ε satisfying

$$
\int_{\mathbf{R}^{n}} \exp \left(\varepsilon|x|^{2}\right) d \mu(x)<\infty
$$

Moreover, for an absolutely continuous probability measure μ on \mathbb{R}^{n} with respect to the Lebesgue measure, if the Hessian of $-\log (d \mu / d x)$ is uniformly bounded below by some $K \in \mathbb{R}$, then verifying a Gaussian isoperimetric inequality is also equivalent to verifying a Gaussian concentration inequality. This was proved for a more general probability measure on a Riemannian manifold (see [7, Theorems 1.1, 1.2]), where the lower boundedness of the ∞-Ricci curvature is used instead of the uniform logarithmic concavity of a probability measure.

Definition 1.5 Let (M, g) be an n-dimensional complete connected Riemannian manifold without boundary and fix an arbitrary measure

$$
\omega=e^{-f} \operatorname{vol}_{g}, \quad f \in C^{\infty}(M)
$$

where vol_{g} denotes the Riemannian volume measure of (M, g). Given $N \in(-\infty, 0) \cup$ $[n, \infty]$ and $K \in \mathbb{R}$, we define the N-Ricci curvature of ω by

$$
\operatorname{Ric}_{N}^{\omega}:= \begin{cases}\operatorname{Ric}+\operatorname{Hess} f & \text { if } N=\infty \\ \operatorname{Ric}+\operatorname{Hess} f-\frac{D f \otimes D f}{N-n} & \text { if } N \in(-\infty, 0) \cup(n, \infty) \\ \operatorname{Ric}+\operatorname{Hess} f-\infty \cdot(D f \otimes D f) & \text { if } N=n\end{cases}
$$

where by convention $\infty \cdot 0=0$.
We remark that the N-Ricci curvature is originally defined only for $N \in[n, \infty]$ and if $\operatorname{Ric}_{N}^{\omega}(v, v) \geq K g(v, v)$ holds for every tangent vector v to M and for some $K \in \mathbb{R}$, $N \in[n, \infty)$ then (M, ω) behaves like a Riemannian manifold with dimension bounded above by N and Ricci curvature bounded below by K. We refer to [5],[10] and references therein for the details, and to [9] for the case of $N \in(-\infty, 0)$.

2 Probability measure on an admissible quadruple

It is known that if the ∞-Ricci curvature of ω is bounded below by some $K>0$, then ω verifies a Gaussian isoperimetric inequality and hence a Gaussian concentration inequality (for instance, see [8, Theorem 5]). It is then natural to ask what kind of an isoperimetric inequality and a concentration inequality hold for a non-Gaussian probability measure whose ∞-Ricci curvature is not bounded from below. Moreover, under a suitable condition, are the two inequalities equivalent to each other? To discuss this, we deal with the following condition (see [9, Definition 4.3], where the condition is slightly different).

Definition 2.1 We say that a quadruple $(M, \omega, \varphi, \Psi)$ is admissible if all the following conditions hold:

- M is an n-dimensional complete connected Riemannian manifold with $n \geq 2$.
- φ is a non-decreasing, positive, continuous function on $(0, \infty)$ such that

$$
\theta_{\varphi}:=\sup _{s>0}\left\{\frac{s}{\varphi(s)} \cdot \varlimsup_{\varepsilon \downarrow 0} \frac{\varphi(s+\varepsilon)-\varphi(s)}{\varepsilon}\right\} \in\left(0, \frac{n+1}{n}\right]
$$

and $\theta_{\varphi} \neq 1,3 / 2$ with $\varphi(1)=1$.

- Ψ is a function on M such that

$$
M_{\Psi}^{\varphi}:=\left\{x \in M \left\lvert\, \Psi(x) \in\left(-\int_{1}^{\infty} \frac{1}{\varphi(s)} d s,-\int_{1}^{0} \frac{1}{\varphi(s)} d s\right)\right.\right\} \neq \emptyset
$$

and $\Psi>-L_{\theta_{\varphi}}$ hold, where we set

$$
L_{\theta_{\varphi}}:= \begin{cases}\left(\theta_{\varphi}-1\right)^{-1} & \text { if } \theta_{\varphi}>1 \\ \infty & \text { if } \theta_{\varphi} \leq 1\end{cases}
$$

- ω is a positive measure on M satisfying $\operatorname{Ric}_{N}^{\omega}(v, v) \geq 0$ for $N=\left(\theta_{\varphi}-1\right)^{-1}$ and for every tangent vector v to M_{Ψ}^{φ}.

