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1 Introduction
This note is devoted to properties related to the isoperimetric profile and the concentra-
tion profile of a non-Gaussian probability measure, in particular $q$-Gaussian measures,
on $\mathbb{R}^{n}$ . We always assume that any measure and any set are Borel.

On one hand, the isoperimetric profile of a probability measure $\mu$ on $\mathbb{R}^{n}$ describes the
relation between the volume $\mu(A)$ and the boundary measure $\mu^{+}(A)$ $:=\varliminf_{\downarrow 0}\mu[A^{\epsilon}\backslash A]/\epsilon$

of $A\subset \mathbb{R}^{n}$ , where $A^{\epsilon}$ $:= \{x\in \mathbb{R}^{n}|\inf_{a\in A}|x-a|<\epsilon\}$ denotes the $\epsilon$ -open neighborhood
of $A$ with respect to the standard Euclidean metric $|\cdot|$ . To be precise, the isoperimetric
profile $I[\mu]$ is the function on $[0,1]$ defined by

$I[\mu](a)$ $:= \inf\{\mu^{+}(A)|A\subset \mathbb{R}^{n}$ with $\mu(A)=a\}.$

We sometimes consider $I[\mu]$ only on $[0,1/2]$ since a given set and its complement may
have the same boundary measure under suitable conditions.

On the other hand, the concentration profile of a probability measure $\mu$ on $\mathbb{R}^{n}$

estimates the volume of the $r$-open neighborhood of sets having measure 1/2. To be
precise, the concentmtion profile $C[\mu]$ is the function on $[0, \infty)$ defined as

$C[\mu](r)$ $:= \sup\{1-\mu(A^{r})|A\subset \mathbb{R}^{n}$ with $\mu(A)\geq 1/2\}.$

Note that the both profiles can be defined for a probability measure on a metric
space since the definition of the both profiles depend on only a probability measure
and a distance function, where we do not take advantage of the Euclidean structure.

It is usually difficult to obtain the isoperimetric profile and the concentration profile
of a given probability measure, however the both profiles of the Gaussian measure are
known. Here the Gaussian measure $\gamma_{n}$ is an absolutely continuous measure on $\mathbb{R}^{n}$ with
density

$\frac{d\gamma_{n}}{dx}(x)=(2\pi)^{-n/2}\exp(-\frac{|x|^{2}}{2})$

with respect to the Lebesgue measure.
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Theorem 1.1 ([3, Theorem 3.1], [11, Corollary 1]) It holds for any $a\in[O, 1]$ that

$I[\gamma_{n}](a)=I[\gamma_{1}](a)=G’(\Phi(a))$ ,

where $\Phi$ is the inverse function of $G$ which is defined for $r\in \mathbb{R}$ by

$G(r);= \int_{-\infty}^{r}(2\pi)^{-1/2}\exp(-\frac{S^{2}}{2})ds=\gamma_{1}(-\infty, r].$

Theorem 1.1 easily induces

$C[ \gamma_{n}](r)=C[\gamma_{1}](r)=1-G(r)=l^{\infty}(2\pi)^{-1/2}\exp(-\frac{S^{2}}{2})ds\leq\exp(-\frac{r^{2}}{2})$ .

Since the isoperimetric profile and the concentration profile of $\gamma_{n}$ are dimension free,
we denote $I:=I[\gamma_{n}]$ and $C:=C[\gamma_{n}].$

We say that a probability measure $\mu$ verffies a Gaussian isoperimetric inequality if
there exists a positive constant $c$ such that

$I[\mu](a)\geq cI(a)$

holds for any $a\in[0,1]$ . Similarly, we say that a probability measure verffies a Gaussian
concentmtion inequality if there exist positive constants $c$ and $\lambda$ such that

$C[\mu](r)\leq c\exp(-\lambda r^{2}/2)$

holds for any $r\geq 0$ . If a probability measure verifies a Gaussian isoperimetric inequal-
ity, then the probability measure also verifies a Gaussian concentration inequality,
which follows from Proposition 1.2 below and the fact that there exists a positive
constant $c$ such that

$I(a)\geq ca\sqrt{\log 1}/a$

holds for $a\in[O, 1/2].$

Proposition 1.2 ([6, Proposition 1.7]) For a continuous function $\sigma$ : [log2, $\infty$) $arrow$

