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Abstract

We consider an array of 1D and 2D rectilinear time-dependent charge distributions and evaluate their respective associated
electric fields along specific directions. We then place a loose point-like charged particle in designated respective fields. The-
equation describing the motion of the charged particle in each case is a challenging ODE. Applying a Computer Algebra
System such as Mathematica [1] we solve the equations numerically. Utilizing these solutions we analyze their relevant
kinematic quantities. For a comprehensive understanding we simulate the motions.

keywords: Time-dependent Charge Distributions, Motion of a Charged Particle in a Time-dependent Electric Field,
Numeric Solutions of ODEs, Mathematica.

=® Introduction and Motivation

The electrostatic interaction of two point-like charged particles is nonlinear. The motion of a loose charge in the field of a
second static charge is described with a nonlinear ODE. Traditionally one attempts solving the equation analytically. Even in
this “trivial” case the solution is challenging. Generalizations of this scenario based on the two-body problem aggressively
are demanding. Furthermore, the equation of motion describing the movement of a charge in a time-dependent electric field
generated by a second stationary charge distributions are aggressively complicated. The classic approach calls to search for
analytic solutions. Although the goal is respectfully appreciative, 1) the majority of the cases the equations are not solvable
2) attempting to seek analytic solutions derails the focus and objectives of the physics of the problems, and 3) these attempts
hamper the rate of scholarly production. In this article the author utilizes a Computer Algebra System, Mathematica and
maps out a systematic approach of overcoming the aforementioned problematic issues. Beginning with a two-body point-like
charged particles systematically the scenarios are generalized. For each scenario, 1) a problem is posed, 2) a solution is
offered, 3) kinematics of the motion is analyzed,and finally4) the motions are simulated for comprehensive understanding.
Effectively, the entire work that is composed of text, symbolic and numeric computation, graphs and simulations are compiled
in one single file. This article is composed of eight sections and a few subsections. The articles closes with a few cancluding
remarks.

u Section 1
Case la. A two-body point-like charge-charge interaction

The problem is posed: 1) Consider a stationary point-like charged particle. Release a loose secondary charged particle in the
field of the former. Assuming the charges are identical in “sign™ determine the kinematics of the loose particle. 2) Repeat

the scenario assuming the charge of the stationary particle is time-dependent and fluctuates with respect to time according to
a sinusoidal function.

® Solution: In order to form the equation of motion for the loose particle we apply Newton’s second law, F = m a. The force

acting on the loose particle is F =g E, where the field of the stationary point charge Q is E =k Qo/xz, in SI units
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2 . . k .
k=90x10° N?m- Designating the acceleration by a = x and for the sake of simplicity we set —Q';Zﬁ = 1. The equation of
motion becomes,

x-—=0

(1)
©

To solve (1) symbolically we apply Mathematica,
nft)= eqxl = x''[t] - —;
x[t]?

nizZl= soll = DSolve[eqgxl == 0, x[t], t]

cr1)
1

2
Out[2= Solve[ WLOQ 1-1Ccl1] +\/C[1] Ccl[1] - Ie] x[t]} + == (t+C[2])2,

X[t] ]
Mathematica fails to solve (1) symbolically. We then try solving numerically; this requires two initial conditions. Assuming
the loose particle begins at rest, {x(0}, x(0} = {1, 0} we write,
ing]= solxll = NDSolve[{eqxl == 0, x[0] == 1., x"' [0] =0}, x[t], {t, 0, 2.}];
Table 1 is the tabulated values of the time and ﬁe position.

in4= tabxll = TableForm[Table[{t, x[t] /. solx11l}, {t, 0, 2.0, 0.2}],
TableHeadings -» {None, {"t,s", "x[t]"}}];

Although the solution of the position vs. time is given numerically, Mathematica allows differentiating the equation with
respect to time to evaluate the corresponding velocity and acceleration. These solutions are shown in the corresponding plots.
nisj= {veloeityll, accelerationll} = {D[x[t] /. solxll, {t, 1}]1, D{x[t] /. solxll, {t, 2}]1};

ingl= plotvelocityll = Plot[velocityll, {t, 0, 2.},
PlotStyle » {Thick, Red}, AxesLabel -» {"t,s", "v,m/s"}, GridLines - Automatic];

n7]= plotaccelerationll = Plot[accelerationll, {t, 0, 2.},

PlotStyle » {Thick, Green}, AxesLabel - ”'t,s" , "a,m/s? "}, GridLines -» Automatic];

ngl= plotxll = Plot[x[t] /. solxll, (t, 0, 2.},
PlotStyle -» Thick, AxesLabel » {"t,s", "x,m" }, GridLines - Automatic];

