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Properties of g-Gaussian measures related to
the isoperimetric and concentration profiles

Asuka Takatsu *

Graduate School of Mathematics, Nagoya University

1 Introduction

This note is devoted to properties related to the isoperimetric profile and the concentra-
tion profile of a non-Gaussian probability measure, in particular g-Gaussian measures,
on R™. We always assume that any measure and any set are Borel.

On one hand, the isoperimetric profile of a probability measure . on R™ describes the
relation between the volume u(A) and the boundary measure p* (A) := lim, , u[A°\A]/e
of A C R™, where A° := {z € R™ | inf,ca |z — a| < €} denotes the e-open neighborhood
of A with respect to the standard Euclidean metric |-|. To be precise, the isoperimetric
profile I[y] is the function on [0, 1] defined by

I[y(a) := inf {u*(A4) | A C R™ with u(A) =a}.

We sometimes consider I{u] only on [0,1/2] since a given set and its complement may
have the same boundary measure under suitable conditions.

On the other hand, the concentration profile of a probability measure x on R"
estimates the volume of the r-open neighborhood of sets having measure 1/2. To be
precise, the concentration profile C|u] is the function on [0, 00) defined as

C[u](r) :=sup{1 — u(A4") | A C R™ with u(A) >1/2}.

Note that the both profiles can be defined for a probability measure on a metric
space since the definition of the both profiles depend on only a probability measure
and a distance function, where we do not take advantage of the Euclidean structure.

It is usually difficult to obtain the isoperimetric profile and the concentration profile
of a given probability measure, however the both profiles of the Gaussian measure are
known. Here the Gaussian measure v, is an absolutely continuous measure on R™ with
density

dvn |z |2
“(z) = (2m) ™% exp | — -
Mo (2) = (2m) /2 exp (15
with respect to the Lebesgue measure.
*Supported in part by the Grant-in-Aid for Young Scientists (B) 24740042.




Theorem 1.1 ([3, Theorem 3.1], [11, Corollary 1]) It holds for any a € [0, 1] that

I[y)(a) = I[n](e) = G' (2(a))

where ® is the inverse function of G which is defined for r € R by

G(r) = [;(ZW)'l/z exp (—%2) ds = y1(~o0,7].

Theorem 1.1 easily induces

Chal(r) = Chu](r) = 1 — G(r) = / " (2m) 12 exp (_3_22) ds < exp (_"_;) |

Since the isoperimetric profile and the concentration profile of v, are dimension free,
we denote I := I[y,] and C := Cly,].

We say that a probability measure u verifies a Gaussian isoperimetric inequality if
there exists a positive constant ¢ such that

I[ul(a) 2 cl(a)

holds for any a € [0, 1]. Similarly, we say that a probability measure verifies a Gaussian
concentration inequality if there exist positive constants ¢ and A such that

Clul(r) < cexp (—Ar?/2)

holds for any r > 0. If a probability measure verifies a Gaussian isoperimetric inequal-
ity, then the probability measure also verifies a Gaussian concentration inequality,
which follows from Proposition 1.2 below and the fact that there exists a positive

constant ¢ such that
I{a) > cay/log1/a
holds for a € [0,1/2].

Proposition 1.2 ([6, Proposition 1.7]) For a continuous function o : [log2,00) —
[0,00), let a be the inverse function of

T N >
s ids 5(s) = o(s) z'fs > log 2,
o(—log(1—e7%)) ifs<log2.

log2 0(8)
If a probability measure u on R"™ verifies
I[p)(a) 2 ao(log1/a)
on [0,1/2], then it holds for r > 0 that

Clul(r) < exp(—a(r)).
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More generally, we have the following implication from an isoperimetric inequality to
a concentration inequality since the difference of the volumes between a set and its
r-open neighborhood is roughly considered as an integral of the boundary measures of
the ¢t-open neighborhoods of the given set on ¢ € (0, r).

Proposition 1.3 ([4, Corollary 2.2]) Let pu be an absolutely continuous probability mea-
sure on R™ with respect to the Lebesgue measure. If there exists a strictly increasing,
differentiable function v from an interval of R to [0,1] such that I[u] > v’ o u holds on
[0,1], where u is the inverse function of v, then it holds for every r > 0 that

Clyl(r) <1—v(u(l/2) + 7).

We thus find that a probability measure verifies a Gaussian concentration inequality if
the probability measure verifies a Gaussian isoperimetric inequality.

There are several criteria for a probability measure to verify a Gaussian isoperi-
metric inequality. For example, given an absolutely continuous logarithmic concave
probability measure p on R™ with respect to the Lebesgue measure, namely there ex-
ists a convex function V : R — (—00, 00] such that du(z)/dz = exp(—V(z)) holds on
z € R™, the following equivalent condition is known.