$[0, \infty)$ , let $\alpha$ be the inverse function of

$r \mapsto\int_{\log 2}^{r}\frac{1}{\tilde{\sigma}(s)}ds,$ $\tilde{\sigma}(s)=\{\begin{array}{ll}\sigma(s) if s\geq\log 2,\sigma(-\log(1-e^{-s})) if s<\log 2.\end{array}$

If a pmbability measure $\mu$ on $\mathbb{R}^{n}ver’ifie\mathcal{S}$

$I[\mu](a)\geq a\sigma(\log 1/a)$

on $[0,1/2]$ , then it holds for $r\geq 0$ that

$C[\mu](r)\leq\exp(-\alpha(r))$ .
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More generally, we have the following implication from an isoperimetric inequality to
a concentration inequality since the difference of the volumes between a set and its
$r$-open neighborhood is roughly considered as an integral of the boundary measures of
the $t$-open neighborhoods of the given set on $t\in(O, r)$ .

Proposition 1.3 ([4, Corollary 2.2]) Let $\mu$ be an absolutely continuous probability mea-
sure on $\mathbb{R}^{n}$ with respect to the Lebesgue measure. If there exists a strictly increasing,
differentiable function $v$ from an interval of $\mathbb{R}$ to $[0,1]$ such that $I[\mu]\geq v’ou$ holds on
$[0,1]$ , where $u$ is the inverse function of $v$ , then it holds for every $r>0$ that

$C[\mu](r)\leq 1-v(u(1/2)+r)$ .

We thus find that a probability measure verifies a Gaussian concentration inequality if
the probability measure verifies a Gaussian isoperimetric inequality.

There are several criteria for a probability measure to verify a Gaussian isoperi-
metric inequality. For example, given an absolutely continuous logarithmic concave
probability measure $\mu$ on $\mathbb{R}^{n}$ with respect to the Lebesgue measure, namely there ex-
ists a convex function $V$ : $\mathbb{R}^{n}arrow(-\infty, \infty] such that d\mu(x)/dx=\exp(-V(x))$ holds on
$x\in \mathbb{R}^{n}$ , the following equivalent condition is known.

Theorem 1.4 ([1, Theorem 1.3]) For an absolutely continuous logarithmic $\omega ncave$

probability measure $\mu$ on $\mathbb{R}^{n}$ with respect to the Lebesgue measure, the follovnngs are
equivalent to each other.$\cdot$

$\bullet$

$\mu$ verifies a Gaussian isoperimetric inequality.

$\bullet$

$\mu$ verifies a logarithmic Sobolev inequality, that is there exists a positive constant
$c$ such that

$\int_{\mathbb{R}^{n}}f^{2}\log(f^{2})d\mu-\int_{R^{n}}f^{2}d\mu\log(\int_{\mathbb{R}^{n}}f^{2}d\mu)\leq c\int_{R^{n}}|\nabla f|^{2}d\mu$

holds for every locally Lipschitz function $f$ on $\mathbb{R}^{n}$ with its distri bution $al$ gmdient
$\nabla f.$

$\bullet$

$\mu$ verifies a Herbst necessary $\omega$ndition, that is there exists a positive constant $\epsilon$

satisfying
$\int_{R^{n}}\exp(\epsilon|x|^{2})d\mu(x)<\infty.$

Moreover, for an absolutely continuous probability measure $\mu$ on $\mathbb{R}^{n}$ with respect to
the Lebesgue measure, if the Hessian $of-\log(d\mu/dx)$ is uniformly bounded below by
some $K\in \mathbb{R}$ , then verifying a Gaussian isoperimetric inequality is also equivalent to
verifying a Gaussian concentration inequality. This was proved for a more general
probability measure on a Riemannian manifold (see [7, Theorems 1.1, 1.2]), where the
lower boundedness of the $\infty$-Ricci curvature is used instead of the uniform logarithmic
concavity of a probability measure.
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Definition 1.5 Let $(M, g)$ be an $n$-dimensional complete connected Riemannian man-
ifold without boundary and fix an arbitrary measure

$\omega=e^{-f}vo1_{g}, f\in C^{\infty}(M)$ ,

where $vo1_{g}$ denotes the Riemannian volume measure of $(M, g)$ . Given $N\in(-\infty, 0)\cup$

$[n, \infty]$ and $K\in \mathbb{R}$ , we define the $N$ -Ricci curvature of $\omega$ by