Note that if φ is differentiable, then θ_{φ} is the upper bound of the differentiable coefficient of φ. We denote by δ_{φ} the quantity corresponding to the lower bound of the differentiable coefficient of φ, that is,

$$
\delta_{\varphi}:=\inf _{s>0}\left\{\frac{s}{\varphi(s)} \cdot \varlimsup_{\varepsilon \downarrow 0} \frac{\varphi(s+\varepsilon)-\varphi(s)}{\varepsilon}\right\} .
$$

We also define the φ-exponential function by

$$
\exp _{\varphi}(\tau):=\sup \left\{t>0 \left\lvert\, \int_{1}^{t} \frac{1}{\varphi(s)} d s \leq \tau\right.\right\}
$$

where we set $\exp _{\varphi}(\tau):=0$ for $\tau \leq \int_{1}^{0} 1 / \varphi(s) d s$ by convention. Take for example, if $\varphi_{q}(s)=s^{q}$ with $q \neq 1$, then we have

$$
\exp _{q}(\tau):=\exp _{\varphi_{q}}(\tau)=(1+(1-q) \tau)_{+}^{1 /(1-q)}
$$

where we set $[\tau]_{+}:=\max \{\tau, 0\}$ and by convention $0^{a}:=\infty$ for $a<0$. Since $\exp _{q}$ recovers the usual exponential function when $q \rightarrow 1$, we set $\exp _{1}(\tau):=\exp (\tau)$.

We remark that if Ψ is K-convex for some $K>0$ on M_{Ψ}^{φ}, then we may assume that the measure $\exp _{\varphi}(-\Psi) \omega$ on an admissible quadruple $(M, \omega, \varphi, \Psi)$ is a probability measure without loss of generality (see [9, Lemma 4.5]). In this case, the probability measure $\exp _{\varphi}(-\Psi) \omega$ verifies a non-Gaussian concentration inequality. Here the K convexity of a function is roughly equivalent to that the Hessian of a function along any geodesic is bounded below by K (see [9, Definition 4.1] for the precise definition).

Proposition 2.2 ([9, Theorem 7.9]) For an admissible quadruple (M, ω, φ, Ψ), we set $\mu:=\exp _{\varphi}(-\Psi) \omega$ and $, 0:=\max \left\{1,\left\|\exp _{\varphi}(-\Psi)\right\|_{\infty}\right\}$. Suppose the K-convexity of Ψ for some $K>0$ and $\mu[M]=1$.
(i) If $\theta_{\varphi}<1$ and $\delta_{\varphi}>0$, then there exists a positive constant c_{1} depending only on θ_{φ} and δ_{φ} such that we have for any $r>0$

$$
C[\mu](r) \leq c_{1} / \exp _{\delta_{\varphi}}\left(\frac{K}{4},{ }_{0}^{\delta_{\varphi}-1} r^{2}\right)
$$

(ii) If $\theta_{\varphi} \in(1,3 / 2), \delta_{\varphi}>3\left(\theta_{\varphi}-1\right)$ and if $\omega[M]<\infty$, then there exist positive constants c_{2}, c_{3} depending only on θ_{φ} and δ_{φ} such that we have for any $r>0$

$$
C[\mu](r) \leq c_{2} \exp _{2 \theta_{\varphi}-\delta_{\varphi}}\left(-c_{3} \frac{K}{2}, \delta_{\varphi}-\theta_{\varphi} \omega[M]^{1-\theta_{\varphi}} r^{2}\right)
$$

Moreover, when $\varphi(s)=s^{q}$ and $\theta_{\varphi}=\delta_{\varphi}=q \rightarrow 1$, the two inequalities above recover a Gaussian concentration inequality.