Theorem 1.4 ([1, Theorem 1.3]) For an absolutely continuous logarithmic concave
probability measure p on R™ with respect to the Lebesque measure, the followings are
equivalent to each other:

e 4 verifies a Gaussian isoperimetric inequality.

e u verifies a logarithmic Sobolev inequality, that is there exists a positive constant
¢ such that

2 2 2 2
[ ot )du—/knf dplog (/Rf du) SC/m V£ Py

holds for every locally Lipschitz function f on R™ with its distributional gradient
Vf.

e 4 verifies a Herbst necessary condition, that is there exists a positive constant €
satisfying

/R _exp(elaf)du() < oo.

Moreover, for an absolutely continuous probability measure x on R™ with respect to
the Lebesgue measure, if the Hessian of — log(du/dzx) is uniformly bounded below by
some K € R, then verifying a Gaussian isoperimetric inequality is also equivalent to
verifying a Gaussian concentration inequality. This was proved for a more general
probability measure on a Riemannian manifold (see [7, Theorems 1.1, 1.2]), where the
lower boundedness of the oo-Ricci curvature is used instead of the uniform logarithmic
concavity of a probability measure.
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Definition 1.5 Let (M, g) be an n-dimensional complete connected Riemannian man-
ifold without boundary and fix an arbitrary measure

w=e'vol,, feC®M),

where vol; denotes the Riemannian volume measure of (M, g). Given N € (—o0,0) U
[n,00] and K € R, we define the N-Ricci curvature of w by

Ric+ Hess f if N = oo,
Ricy := Ric+Hessf—%Q—f— if N € (—00,0) U (n,00),
Ric+Hessf —oco- (Df ® Df) if N = n,

where by convention oo - 0 = 0.

We remark that the N-Ricci curvature is originally defined only for N € [n, 0o] and
if Ricy(v,v) > Kg(v,v) holds for every tangent vector v to M and for some K € R,
N € [n,00) then (M,w) behaves like a Riemannian manifold with dimension bounded
above by N and Ricci curvature bounded below by K. We refer to [5],[10] and references
therein for the details, and to [9] for the case of N € (—o0,0).

2 Probability measure on an admissible quadruple

It is known that if the oo-Ricci curvature of w is bounded below by some K > 0,
then w verifies a Gaussian isoperimetric inequality and hence a Gaussian concentration
inequality (for instance, see [8, Theorem 5]). It is then natural to ask what kind of
an isoperimetric inequality and a concentration inequality hold for a non-Gaussian
probability measure whose oo-Ricci curvature is not bounded from below. Moreover,
under a suitable condition, are the two inequalities equivalent to each other? To discuss
this, we deal with the following condition (see [9, Definition 4.3], where the condition
is slightly different).

Definition 2.1 We say that a quadruple (M, w, o, ¥) is admissible if all the following
conditions hold:

e M is an n-dimensional complete connected Riemannian manifold with n > 2.

® ¢ is a non-decreasing, positive, continuous function on (0, co) such that

0, = sup{(p(ss) i Plste) —w(S)} c (O,n+1J

>0 €{0 € n

and 6, # 1,3/2 with (1) = 1.

e V¥ is a function on M such that

Mg = {zeM"If(x)e (‘/:o(p_(ls“)ds"/low—(ls“)ds)}ﬂ
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and ¥ > — Ly, hold, where we set

o[- e, >,
% oo if 6, < 1.

e w is a positive measure on M satisfying Ric%(v,v) > 0 for N = (6, — 1)~! and
for every tangent vector v to M.

Note that if ¢ is differentiable, then 8, is the upper bound of the differentiable coef-
ficient of . We denote by d, the quantity corresponding to the lower bound of the
differentiable coefficient of ¢, that is,

by = inf{i g Aot —cp(s)}.
5>0 | p(8) elo €

/ltﬁdng},

where we set exp,(7) := 0 for 7 < flo 1/¢(s)ds by convention. Take for example, if
pq(s) = s? with g # 1, then we have

We also define the p-exponential function by

exp,,(T) := sup {t >0

exp, () = exp,, (1) = (1 + (1 — q)7) /"2,

where we set [7], := max{7,0} and by convention 0% := oo for a < 0. Since exp,
recovers the usual exponential function when ¢ — 1, we set exp,(7) := exp(7).

We remark that if ¥ is K-convex for some K > 0 on MY, then we may assume
that the measure exp,,(—¥)w on an admissible quadruple (M,w, ¢, ¥) is a probability
measure without loss of generality (see [9, Lemma 4.5]). In this case, the probability
measure exp,,(—W)w verifies a non-Gaussian concentration inequality. Here the K-
convexity of a function is roughly equivalent to that the Hessian of a function along
any geodesic is bounded below by K (see [9, Definition 4.1] for the precise definition).