Plots of these three quantities are shown in Fig 1.

nfe}= GraphicsGrid[{{plotxll, plotvelocityll, plotaccelerationll}}, ImageSize - 500]

Qut[9)=

m Case 1b. For the oscillating stationary charge we consider Q(f) = Qp Cos[2 7 ft]. Conveniently we set the frequency
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f =35Hz. This low frequency makes the oscillations visibly traceable. As in the previous case, we set ﬁi—"i =1. The

equation of motion for a set if initial conditions, {x(0), x(0)} = {0.5, 0} becomes,
Cosf{2nft]
njioj= £=5.; eqlf = x'"'[t] - e o
x[t)?
n1}= solx1l1lf = NDSolve[{eqlf == 0, x[0] == 0.5(%«1.0«), x'[0] == 0}, x[t], {t, 0, 4.}];
Figure 2 is the corresponding display of the associated kinematics.

ni12}= plotx1lf = Plot[x[t] /. solx1llf, {t, 0, 4.},
PlotStyle -» Thick, AxesLabel » {"t,s", "x,m"}, GridLines -» Automatic];

ni3)= {velocityllf, accelerationllf} = {D[x[t] /. solx1llf, {t, 1}], D[x[t] /. solx1lf, {t, 2}1};

in14)- plotvelocityllf = Plot[velocityllf, (¢, 0, 4.},
PlotStyle » {Thick, Red}, AxesLabel -» {"t,s”, "v,m/s8"}, GridLines -» Automatic];

in(15)= plotaccelerationllf = Plot[accelotationllf, {t;0, 4.},

PlotStyle » (Thick, Green}, AxesLabel » {"t,s", "a,n/sz"}, ‘GridLines - Automatic] ;

in[t6]= GraphicsGrid[{{plotxl1lf, plotvelocityllf, plotaccelerationllf}}, ImageSize » 500]

Out{16}=

Figure 2. Display of the position, velocity and acceleration for Q(f) = K Qo g Cos(2 7 f 1)

For a comprehensive and visual understanding we simulate the corresponding motion. Note the color of the fixed charge

changes accordingly.
nj17}= plotPointCharge := Graphics[{Hue[Cos[2nft]], Disk[{0, 0}, 0.02]}];
n{is]= plotXaxis = Graphics[{Thin, Line[{(0, 0}, {1, 0}}]}];

n[19)= Manipulate([{Show[{plotXaxis, plotPointCharge /. t » ¢,
Graphics[{Red, Disk({x[t] /. solx11£[1] /. t » z, 0}, 0.02]}]}, ImageSize -+ 200],
plotx11£}, {{z, 0, "t"}, 0, 4, 0.025}]

LH]

out[19)=
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| Case 2. We consider a charged line and a point-like loose charge

The source of the static charge is a line of length £. Applying basic principles [2] yields the electric field along the extension

. _ 5 D
of the line, E(x) =k .

One may plot the E(x) vs. x e.g. ¢ = 0.5 m.
niz0)= EfieldStarightLine(x ] =1/ (x(x-/¢)) /. {->0.5;

n21)= Plot[EfieldStarightLine([x], {x, (/+0.1) /. ¢ ->0.5, (/+3.0) /. ¢ ->0.5},
PlotStyle -» Thick, AxesLabel » {"x,m", "E_field, N/C"}, GridLines - Automatic];

The equation of motion of a loose charged particle with charge q is,

kQog 1

m  x(x—{) -

X -

0 2)

Here again we set Qr:q = 1. This equation numerically can be solved according to the procedure explained in the previous

case. The author skipped this sets and leaves the exercise to interested reader.