A fundamental and important example of an admissible quadruple is $\mathbb{R}^{n}(n \geq 2)$ equipped with the Lebesgue measure and $\varphi_{q}(s)=s^{q}$ with $q \in(0,(n+1) / n]$ and $q \neq 1,3 / 2, \Psi(x)=|x|^{2} / 2$. In this case, there exists a constant $c(n, q)$ such that $1+(1-q) c(n, q)>0$ and

$$
\int_{\mathbb{R}^{n}} \exp _{q}\left(-\frac{|x|^{2}}{2}+c(n, q)\right) d x=1
$$

(see [12] and Section 3 below for the explicit value of $c(n, q)$). In addition,

$$
B_{q}^{n}:=\left\{x \in \mathbb{R}^{n} \left\lvert\, \exp _{q}\left(-\frac{|x|^{2}}{2}+c(n, q)\right)>0\right.\right\}
$$

contains the origin and is bounded (resp. unbounded) if $q<1$ (resp. $q>1$). An absolutely continuous probability measure γ_{n}^{q} on \mathbb{R}^{n} with the density

$$
\frac{d \gamma_{n}^{q}}{d x}=\exp _{q}\left(-\frac{|x|^{2}}{2}+c(n, q)\right)
$$

with respect to the Lebesgue measure is called the q-Gaussian measure. According to [9, Theorem 5.7], the q-Gaussian measure can be regarded as an extremal element among all the probability measures $\exp _{\varphi}(-\Psi) \omega$ on an admissible quadruple $(M, \omega, \varphi, \Psi)$ as well as the Gaussian measure among all the probability measures on a Riemannian manifold whose ∞-Ricci curvature is bounded from below.

In this way, it turns out that a probability measure $\exp _{\varphi}(-\Psi) \omega$ on an admissible quadruple $(M, \omega, \varphi, \Psi)$ with certain conditions verifies a non-Gaussian isoperimetric inequality characterized by $\exp _{q(\varphi)}$, where $q(\varphi)$ depends on θ_{φ} and δ_{φ}. In particular, if $\varphi(s)=s^{q}$, then $q(\varphi)=q$ holds. However, as far as the author knows, the isoperimetric inequality for such a probability measure is not available in the literature, even for the case of the q-Gaussian measure.

3 Properties of φ-Gaussian measure

In this section, we provide some properties of the q-Gaussian measure, which are related to the concentration profile and may be useful to investigate the isoperimetric profile. We first discuss the logarithmic concavity of the q-Gaussian measure.

Proposition 3.1 For any $n \in \mathbb{N}$ and any $q \in(0,(n+1) / n]$ with $q \neq 3 / 2$, define the function V_{q} on the open set

$$
B_{q}^{n}=\left\{x \in \mathbb{R}^{n} \left\lvert\, \exp _{q}\left(-\frac{|x|^{2}}{2}+c(n, q)\right)>0\right.\right\}
$$

by

$$
V_{q}(x):=-\log \left(\frac{d \gamma_{n}^{q}(x)}{d x}\right)=-\log \left(\exp _{q}\left(-\frac{|x|^{2}}{2}+c(n, q)\right)\right) .
$$

We moreover set $\lambda_{q}(n):=1+(1-q) c(n, q)>0$. Then for the smallest eigenvalue $\lambda(x)$ of the Hessian matrix of V_{q} at $x \in B_{q}^{n}$ satisfies

$$
\lambda(x) \geq \begin{cases}\frac{1}{\lambda_{q}(n)} & \text { if } q \leq 1 \tag{3.1}\\ -\frac{1}{8 \lambda_{q}(n)} & \text { if } q>1\end{cases}
$$

Proof. Consider the function on B_{q}^{n} of the form

$$
f_{q}(x):=1+(1-q)\left(-\frac{|x|^{2}}{2}+c(n, q)\right)>0 .
$$

We compute $f_{q}(0)=\lambda_{q}(n)$ and $\nabla f_{q}(x)=-(1-q) x$. It follows from the relation $V_{q}=-\log \left(f_{q}\right) /(1-q)$ that

$$
\nabla V_{q}(x)=x / f_{q}(x)
$$

moreover that the (i, j)-component of the Hessian matrix of V_{q} at x is given by

$$
(1-q) \frac{x_{i} x_{j}}{f_{q}(x)^{2}}+\frac{\delta_{i j}}{f_{q}(x)}
$$

where $\delta_{i i}=1$ and $\delta_{i j}=0$ if $i \neq j$. It is easy to check that all the eigenvalue of $\left(H_{i j}(0)\right)_{1 \leq i, j \leq n}$ are $1 / f_{q}(0)=1 / \lambda_{q}(n)$. In the case of $x \neq 0$, let $\left\{v_{k}\right\}_{k=1}^{n}$ be an orthogonal basis of \mathbb{R}^{n} with $v_{1}=x /|x|$. Then, for $k=1, \ldots, n, v_{k}$ is the eigenvector of $\left(H_{i j}(x)\right)_{1 \leq i, j \leq n}$ whose eigenvalue is

$$
\begin{equation*}
(1-q) \frac{|x|^{2} \delta_{1 k}}{f_{q}(x)^{2}}+\frac{1}{f_{q}(x)} \tag{3.2}
\end{equation*}
$$