Proposition 2.2 ([9, Theorem 7.9]) For an admissible quadruple (M,w, ¢, ¥), we set
p = exp,(—V)w and ,o := max{1, || exp,(—¥)||}. Suppose the K-converity of ¥ for
some K > 0 and u[M] = 1.

(i) If6, < 1 and 6, > 0, then there exists a positive constant ¢, depending only on
0, and 6, such that we have for any r > 0

Olilr) </ exp, (. 8717).

(i) If 6, € (1,3/2), 6, > 3(0, — 1) and if w[M] < oo, then there exist positive
constants ¢y, c3 depending only on 8, and d, such that we have for any r > 0

K 5 _
C[/z](r) S C2 exp20¢_6¢ (_.03_2_,34’ Otpw[M]l—oer) .



Moreover, when ¢(s) = s? and 8, = §, = ¢ — 1, the two inequalities above recover
a Gaussian concentration inequality.

A fundamental and important example of an admissible quadruple is R™ (n > 2)
equipped with the Lebesgue measure and ¢,(s) = s? with ¢ € (0,(n + 1)/n] and
g # 1,3/2, ¥(z) = |z[>/2. In this case, there exists a constant c(n,q) such that
14+ (1—gq)e(n,q) >0 and

|z?
expy (=~ + c(n,g) |dr=1

(see [12] and Section 3 below for the explicit value of c(n,q)). In addition,

exp, (—g + ¢(n, q)) > 0}

contains the origin and is bounded (resp. unbounded) if ¢ < 1 (resp. ¢ > 1). An
absolutely continuous probability measure v on R™ with the density

dvg _ |z/?
P (‘T +elma)

B := {a:ER"

q

with respect to the Lebesgue measure is called the q-Gaussian measure. According
to [9, Theorem 5.7], the g-Gaussian measure can be regarded as an extremal el-
ement among all the probability measures exp,(—~¥)w on an admissible quadruple
(M,w,p, ¥) as well as the Gaussian measure among all the probability measures on a
Riemannian manifold whose co-Ricci curvature is bounded from below.

In this way, it turns out that a probability measure exp,(—W¥)w on an admissible
quadruple (M,w,p, ¥) with certain conditions verifies a non-Gaussian isoperimetric
inequality characterized by €XPy(,)» Where g(y) depends on 6, and J,.. In particular, if
¢(s) = s7, then ¢(¢) = ¢ holds. However, as far as the author knows, the isoperimetric
inequality for such a probability measure is not available in the literature, even for the
case of the g-Gaussian measure.

3 Properties of p-Gaussian measure

In this section, we provide some properties of the g-Gaussian measure, which are related
to the concentration profile and may be useful to investigate the isoperimetric profile.
We first discuss the logarithmic concavity of the g-Gaussian measure.

Proposition 3.1 For anyn € N and any g € (0, (n + 1)/n] with q # 3/2, define the

Junction V, on the open set
ki
] exp | —— +c(n,g) | >0

an{xER"
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Y s - g (e ().

We moreover set Ay(n) := 1+ (1—gq)c(n,q) > 0. Then for the smallest eigenvalue A(x)
of the Hessian matriz of V, at x € By satisfies

ﬁ fa<1,
Az) >4 (3.1)
1
_8/\q(n) ifg>1.

Proof. Consider the function on B} of the form

fo(z) =1+ (1—gq) (—% + ¢(n, q)) >0

We compute f,(0) = Ay(n) and Vfy(z) = —(1 — ¢)z. It follows from the relation

Ve = —log(fy)/(1 — g) that
VVy(2) = 2/ fo(x),

moreover that the (%, j)-component of the Hessian matrix of V; at z is given by

ZiT; d0sj
=076t 7oy

where 0;; = 1 and 6;; = 0 if ¢ # j. It is easy to check that all the eigenvalue of
(H:i(0))1<i j<n are 1/£,(0) = 1/A4(n). In the case of z # 0, let {v}r_; be an orthog-
onal basis of R® with v; = z/|z|. Then, for £ = 1,...,n, v, is the eigenvector of
(H;j(x))1<i,j<n Whose eigenvalue is

@2 | T@)

In the case of ¢ < 1, it follows from f, € (0, A\;(n)] that

(1- g2 L (3:2)

|z|? 1 1 1
=052t 7@ = @) = M)

For ¢ > 1, we have f, € [A\;(n),00) and

1 ff 1 Am+O-gP2 1
7@ 2 TVREE T R® T ulm) — = Qa2 S Bh()

This completes the proof of the proposition. m]
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Remark 3.2 (1) Note that \,(n) — A(n) = 1asq — 1, and A(z) = \y(n) = 1 on
R™. On one hand, (3.1) recovers A(z) > 1 as ¢ /1. On the other hand, when ¢ \, 1,
(3.1) does not recovers A(z) > 1, however (3.2) recovers A(z) = 1.
(2) Given any ¢ € (0,(n + 1)/n] with ¢ # 1,3/2, let N, € (—00,0) U (n,00) satisfy
1 —g2>1/(Ng—n). It then holds for any v € R™ and z € B? that

DVi(@) © DVy(&)(w0) _ (y _ (2 | P (v’

Hess Vq(x)(v,v) - N,—n fq(x)2 + fq((L‘) B (Nq - n)fq(x)2
|2

> I’U .