For the time-dependent case we replace K g Qo/m with (K g Qo/m) Cos(2 n f t) and form its equation of motion. For visual
clarity we de-magnify the numeric coefficient by a factor of 0.4.

kQoq
in[22}= values = {l -> 0.5, 6§ -> 0.25,

»1.0, f-»s.};
m

kQoq
ne= egqx2 = x''[t] -0.4 [ 2 ] (EfieldStarightLine[x] /. x » x[t]) Cos[2nft] //. values;

in[24)= solx2 = NDSolve[{eqx2 == 0, x[0] ==0.6, x'[0] =0}, x[t], {t, 0, 2.0}];

n[25]= plot2 = Plot[x[t] /. solx2, {t, 0, 2.0}, PlotStyle -» Thick,
AxesLabel -» {"t,s", "x,m"}, GridLines -» Automatic, PlotRange - All];

We evaluate the velocity and the acceleration of the loose, mobile charge, and compare them to the previous case.
n2e}= {velocity2f, acceleration2f} = {D[x[t] /. solx2, {t, 1}], D[x[t] /. solx2, {t, 2}]};

in27l= plotvelocity2f = Plot[velocity2f, {t, 0, 2.},
PlotStyle -» {Thick, Red}, AxesLabel » {"t,s", "v,m/s"}, GridLines - Automatic];

njes]= plotacceleration2f = Plot[acceleratioan, {t, 0.01, 2.}, PlotStyle » {Thick, Green},

AxesLabel - {"t,s", "a,m/s? "} , GridLines - Automatic, PlotRange - All] ;

193



RIMS_Sarafian_November27_2012.nb

nzs}= GraphicsGrid[{{plotx11f, plot2}, {plotvelocityllf, plotvelocity2f},
{plotaccelerationllf, plotacceleration2f}}, ImageSize - 500]
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Figure 2. Display of impact of a time-independent electric field to a time-dependent field on the kinematics of the loose
charge.

One notices the frequencies of the oscillations in these two cases are different. The point-like charge-charge interaction, in
the first case study has the frequency of f = 5 Hz, the same as the frequency of the charge. On the contrary, for the second
case the frequency is about f = 3 Hz. One interprets this as a direct impact of the shape of the charge distribution of the fixed

charged source.
The simulation code generates the animation and also assists in visualizing the physical arrangement of the problem.

in@30}= plotChargedLine :=
Graphics[{Thickness[0.02], Hue[Cos[2 7 £t]], Line[{{O, O}, {/ /. values, 0}}]}];

ni3= plotXaxis = Graphics[{Thin, Line[{{0O, O}, (1, 0}}1}1:
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in32)= Manipulate[{Show[{plotXaxis, plotChargedLine /. t - t,
Graphics[{Red, Disk[{x[t] /. solx2[[1] /. t > t, 0}, 0.02]}]}, ImageSize » 200],
plot2}, {{t, 0, "t"}, 0, 2, 0.025}]

t {3 o
X,m
: 0.80
ouz= | |
0.75
i
|
{ L " 070 }
0.65
t.s

m Case 3. We consider two horizontal parallel charged lines. The two finite charged parallel lines of length ¢ are separated
by a distance 6 each with charge Q. The E-field of the given charge distribution at a point along the bisector of the lines for

distances x > ¢ is given by, E[x]=K Qo[ 2. /¢ = - ! ]. This is a composite equation based on

J<x-'>’+<§>z \/f )’

One may wish to plot this field. The code is given; however, due to manuscript space limitation the output is suppressed.

Nl

the field equation given in the previous case.

1 1
in33)= EfieldTopBottom([x_] :=2./¢ - -/. values

\/<x-'>’+(§)’ \/x’F(%)’

in34= Plot{EfieldTopBottom[x], {x, (/+0.1) /. values, (/+3.0) /. values},
PlotStyle - Thick, AxesLabel » {"x,m", "E_field, N/C"}, GridLines - Automatic];

For time-dependent charge Q as in the previous case we consider Q(f) = Qg Cos[2 7 f 7]. The corresponding equation of

motion for a charge g becomes,

k Qo
niB3si= eqx3 = x'"'[t] -
m

q
J (EfieldTopBottom([x] /. x -» x[t]) Cos[2nft] //. values;
Assigning a set of initial conditions we solve the equation numerically.
in36)= solx3 = NDSolve[{eqx3 == 0, x[0] = 0.6, x'[0] = 0}, x[t], {t, O, 2.0}];
Utilizing the solution we plot its kinematics vs. time.