In the case of $q \leq 1$, it follows from $f_{q} \in\left(0, \lambda_{q}(n)\right]$ that

$$
(1-q) \frac{|x|^{2}}{f_{q}(x)^{2}}+\frac{1}{f_{q}(x)} \geq \frac{1}{f_{q}(x)} \geq \frac{1}{\lambda_{q}(n)} .
$$

For $q>1$, we have $f_{q} \in\left[\lambda_{q}(n), \infty\right)$ and

$$
\frac{1}{f_{q}(x)} \geq(1-q) \frac{|x|^{2}}{f_{q}(x)^{2}}+\frac{1}{f_{q}(x)}=\frac{\lambda_{q}(n)+(1-q)|x|^{2} / 2}{\left(\lambda_{q}(n)-(1-q)|x|^{2} / 2\right)^{2}} \geq-\frac{1}{8 \lambda_{q}(n)} .
$$

This completes the proof of the proposition.

Remark 3.2 (1) Note that $\lambda_{q}(n) \rightarrow \lambda_{1}(n)=1$ as $q \rightarrow 1$, and $\lambda(x)=\lambda_{1}(n)=1$ on \mathbb{R}^{n}. On one hand, (3.1) recovers $\lambda(x) \geq 1$ as $q \nearrow 1$. On the other hand, when $q \searrow 1$, (3.1) does not recovers $\lambda(x) \geq 1$, however (3.2) recovers $\lambda(x)=1$.
(2) Given any $q \in(0,(n+1) / n]$ with $q \neq 1,3 / 2$, let $N_{q} \in(-\infty, 0) \cup(n, \infty)$ satisfy $1-q \geq 1 /\left(N_{q}-n\right)$. It then holds for any $v \in \mathbb{R}^{n}$ and $x \in B_{q}^{n}$ that

$$
\begin{aligned}
\operatorname{Hess} V_{q}(x)(v, v)-\frac{D V_{q}(x) \otimes D V_{q}(x)(v, v)}{N_{q}-n} & =(1-q) \frac{\langle v, x\rangle^{2}}{f_{q}(x)^{2}}+\frac{|v|^{2}}{f_{q}(x)}-\frac{\langle v, x\rangle^{2}}{\left(N_{q}-n\right) f_{q}(x)^{2}} \\
& \geq \frac{|v|^{2}}{f_{q}(x)} .
\end{aligned}
$$

This implies that, for $q>1$ (hence N_{q} is negative), the N_{q}-Ricci curvature of γ_{n}^{q} on \mathbb{R}^{n} equipped with the standard Euclidean metric is non-negative on the whole of \mathbb{R}^{n}, however little is known concerning a measure having the non-negative N-Ricci curvature for some negative N. For example, although a Poincaré type inequalities for γ_{n}^{q} are proved in [2], the condition $\omega(M)<\infty$ in Proposition 2.2(ii) does not hold for \mathbb{R}^{n} equipped with the Lebesgue measure and then γ_{q}^{n} may not verify a concentration inequality in terms of the q-exponential function.

On the other hand, for $q<1$, the N-Ricci curvature of γ_{n}^{q} on \mathbb{R}^{n} equipped with the standard Euclidean metric is bounded below by K on B_{q}^{n} if $N \geq n+(1-q)^{-1}$ and $K \leq 1 / f_{q}(0)$. There are many study about a measure whose N-Ricci curvature is bounded from below for some positive N, however we usually assume the positivity of a measure and the completeness of a metric space.