~ fo(2)
This implies that, for ¢ > 1 (hence N, is negative), the N,-Ricci curvature of ¢
on R™ equipped with the standard Euclidean metric is non-negative on the whole of
R", however little is known concerning a measure having the non-negative N-Ricci
curvature for some negative V. For example, although a Poincaré type inequalities for
74 are proved in [2], the condition w(M) < oo in Proposition 2.2(ii) does not hold for
R™ equipped with the Lebesgue measure and then Y7 may not verify a concentration
inequality in terms of the g-exponential function.

On the other hand, for ¢ < 1, the N-Ricci curvature of 42 on R" equipped with
the standard Euclidean metric is bounded below by K on B} if N > n + (1 — ¢)™*
and K < 1/f,(0). There are many study about a measure whose N-Ricci curvature is
bounded from below for some positive N, however we usually assume the positivity of
a measure and the completeness of a metric space.

We finally estimate the smallest Lipchitz constant L,(n) of T, , which pushes for-
ward 7, to v2. The existence of such a map T, , is guaranteed for any q € (0,1) and
n € N by [13, Section 4]. To do this, set

exp, (_f; + c(n, q)) > 0} = (M) v < 00.

R,(n) := sup {'r €R -

Proposition 3.3 For any q € (0,1) and n € N, we have

2 \V9_/n 2-4 2—¢q
n+2/(1-q) _ ——n/2 - -1 r{—=
R,(n) 7 (T-q) F(2+1-—q)/ (1—q>’

2 (1-9) 2

where I" stands for the Gamma function.

Proof. The direct calculation gives

2 n/2 R4(n) 2
1= / dyi(z) = T exp, (_f_ + c(n,q)) r"dr
RTL

= ﬂ)\ (n)"/O-9R (n)™ /1(1 — s?)V/(A-dgn-1gg
I'(n/2)™" ! 0

_ 2—¢q n 2—gq
— /2 1/(1—q) n — —_—
75N () Rq(n)F(l_q>/F(2+1_q),
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which implies the first equality. Similarly, we compute

n/2 2 — 2—
2009(g) = X 1/(1-q) nizp (274 oy
n(l —

m+2)(1-q)+2°

On the other hand, by the definition of the push-forward measure, we have

/Rn jafPdni(z) = /m T a(@) Pebya(2) < /Rn Lo(n)?|edya(z) = nLy(n)?.

Combining the these implies

2 (1-9) 2
Ry(n)”- mro)i-g+2 > Lq(n)"

From [13, Theorem 1.2] we deduce the another estimate of L,(n)

s (1-g ~1/n(1-0)
(@R PL0) 2 Aol o070 = (L2 2R )

- [r(5=0) /=]

where the equalities follow from the equality in Proposition 3.3. This estimate is better
than the estimate in Proposition 3.3. For simplicity, let us consider the case of n = 2k.
We then have

1 \F_ | 2—¢q 2—¢
_— > — —_—) = - -z
(repty) 2 (kvr-av 1) =r (e 30) /r(320)-

which implies

o T < r (=) /e (e =) B

The asymptotic behavior of L,(2k) as kK — oo is unknown, however we have

1/2 l1-¢ 2 k(-9 1/a 2\ —1/a,
(27T) Lq(2k) 2 TRq(Qk) = /% i—q Pk |

as k — oo, where we set

P = ['ﬁ (k—j+f—§—q)}l/k € [1+ 11q,2(1“fq)], ax = 2(k(1 — ) + 1).

—




It thus is enough to show P, Var _, 1, or equivalently log Pk_l/ * — 0, as k — oo. This

follows from the observation that

0= lim — log

-1 1
< Yar < —1 — | =
Jm 2( — ) hm log P, hr?o p” og (1+ T ) 0.

q

This suggests that, for ¢ € (0,1), the family {y2},en of the g¢-Gaussian measures may
not have the Lévy property (for instance, see [4, Section 3.3] about the definition of
the Lévy property) and then suggests how difficult and interesting to investigate the
asymptotic behavior of the concentration profiles of {72},¢n-
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