$Ric_{N}^{\omega}:=\{\begin{array}{ll}Ric+Hessf if N=\infty,Ric+Hessf-\frac{Df\otimes Df}{N-n} if N\in(-\infty, 0)\cup(n, \infty) ,Ric+Hessf-\infty\cdot(Df\otimes Df) if N=n,\end{array}$

where by convention $\infty\cdot 0=0.$

We remark that the $N$-Ricci curvature is originally defined only for $N\in[n, \infty]$ and
if $Ric_{N}^{\omega}(v, v)\geq Kg(v, v)$ holds for every tangent vector $v$ to $M$ and for some $K\in \mathbb{R},$

$N\in[n, \infty)$ then $(M,\omega)$ behaves like a Riemannian manifold with dimension bounded
above by $N$ and Ricci curvature bounded below by $K$ . We refer to [5],[10] and references
therein for the details, and to [9] for the case of $N\in(-\infty, 0)$ .

2 Probability measure on an admissible quadruple
It is known that if the $\infty$-Ricci curvature of $\omega$ is bounded below by some $K>0,$
then $\omega$ verffies a Gaussian isoperimetric inequality and hence a Gaussian concentration
inequality (for instance, see [8, Theorem 5]). It is then natural to ask what kind of
an isoperimetric inequality and a concentration inequality hold for a non-Gaussian
probability measure whose $\infty$-Ricci curvature is not bounded from below. Moreover,
under a suitable condition, are the two inequalities equivalent to each other? To discuss
this, we deal with the following condition (see [9, Definition 4.3], where the condition
is slightly different).

Definition 2.1 We say that a quadruple $(M,\omega, \varphi, \Psi)$ is admissible if all the following
conditions hold:

$\bullet$ $M$ is an $n$-dimensional complete connected Riemannian manifold with $n\geq 2.$

$\bullet$
$\varphi$ is a non-decreasing, positive, continuous function on $(0, \infty)$ such that

$\theta_{\varphi}:=\sup_{s>0}\{\frac{s}{\varphi(s)}\cdot\varlimsup_{\epsilon\downarrow 0}\frac{\varphi(s+\epsilon)-\varphi(s)}{\epsilon}\}\in(0, \frac{n+1}{n}]$

and $\theta_{\varphi}\neq 1,3/2$ with $\varphi(1)=1.$

$\bullet$
$\Psi$ is a function on $M$ such that

$M_{\Psi}^{\varphi}:= \{x\in M \Psi(x)\in(-\int_{1}^{\infty}\frac{1}{\varphi(s)}ds, -\int^{0}\frac{1}{\varphi(s)}ds)\}\neq\emptyset$
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and $\Psi>-L_{\theta_{\varphi}}$ hold, where we set

$L_{\theta_{\varphi}};=\{\begin{array}{ll}(\theta_{\varphi}-1)^{-1} if \theta_{\varphi}>1,\infty if \theta_{\varphi}\leq 1.\end{array}$

$\bullet$ $\omega$ is a positive measure on $M$ satisfying $Ric_{N}^{\omega}(v, v)\geq 0$ for $N=(\theta_{\varphi}-1)^{-1}$ and
for every tangent vector $v$ to $M_{\Psi}^{\varphi}.$

Note that if $\varphi$ is differentiable, then $\theta_{\varphi}$ is the upper bound of the differentiable coef-
ficient of $\varphi$ . We denote by $\delta_{\varphi}$ the quantity corresponding to the lower bound of the
differentiable coefficient of $\varphi$ , that is,

$\delta_{\varphi}:=\inf_{s>0}\{\frac{s}{\varphi(s)}\cdot\varlimsup_{\epsilon\downarrow 0}\frac{\varphi(s+\epsilon)-\varphi(s)}{\epsilon}\}.$

We also define the $\varphi$ -exponential function by

$\exp_{\varphi}(\tau) :=\sup\{t>0 l^{t}\frac{1}{\varphi(s)}ds\leq\tau\},$

where we set $\exp_{\varphi}(\tau)$ $:=0$ for $\tau\leq\int_{1}^{0}1/\varphi(s)ds$ by convention. Take for example, if
$\varphi_{q}(s)=s^{q}$ with $q\neq 1$ , then we have