We finally estimate the smallest Lipchitz constant $L_{q}(n)$ of $T_{n, q}$ which pushes forward γ_{n} to γ_{n}^{q}. The existence of such a map $T_{n, q}$ is guaranteed for any $q \in(0,1)$ and $n \in \mathbb{N}$ by [13, Section 4]. To do this, set

$$
R_{q}(n):=\sup \left\{r \in \mathbb{R} \left\lvert\, \exp _{q}\left(-\frac{r^{2}}{2}+c(n, q)\right)>0\right.\right\}=\left(\frac{2 \lambda_{q}(n)}{1-q}\right)^{1 / 2}<\infty
$$

Proposition 3.3 For any $q \in(0,1)$ and $n \in \mathbb{N}$, we have

$$
\begin{aligned}
R_{q}(n)^{n+2 /(1-q)}= & \pi^{-n / 2}\left(\frac{2}{1-q}\right)^{1 /(1-q)} \Gamma\left(\frac{n}{2}+\frac{2-q}{1-q}\right) / \Gamma\left(\frac{2-q}{1-q}\right) \\
& R_{q}(n)^{2} \cdot \frac{(1-q)}{(n+2)(1-q)+2} \leq L_{q}(n)^{2}
\end{aligned}
$$

where Γ stands for the Gamma function.
Proof. The direct calculation gives

$$
\begin{aligned}
1=\int_{\mathbb{R}^{n}} d \gamma_{n}^{q}(x) & =\frac{2 \pi^{n / 2}}{\Gamma(n / 2)} \int_{0}^{R_{q}(n)} \exp _{q}\left(-\frac{r^{2}}{2}+c(n, q)\right) r^{n-1} d r \\
& =\frac{2 \pi^{n / 2}}{\Gamma(n / 2)} \lambda_{q}(n)^{1 /(1-q)} R_{q}(n)^{n} \int_{0}^{1}\left(1-s^{2}\right)^{1 /(1-q)} s^{n-1} d s \\
& =\pi^{n / 2} \lambda_{q}(n)^{1 /(1-q)} R_{q}(n)^{n} \Gamma\left(\frac{2-q}{1-q}\right) / \Gamma\left(\frac{n}{2}+\frac{2-q}{1-q}\right),
\end{aligned}
$$

which implies the first equality. Similarly, we compute

$$
\begin{aligned}
\int_{R^{n}}|x|^{2} d \gamma_{n}^{q}(x) & =\frac{n \pi^{n / 2}}{2} \lambda_{q}(n)^{1 /(1-q)} R_{q}(n)^{n+2} \Gamma\left(\frac{2-q}{1-q}\right) / \Gamma\left(\frac{n}{2}+\frac{2-q}{1-q}+1\right) \\
& =R_{q}(n)^{2} \cdot \frac{n(1-q)}{(n+2)(1-q)+2}
\end{aligned}
$$

On the other hand, by the definition of the push-forward measure, we have

$$
\int_{R^{n}}|x|^{2} d \gamma_{n}^{q}(x)=\int_{R^{n}}\left|T_{n, q}(x)\right|^{2} d \gamma_{n}(x) \leq \int_{R^{n}} L_{q}(n)^{2}|x|^{2} d \gamma_{n}(x)=n L_{q}(n)^{2} .
$$

Combining the these implies

$$
R_{q}(n)^{2} \cdot \frac{(1-q)}{(n+2)(1-q)+2} \leq L_{q}(n)^{2}
$$

From [13, Theorem 1.2] we deduce the another estimate of $L_{q}(n)$

$$
\begin{aligned}
(2 \pi)^{1 / 2} L_{q}(n) & \geq \lambda_{q}(n)^{-1 / n(1-q)}=\left(\frac{1-q}{2} R_{q}(n)^{2}\right)^{-1 / n(1-q)} \\
& =\pi^{1 / 2} R_{q}(n)\left[\Gamma\left(\frac{2-q}{1-q}\right) / \Gamma\left(\frac{n}{2}+\frac{2-q}{1-q}\right)\right]^{1 / n}
\end{aligned}
$$

where the equalities follow from the equality in Proposition 3.3. This estimate is better than the estimate in Proposition 3.3. For simplicity, let us consider the case of $n=2 k$. We then have

$$
\left(k+1+\frac{1}{1-q}\right)^{k} \geq \prod_{j=1}^{k}\left(k+1-j+\frac{1}{1-q}\right)=\Gamma\left(k+\frac{2-q}{1-q}\right) / \Gamma\left(\frac{2-q}{1-q}\right)
$$

which implies

$$
\frac{R_{q}(2 k)^{2}}{2} \frac{1-q}{(k+1)(1-q)+1} \leq \frac{R_{q}(2 k)^{2}}{2}\left[\Gamma\left(\frac{2-q}{1-q}\right) / \Gamma\left(k+\frac{2-q}{1-q}\right)\right]^{1 / k}
$$