ns7= plot3 = Plot[x[t] /. solx3, {t, 0, 2.0}, PlotStyle - Thick,
AxesLabel -» {"t,s", "x,m"}, GridLines » Automatic, PlotRange - All];

nz8= {velocity3f, acceleration3f} = (D[x[t] /. solx3, {t, 1}], D[x[t] /. solx3, {t, 2}]};

n3s)= plotvelocity3f = Plot[velocity3f, {t, 0, 2.},
PlotStyle -» {Thick, Red}, AxesLabel » {"t,s", "v,m/s"}, GridLines » Automatic];
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inf40)= plotacceleration3f = Plot[accaletatioan, {t, 0, 2.}, PlotStyle -» {Thick, Green},
AxesLabel -+ {"t,s", "a,m/s?"}, GridLines » Automatic, PlotRange - an] ;

inja1= plotTopBottomChargedLines := Graphics[{

. ] &
Thickness[0.02], Hue[Cos[2 n£ft]], Lina[{{o, -2- /. values}, {l /. values, -2- /. values}}] ,
Thickness[0.02], Hue[Cos[2n £ft]],

Line[{{o, —-:- /. valuel}, {! /. values, —; /. values}}]}]

inf42l= GraphicsGrid|
{{plotx11lf, plot2, plot3)}, {plotvelocityllf, plotvelocity2f, plotvelocity3f},
{plotaccelerationllf, plotacceleration2f, plotacceleration3f}}, ImageSize -» 500]

Out[42)=

-4 L

Figure 3. Display of the {x, v, a} vs. t for case 1 through 3.
For a visual understanding we simulate the motion as well.

n43]= plotXaxis = Graphics[{Thin, Line[{({(0, O}, {1+0.5, 0}}]}];
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inf44]= Manipulate[{Show[{plotXaxis, plotTopBottomChargedLines /. t -» t,
Graphics[{Red, Disk[{x[t] /. solx3[[1] /. t > t, 0}, 0.02]}]}, ImageSize » 200],
plot3}, {{t, 0, "t"}, 0, 2, 0.025}]

t
H X.m
! 12}
Out[44)= N 1.1 H
i 1.0+
C o . }
! 0.9+
| E——— 0.8
07
|
; + t.s

m Case 4. We consider a vertical charged line. In this scenario charge Q is distributed evenly on a vertical line of length 6.

The electric field along the symmetry axis line, x. The distance away from the line is given by, E[x] = K Q N —
oy

mi4s= EfieldLeftVerticalline[x_] :=z =—————o—— /_ values

A scaled plot of the field, }LQ- E(x) is shown; the output is suppressed.

inf46}= Plot [EfieldLeftVerticalLine([x], {x, (/+0.1) /. values, (¢/+3.0) /. values},
PlotStyle -» Thick, AxesLabel » {"x,m", "E_field, N/C"}, GridLines - Automatic];

The equation of motion of the corresponding field for a time-independent field is: x(¢) — f—f-i[ —_—
o el

=1 following the procedure given in the previous cases one may solve the equation numerically. The exercise is left to

] =0. Setting

KQog
m

the interested of the reader. Here we solve the equation of motion for a time-dependent oscillating charge distribution. Its
solution for a set of initial conditions is,

kQoq
nj471= eqxd =x'"'[t] - [ ] (EfieldLeftVerticallLine[x] /. x » x[t]) Cos[2xft] //. values;

Utilizing this solution we evaluate the equation and then display its kinematics.
inf48]= solx4 = NDSolve[{eqx4 == 0, x[0] == 0.6, x'[0] == O}, x[t], {t, O, 2.0}];

in49)= plot4 = Plot[x[t] /. solx4, {t, 0, 2.0}, PlotStyle - Thick,
AxesLabel » {"t,s", "x,m"}, GridLines -» Automatic, PlotRange - All];

nsoj= (velocity4f, accelerationdf} = {D[x[t] /. solx4, {t, 1}], D[x[t] /. solx4, {t, 2}1};

in51]= plotvelocity4f = Plot{velocity4f, {t, 0, 2.},
PlotStyle -» {Thick, Red}, AxesLabel - {"t,s", “v,m/s"}, GridLines - Automatic];
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n52)= plotaccelerationdf = Plot[accelerationéf, {t, 0, 2.}, PlotStyle » {Thick, Green},
AxesLabel - {"t,s" , "a,m/s%" } , GridLines » Automatic, PlotRange - All] 3

ins3)= GraphicsGrid[{{plotx11f, plot2, plot3, plot4d},
{plotvelocityllf, plotvelocity2f, plotvelocity3f, plotvelocity4f},
{plotaccelerationllf, plotacceleration2f, plotacceleration3f,
plotaccelerationd4f})}, ImageSize - 500];

Figure 4. Display of the {x, v, a} vs. t for case 1 through 4.