$\exp_{q}(\tau) :=\exp_{\varphi_{q}}(\tau)=(1+(1-q)\tau)_{+}^{1/(1-q)},$

where we set $[ \tau]_{+};=\max\{\tau, 0\}$ and by convention $0^{a}$ $:=\infty$ for $a<0$ . Since $\exp_{q}$

recovers the usual exponential function when $qarrow 1$ , we set $\exp_{1}(\tau)$ $:=\exp(\tau)$ .
We remark that if $\Psi$ is $K$-convex for some $K>0$ on $M_{\Psi}^{\varphi}$ , then we may assume

that the measure $\exp_{\varphi}(-\Psi)\omega$ on an admissible quadruple $(M,\omega, \varphi, \Psi)$ is a probability
measure without loss of generality (see [9, Lemma 4.5]). In this case, the probability
measure $\exp_{\varphi}(-\Psi)\omega$ verifies a non-Gaussian concentration inequality. Here the $K$-

convexity of a function is roughly equivalent to that the Hessian of a function along
any geodesic is bounded below by $K$ (see [9, Definition 4.1] for the precise definition).

Proposition 2.2 ([9, Theorem 7.9]) For an admissible quadruple $(M,\omega, \varphi, \Psi)$ , we set
$\mu:=\exp_{\varphi}(-\Psi)\omega$ and, $0:= \max\{1, \Vert\exp_{\varphi}(-\Psi)\Vert_{\infty}\}$ . Suppose the $K$-convexity of $\Psi$ for
some $K>0$ and $\mu[M]=1.$

(i) If $\theta_{\varphi}<1$ and $\delta_{\varphi}>0$, then there exists a positive constant $c_{1}$ depending only on
$\theta_{\varphi}$ and $\delta_{\varphi}$ such that we have for any $r>0$

$C[ \mu](r)\leq c_{1}/\exp_{\delta_{\varphi}}(\frac{K}{4},0^{\varphi}\delta-1r^{2})$ .

(ii) If $\theta_{\varphi}\in(1,3/2),$ $\delta_{\varphi}>3(\theta_{\varphi}-1)$ and if $\omega[M]<\infty$ , then there $e\dot{m}t$ positive
constants $c_{2},$ $c_{3}$ depending only on $\theta_{\varphi}$ and $\delta_{\varphi}$ such that we have for any $r>0$

$C[p](r)\leq c_{2}\exp_{2\theta_{\varphi}-\delta_{\varphi}}(-c_{3_{0}^{\frac{K}{2},\omega[M]^{1-\theta_{\varphi}}r^{2})}}^{\delta_{\varphi}-\theta_{\varphi}}.$
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Moreover, when $\varphi(s)=s^{q}$ and $\theta_{\varphi}=\delta_{\varphi}=qarrow 1$ , the two inequalities above recover
a Gaussian concentmtion inequality.

A fundamental and important example of an admissible quadruple is $\mathbb{R}^{n}(n\geq 2)$

equipped with the Lebesgue measure and $\varphi_{q}(s)=s^{q}$ with $q\in(0, (n+1)/n]$ and
$q\neq 1,3/2,$ $\Psi(x)=|x|^{2}/2$ . In this case, there exists a constant $c(n, q)$ such that
$1+(1-q)c(n, q)>0$ and

$\int_{\mathbb{R}^{n}}\exp_{q}(-\frac{|x|^{2}}{2}+c(n, q))dx=1$

$(see [12] and$ Section $3$ below $for the$ explicit value $of c(n, q)$ ). In addition,

$B_{q}^{n}:= \{x\in \mathbb{R}^{n} \exp_{q}(-\frac{|x|^{2}}{2}+c(n, q))>0\}$

contains the origin and is bounded (resp. unbounded) if $q<1$ (resp. $q>1$ ). An
absolutely continuous probability measure $\gamma_{n}^{q}$ on $\mathbb{R}^{n}$ with the density

$\frac{d\gamma_{n}^{q}}{dx}=\exp_{q}(-\frac{|x|^{2}}{2}+c(n, q))$

with respect to the Lebesgue measure is called the $q$ -Gaussian measure. According
to [9, Theorem 5.7], the $q$-Gaussian measure can be regarded as an extremal el-
ement among all the probability measures $\exp_{\varphi}(-\Psi)\omega$ on an admissible quadruple
$(M, \omega, \varphi, \Psi)$ as well as the Gaussian measure among all the probability measures on a
Riemannian manifold whose $\infty$-Ricci curvature is bounded from below.