The asymptotic behavior of $L_{q}(2 k)$ as $k \rightarrow \infty$ is unknown, however we have

$$
(2 \pi)^{1 / 2} L_{q}(2 k) \geq\left(\frac{1-q}{2} R_{q}(2 k)^{2}\right)^{-1 / 2 k(1-q)}=\pi^{1 / a_{k}}\left(\frac{2}{1-q}\right)^{1 / a_{k}} P_{k}^{-1 / a_{k}} \rightarrow 1
$$

as $k \rightarrow \infty$, where we set

$$
P_{k}:=\left[\prod_{j=1}^{k}\left(k-j+\frac{2-q}{1-q}\right)\right]^{1 / k} \in\left[1+\frac{1}{1-q}, \frac{a_{k}}{2(1-q)}\right], \quad a_{k}:=2(k(1-q)+1)
$$

It thus is enough to show $P_{k}^{-1 / a_{k}} \rightarrow 1$, or equivalently $\log P_{k}^{-1 / a_{k}} \rightarrow 0$, as $k \rightarrow \infty$. This follows from the observation that

$$
0=\lim _{k \rightarrow \infty} \frac{-1}{a_{k}} \log \frac{a_{k}}{2(1-q)} \leq \lim _{k \rightarrow \infty} \log P_{k}^{-1 / a_{k}} \leq \lim _{k \rightarrow \infty} \frac{-1}{a_{k}} \log \left(1+\frac{1}{1-q}\right)=0 .
$$

This suggests that, for $q \in(0,1)$, the family $\left\{\gamma_{n}^{q}\right\}_{n \in \mathbb{N}}$ of the q-Gaussian measures may not have the Lévy property (for instance, see [4, Section 3.3] about the definition of the Lévy property) and then suggests how difficult and interesting to investigate the asymptotic behavior of the concentration profiles of $\left\{\gamma_{n}^{q}\right\}_{n \in \mathbb{N}}$.

References

[1] S. G. Bobkov, Isoperimetric and analytic inequalities for log-concave probability measures, Ann. Probab. 27(1999), 1903-1921.
[2] S. G. Bobkov and M. Ledoux, Cauchy and other convex measures, Ann. Probab. 37(2009), 403-427.
[3] C. Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30(1975), 207-216.
[4] M. Ledoux, The concentration of measure phenomenon, American Mathematical Society, Providence, RI, 2001.
[5] J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. 169(2009), 903-991.
[6] E. Milman and S. Sodin, An isoperimetric inequality for uniformly log-concave measures and uniformly convex bodies, J. Func. Anal 254(2008), 1235-1268.
[7] E. Milman, Isoperimetric and Concentration Inequalities - Equivalence under Curvature Lower Bound, Duke Math. J. 154(2010), 207-239.
[8] F. Morgan, Manifolds with density, Notices Amer. Math. Soc. 52(2005), 853858.
[9] S. Ohta and A. Takatsu, Displacement convexity of generalized relative entropies. II, to appear in Comm. Anal. Geom. Available at arXiv:1112.5554.
[10] K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math. 196(2006), 65-131.
[11] V. N. Sudakov and B. S. Tsirel'son, Extremal properties of half-spaces for spherically invariant measures, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov.(LOMI) 41(1974), 14-24.
[12] A. Takatsu, Behaviors of φ-exponential distributions in Wasserstein geometry and an evolution equation, Preprint (2011). Available at arXiv:1109.6776.
[13] A. Takatsu, Isoperimetric profile of radial probability measures on Euclidean spaces, Preprint (2012). Available at arXiv:1212.6851.

Asuka TAKATSU
Graduate School of Mathematics, Nagoya University
Nagoya 464-8602
JAPAN
E-mail address: takatsu@math.nagoya-u.ac.jp

[^0]: ＊Supported in part by the Grant－in－Aid for Young Scientists（B） 24740042.