Due to manuscript space limitation the graphic output is suppressed. For a visual understanding we simulate the motion as
well.

inj54]= plotVerticalChargedLine := Graphics[
{Thickness[0.0Z] , Hue[Cos[2r ft]], Line[{{o, - ; /. values}, {O, ; /. values}}]}]

in[55j= plotXaxis = Graphics{{Thin, Line[{{0, 0}, {1, 0}}]}1;

ins6j= Manipulate|{Show[{plotXaxis, plotVerticalChargedLine /. t - t,
Graphics[{Red, Disk[{x[t] /. solx4[1] /. t » z, 0}, 0.02]}])}, ImageSize -» 200],
plot4}, {{t, 0, "t"}, 0, 2, 0.025}]

]
t {}
X,m N
1 0625} ‘
Qutisdl= | - I 0620 ‘
; { PY , 0.615
l 0.610 |

0.605

m Case 5. We consider a horizontally displaced vertical line charge distribution. The physics of this case is similar to Case
4. In this scenario the vertical charge slides along the x-axis by a length /. Replacing x with x — f in the field equation of
Case 4 yields the needed field for the case at hand.

512
nis77= EfieldRightVerticalLine([x_] := 1/ ((x—l) \/((x—l)z + [—] ]] /. values
2

niss)= Plot [EfieldRightVerticalLine(x], {x, (/+0.1) /. values, (/+3.0) /. values},
PlotStyle -» Thick, AxesLabel -» {"x,m", "E_field, N/C"}, GridLines - Automatic];

The corresponding equation of motion for a time-dependent charge distribution is,

kQogq
n59l= eqx5 = x'"'[t] - [ ] (EfieldRightVerticalLine[x] /. x » x[t]) Cos[2nft] //. values;

m
The numeric solution of this equation for a set of initial conditions yields the kinematics of the charge g.

nie0)= solx5 = NDSolve[{eqx5 == 0, x[0] == 0.6, x'[0] == 0}, x[t], {t, O, 2.0}];
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1= plot5 = Plot[x[t] /. solx5, {t, 0, 2.0}, PlotStyle - Thick,
AxesLabel » {"t,s", "x,m"}, GridLines - Automatic, PlotRange -» All];

in62)= {velocity5f, acceleration5f} = {D[x[t] /. solx5, {t, 1}], D[x[t] /. solx5, {(t, 2}]};

mne3s]= plotvelocity5f = Plot[velocity5f, {t, 0, 2.}, PlotStyle » {Thick, Red},
AxesLabel -» {"t,s", "v,m/s"}, GridLines -» Automatic, PlotRange - All];

inje4]= plotaccelerationSf = Plot[accelerationSf, {t, 0, 2.}, PlotStyle » {Thick, Green},
AxesLabel - {"t,s", "a,m/sz"}, GridLines - Automatic, PlotRange - All] i

5= GraphicsGrid[{{plotx11f, plot2, plot3, plot4, plot5},
{plotvelocityllf, plotvelocity2f, plotvelocity3f, plotvelocity4f, plotvelocity5f},
{plotaccelerationllf, plotacceleration2f, plotacceleration3f,
plotacceleration4f, plotacceleration5f}}, ImageSize » 800];

Figure 5. Display of the {x, v, a} vs. r for case 1 through 5.
Due to manuscript space limitation the graphic output is suppressed.

m Case 6. We consider two vertical parallel charged lines. We combine the fields of Case 4 and 5. The code to display the
corresponding field is given; its output is suppressed.

nes)= Plot [EfieldLeftVerticalLine[x] + EfieldRightVerticallLine[x],
{x, (/+0.1) /. values, (/+3.0) /. values}, PlotStyle - Thick,
AxesLabel » {"x,m", "E_field, N/C"}, GridLines - Automatic];