In this way, it turns out that a probability measure $\exp_{\varphi}(-\Psi)\omega$ on an admissible
quadruple $(M,\omega, \varphi, \Psi)$ with certain conditions verifies a non-Gaussian isoperimetric
inequality characterized by $\exp_{q(\varphi)}$ , where $q(\varphi)$ depends on $\theta_{\varphi}$ and $\delta_{\varphi}$ . In particular, if
$\varphi(s)=s^{q}$ , then $q(\varphi)=q$ holds. However, as far as the author knows, the isoperimetric
inequality for such a probability measure is not available in the literature, even for the
case of the $q$-Gaussian measure.

3 Properties of $\varphi$-Gaussian measure
In this section, we provide some properties of the $q$-Gaussian measure, which are related
to the concentration profile and may be useful to investigate the isoperimetric profile.
We first discuss the logarithmic concavity of the $q$-Gaussian measure.

Proposition 3.1 For any $n\in \mathbb{N}$ and any $q\in(0, (n+1)/n]$ with $q\neq 3/2$ , define the
function $V_{q}$ on the open set

$B_{q}^{n}= \{x\in \mathbb{R}^{n} \exp_{q}(-\frac{|x|^{2}}{2}+c(n, q))>0\}$
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$by$

$V_{q}(x):=- \log(\frac{d\gamma_{n}^{q}(x)}{dx})=-\log(\exp_{q}(-\frac{|x|^{2}}{2}+c(n, q)))$ .

We moreover set $\lambda_{q}(n):=1+(1-q)c(n, q)>0$ . Then for the smallest eigenvalue $\lambda(x)$

of the Hessian $mat\dot{m}$ of $V_{q}$ at $x\in B_{q}^{n}$ satisfies

$\lambda(x)\geq\{\begin{array}{ll}\frac{1}{\lambda_{q}(n)} if q\leq 1,-\frac{1}{8\lambda_{q}(n)} if q>1.\end{array}$ (3.1)

Pmof. Consider the function on $B_{q}^{n}$ of the form

$f_{q}(x):=1+(1-q)(- \frac{|x|^{2}}{2}+c(n, q))>0.$

We compute $f_{q}(0)=\lambda_{q}(n)$ and $\nabla f_{q}(x)=-(1-q)x$ . It follows from the relation
$V_{q}=-\log(f_{q})/(1-q)$ that

$\nabla V_{q}(x)=x/f_{q}(x)$ ,

moreover that the $(i,j)$-component of the Hessian matrix of $V_{q}$ at $x$ is given by

$(1-q) \frac{x_{i}x_{j}}{f_{q}(x)^{2}}+\frac{\delta_{ij}}{f_{q}(x)},$

where $\delta_{ii}=1$ and $\delta_{ij}=0$ if $i\neq j$ . It is easy to check that all the eigenvalue of
$(H_{ij}(0))_{1\leq i,j\leq n}$ are $1/f_{q}(0)=1/\lambda_{q}(n)$ . In the case of $x\neq 0$ , let $\{v_{k}\}_{k=1}^{n}$ be an orthog-
onal basis of $\mathbb{R}^{n}$ with $v_{1}=x/|x|$ . Then, for $k=1,$ $\ldots,$ $n,$ $v_{k}$ is the eigenvector of
$(H_{ij}(x))_{1\leq i,j\leq n}$ whose eigenvalue is

$(1-q) \frac{|x|^{2}\delta_{1k}}{f_{q}(x)^{2}}+\frac{1}{f_{q}(x)}$ . (3.2)

In the case of $q\leq 1$ , it follows from $f_{q}\in(0, \lambda_{q}(n)]$ that

$(1-q) \frac{|x|^{2}}{f_{q}(x)^{2}}+\frac{1}{f_{q}(x)}\geq\frac{1}{f_{q}(x)}\geq\frac{1}{\lambda_{q}(n)}.$

For $q>1$ , we have $f_{q}\in[\lambda_{q}(n), \infty)$ and

$\frac{1}{f_{q}(x)}\geq(1-q)\frac{|x|^{2}}{f_{q}(x)^{2}}+\frac{1}{f_{q}(x)}=\frac{\lambda_{q}(n)+(1-q)|x|^{2}/2}{(\lambda_{q}(n)-(1-q)|x|^{2}/2)^{2}}\geq-\frac{1}{8\lambda_{q}(n)}.$