The equation of motion, its solution and related kinematics are,

nje7)= eqx45 =

k Qo
x"[t]-(

q
] ((EfieldLeftVerticalline[x] + EfieldRightVerticalLine[x]) /. x » x[t])
m

Cos[2nft] //. values;
inf68]= solx45 = NDSolve[{eqx45 == 0, x[0] == 0.6, x'[0] == 0}, x[t], {t, 0, 2.0}];

in69)= plotd45 = Plot[x[t] /. solx45, {t, O, 1.0}, PlotStyle -» Thick,
AxesLabel » {"t,s", "x,m"}, GridLines -» Automatic, PlotRange -» All];

in[70}= {velocity45f, accelerationd45f} = {D[x[t] /. solx45, {t, 1}], D[x[t] /. solx45, {t, 2}]};

in71}= plotvelocity45f = Plot[velocity45f, (t, 0, 2.}, PlotStyle » {Thick, Red},
AxesLabel » {"t,s", "v,m/s"}, GridLines -» Automatic, PlotRange - All];

n[72)= plotaccelerationd5f = Plot[acceleration45f, {t, 0, 2.}, PlotStyle » {Thick, Green},
AxesLabel - {"t,s" , "a,m/sz"} , GridLines -» Automatic, PlotRange - All];

in[73)= GraphicsGrid[{{plotx11f, plot2, plot3, plot4, plot5, plot45},
{plotvelocityllf, plotvelocity2f, plotvelocity3f, plotvelocity4f, plotvelocitySf,
plotvelocity45f}, {plotaccelerationllf, plotacceleration2f, plotacceleration3f,
plotacceleration4f, plotacceleration5f, plotacceleration45f})}, ImageSize » 800];

Due to manuscript space limitation the graphic output is suppressed.
Figure 6. Display of the {x, v, a} vs. ¢ for case 1 through 5.

m Case 7. We consider a horizontal one-end-closed one-end-open rectangular charged box. This scenario is generated by
combining Case 3 and Case 4. Schematically this case is shown in Figure 7a.
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The plot code for the electric field is given, and its output is suppressed.

inf74)- Plot [EfieldTopBottom[x] + EfieldLeftVerticallLine([x],
{x, (¢+0.1) /. values, (¢/+3.0) /. values}, PlotStyle » Thick,
AxesLabel » {"x,m", "E_field, N/C"}, GridLines - Automatic];

[onQ)
ni7sl- eqx34 = x"''[t] -

200

((EfieldTopBottom[x] + EfieldLeftVerticalLine(x]) /. x » x[t]) Cos[2n£ft] //. values;

inj76)= solx34 = NDSolve[{eqx34 == 0, x[0] == 0.6, x'[0] = 0}, x[t], {t, O, 2.6)];

ni771= plot34 = Plot[x[t] /. solx34, (t, O, 2.0}, PlotStyle » Thick,
AxesLabel -» {"t,s", "x,m"}, GridLines » Automatic, PlotRange - All];

in78]= {velocity34f, acceleration34f} = {D[x[t] /. solx34, (t, 1}], D[x[t] /. solx34, {t, 2}]};

n(79)= plotvelocity34f = Plot[velocity34f, (t, 0, 2.}, PlotStyle » {Thick, Red},
AxesLabel -+ {"t,s", "v,m/8"}, GridLines » Automatic, PlotRange - All];

injso)= plotacceleration34f = Plot[accelerationadf, {t, 0, 2.}, PlotStyle » {Thick, Green},
AxesLabel - {"t, 8", "a,m/8%" } , GridLines » Automatic, PlotRange - All] ]

inj81)= GraphicsGrid[{{plotx11lf, plot2, plot3, plot4, plot5, plotd45, plot34},
{plotvelocityllf, plotvelocity2f, plotvelocity3f,
plotvelocity4f, plotvelocity5f, plotvelocity45f, plotvelocity34f},
{plotaccelerationllf, plotacceleration2f, plotacceleration3f, plotaccelerationdf,
plotacceleration5f, plotacceleration45f, plotacceleration34f}}, ImageSize » 800];

Due to manuscript space limitation the graphic output is suppressed.
Figure 7. Display of the {x, v, a} vs. ¢ for case 1 through 6.
For a visual understanding we simulate the motion as well.
ing2)= plotRotatedCup := Graphics [{Thickness {0.02],
] ‘6
Hue[Cos[2nft]], Line[{{o, - ; /. values}, {( /. values, - ; /. values}}] ’
Thickness[0.02], Hue[Cos[2 7 ft]],