This completes the proof of the proposition. $\square$
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Remark 3.2 (1) Note that $\lambda_{q}(n)arrow\lambda_{1}(n)=1$ as $qarrow 1$ , and $\lambda(x)=\lambda_{1}(n)=1$ on
$\mathbb{R}^{n}$ . On one hand, (3.1) recovers $\lambda(x)\geq 1$ as $q\nearrow 1$ . On the other hand, when $q\searrow 1,$

(3.1) does not recovers $\lambda(x)\geq 1$ , however (3.2) recovers $\lambda(x)=1.$

(2) Given any $q\in(0, (n+1)/n]$ with $q\neq 1,3/2$ , let $N_{q}\in(-\infty, 0)\cup(n, oo)$ satisfy
$1-q\geq 1/(N_{q}-n)$ . It then holds for any $v\in \mathbb{R}^{n}$ and $x\in B_{q}^{n}$ that

$HessV_{q}(x)(v, v)-\frac{DV_{q}(x)\otimes DV_{q}(x)(v,v)}{N_{q}-n}=(1-q)\frac{\langle v,x\rangle^{2}}{f_{q}(x)^{2}}+\frac{|v|^{2}}{f_{q}(x)}-\frac{\langle v,x\rangle^{2}}{(N_{q}-n)f_{q}(x)^{2}}$

$\geq\frac{|v|^{2}}{f_{q}(x)}.$

This implies that, for $q>1$ (hence $N_{q}$ is negative), the $N_{q}$-Ricci curvature of $\gamma_{n}^{q}$

on $\mathbb{R}^{n}$ equipped with the standard Euclidean metric is non-negative on the whole of
$\mathbb{R}^{n}$ , however little is known conceming a measure having the non-negative $N$-Ricci
curvature for some negative $N$ . For example, although a Poincar\’e type inequalities for
$\gamma_{n}^{q}$ are proved in [2], the condition $\omega(M)<\infty$ in Proposition 2.2(ii) does not hold for
$\mathbb{R}^{n}$ equipped with the Lebesgue measure and then $\gamma_{q}^{n}$ may not verify a concentration
inequality in terms of the $q$-exponential function.

On the other hand, for $q<1$ , the $N$-Ricci curvature of $\gamma_{n}^{q}$ on $\mathbb{R}^{n}$ equipped with
the standard Euclidean metric is bounded below by $K$ on $B_{q}^{n}$ if $N\geq n+(1-q)^{-1}$

and $K\leq 1/f_{q}(0)$ . There are many study about a measure whose $N$-Ricci curvature is
bounded from below for some positive $N$ , however we usually assume the positivity of
a measure and the completeness of a metric space.

We finally estimate the smallest Lipchitz constant $L_{q}(n)$ of $T_{n,q}$ which pushes for-
ward $\gamma_{n}$ to $\gamma_{n}^{q}$ . The existence of such a map $T_{n,q}$ is guaranteed for any $q\in(0,1)$ and
$n\in \mathbb{N}$ by [13, Section 4]. To do this, set

$R_{q}(n):= \sup\{r\in \mathbb{R} \exp_{q}(-\frac{r^{2}}{2}+c(n, q))>0\}=(\frac{2\lambda_{q}(n)}{1-q})^{1/2}<\infty.$

Proposition 3.3 For any $q\in(0,1)$ and $n\in \mathbb{N}$ , we have

$R_{q}(n)^{n+2/(1-q)}= \pi^{-n/2}(\frac{2}{1-q})^{1/(1-q)}\Gamma(\frac{n}{2}+\frac{2-q}{1-q})/\Gamma(\frac{2-q}{1-q})$ ,

$R_{q}(n)^{2} \cdot\frac{(1-q)}{(n+2)(1-q)+2}\leq L_{q}(n)^{2},$

where $\Gamma$ stands for the Gamma function.
Proof. The direct calculation gives

$1= \int_{\mathbb{R}^{n}}d\gamma_{n}^{q}(x)=\frac{2\pi^{n/2}}{\Gamma(n/2)}\int_{0}^{R_{q}(n)}\exp_{q}(-\frac{r^{2}}{2}+c(n, q))r^{n-1}dr$

$= \frac{2\pi^{n/2}}{\Gamma(n/2)}\lambda_{q}(n)^{1/(1-q)}R_{q}(n)^{n}\int_{0}^{1}(1-\mathcal{S}^{2})^{1/(1-q)}s^{n-1}d_{\mathcal{S}}$

$= \pi^{n/2}\lambda_{q}(n)^{1/(1-q)}R_{q}(n)^{n}\Gamma(\frac{2-q}{1-q})/\Gamma(\frac{n}{2}+\frac{2-q}{1-q})$ ,
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which implies the first equality. Similarly, we compute

$\int_{R^{n}}|x|^{2}d\gamma_{n}^{q}(x)=\frac{n\pi^{n/2}}{2}\lambda_{q}(n)^{1/(1-q)}R_{q}(n)^{n+2}\Gamma(\frac{2-q}{1-q})/\Gamma(\frac{n}{2}+\frac{2-q}{1-q}+1)$

$=R_{q}(n)^{2} \cdot\frac{n(1-q)}{(n+2)(1-q)+2}$

On the other hand, by the definition of the push-forward measure, we have

$\int_{R^{n}}|x|^{2}d\gamma_{n}^{q}(x)=\int_{R^{n}}|T_{n,q}(x)|^{2}d\gamma_{n}(x)\leq\int_{R^{n}}L_{q}(n)^{2}|x|^{2}d\gamma_{n}(x)=nL_{q}(n)^{2}.$

Combining the these implies

$R_{q}(n)^{2} \cdot\frac{(1-q)}{(n+2)(1-q)+2}\leq L_{q}(n)^{2}.$

$\square$

From [13, Theorem 1.2] we deduce the another estimate of $L_{q}(n)$

$(2 \pi)^{1/2}L_{q}(n)\geq\lambda_{q}(n)^{-1/n(1-q)}=(\frac{1-q}{2}R_{q}(n)^{2})^{-1/n(1-q)}$

$= \pi^{1/2}R_{q}(n)[\Gamma(\frac{2-q}{1-q})/\Gamma(\frac{n}{2}+\frac{2-q}{1-q})]^{1/n}$

where the equalities follow from the equality in Proposition 3.3. This estimate is better
than the estimate in Proposition 3.3. For simplicity, let us consider the case of $n=2k.$

We then have

$(k+1+ \frac{1}{1-q})^{k}\geq\prod_{j=1}^{k}(k+1-j+\frac{1}{1-q})=\Gamma(k+\frac{2-q}{1-q})/\Gamma(\frac{2-q}{1-q})$ ,

which implies

$\frac{R_{q}(2k)^{2}1-q}{2(k+1)(1-q)+1}\leq\frac{R_{q}(2k)^{2}}{2}[\Gamma(\frac{2-q}{1-q})/\Gamma(k+\frac{2-q}{1-q})]^{1/k}$

The asymptotic behavior of $L_{q}(2k)$ as $karrow\infty$ is unknown, however we have

$(2 \pi)^{1/2}L_{q}(2k)\geq(\frac{1-q}{2}R_{q}(2k)^{2})^{-1/2k(1-q)}=\pi^{1/a_{k}}(\frac{2}{1-q})^{1/a_{k}}P_{k}^{-1/a_{k}}arrow 1$

as $karrow\infty$ , where we set

$P_{k}:=[ \prod_{=1}^{k}(k-j+\frac{2-q}{1-q})]^{1/k}\in[1+\frac{1}{1-q},$ $\frac{a_{k}}{2(1-q)}],$ $a_{k}:=2(k(1-q)+1)$ .
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It thus is enough to show $P_{k}^{-1/a_{k}}arrow 1$ , or equivalently $\log P_{k}^{-1/a_{k}}arrow 0$ , as $karrow\infty$ . This
follows from the observation that

$0= \lim_{karrow\infty}\frac{-1}{a_{k}}\log\frac{a_{k}}{2(1-q)}\leq\lim_{karrow\infty}\log P_{k}^{-1/a_{k}}\leq\lim_{karrow\infty}\frac{-1}{a_{k}}\log(1+\frac{1}{1-q})=0.$

This suggests that, for $q\in(O, 1)$ , the family $\{\gamma_{n}^{q}\}_{n\in \mathbb{N}}$ of the $q$-Gaussian measures may
not have the L\’evy property (for instance, see [4, Section 3.3] about the definition of
the L\’evy property) and then suggests how difficult and interesting to investigate the
asymptotic behavior of the concentration profiles of $\{\gamma_{n}^{q}\}_{n\in \mathbb{N}}.$
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