Line[{{o, -:— /. values}, {l /. values, ‘-:- /. values}}] B

Thickness[0.02], Hue[Cos[2n £ft]], Line[{{o, -; /. values}, {0, 2,/. values}}]}]

ing3}= plotXaxis = Graphics[{Thin, Line[{{0, 0}, {1+0.5, 0}}1}];
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injg4= Manipulate[{Show[{plotXaxis, plotRotatedCup /. t » t,
Graphics[{Red, Disk[{x[t] /. solx34[1] /. t » t, 0}, 0.02]}]}, ImageSize » 200],
plot34}, {{z, 0, "t"}, 0, 1.2, 0.025}]

Qut{s4)=

Figure 7a. Schematic of the one-end-closed one-end-open rectangular charge distribution (left graph), and position vs. time
(right graph).

m Case 8. We consider a charged rectangular closed box. By combining the configurations of Case 3, 4 and 5 we arrive at
the field of a rectangular charged distribution. As in the previous scenarios the relevant associated information yields,

ings)= Plot [EfieldTopBottom[x] + EfieldLeftVerticalLine[x] + EfieldRightVerticallLine[x],
{x, (¢£+0.1) /. values, (/+3.0) /. values}, PlotStyle - Thick,
AxesLabel - {"x,m", "E_field, N/C"}, GridLines -» Automatic];

kQoq
injge]= eqx345 = x'"'[t] -

((EfieldTopBottom[x] + EfieldLeftVerticalLine[x] + EfieldRightVerticalLine[x]) /.
x - x[t]) Cos[2n£t] //. values;

ing7l= s0lx345 = NDSolve[{eqx345 == 0, x[0] == 0.6, x'[0] == 0}, x[t], {t, O, 2.0}];

injgg]= plot345 = Plot[x[t] /. solx345, {t, 0, 0.8}, PlotStyle - Thick,
AxesLabel » {"t,s", "x,m"}, GridLines -» Automatic, PlotRange - All];

nEd= {velocity345f, acceleration345f} = (D[x[t] /. solx345, {t, 1}], D[x[t] /. solx345, {t, 2}1};

in[o0k= plotvelocity345f = Plot[velocity345f, {t, 0, 2.}, PlotStyle » {Thick, Red},
AxesLabel » {"t,s", "v,m/s"}, GridLines » Automatic, PlotRange - All];

9= plotacceleration345f = Plot[acceleration345f, {t, 0, 2.}, PlotStyle » {Thick, Green},

2,

AxesLabel » {"t,s", "a,m/s }, GridLines - Automatic, PlotRange - All] ;

ing2}= GraphicsGrid[{{plotx1l1lf, plot2, plot3, plot4, plot5, plotd5, plot34, plot345},
{plotvelocityllf, plotvelocity2f, plotvelocity3f, plotvelocity4f,
plotvelocity5f, plotvelocityd5f, plotvelocity34f, plotvelocity345¢f},
{plotaccelerationllf, plotacceleration2f, plotacceleration3f,
plotacceleration4f, plotacceleration5f, plotacceleration45f,
plotacceleration34f, plotacceleration345f}}, ImageSize -» 800];

Due to manuscript space limitation the graphic output is suppressed. We provide the motional simulation code,
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n@3= plotRectangularBox := Graphics [{Thickness[o.()z] ’

Hue[Cos[2n ft]], Line[{{o, —; /. values}, {I /. values, —; /. values}}] ’

Thickness[0.02], Hue[Cos[2 7 ft]],

vine[{{o, 2 /. valves}, {¢ /. values, 2 /. varues}}],

] -]

Thickness[0.02], Hue[Cos[2ft]], Line[{{o, -; /. values}, {0, ; /. values}}] '

Thickness[0.02], Hue[Cos[2ft]],

Line[{{¢ /. values, -g /. values}, {¢ /. values, ; /. values}}|}]

plotXaxis = Graphics[{Thin, Line[{{O, O}, {1, 0}}1}1;
Manipulate[{Show[{plotXaxis, plotRectangularBox /. t » T,
Graphics[{Red, Disk[{x[t] /. solx345[1] /. t » ¢, 0}, 0.02]}]}, ImageSize » 200],
plot345}, {{t, 0, "t"}, 0, 0.28, 0.025}]

Out[95)=

0.2 04 0.6 08

m Summary and Conclusions

It is the objective of this article to demonstrate by utilizing a Computer Algebra System (CAS), particularly Mathematica one
may deviate from the traditional route of solving problems. The ultimate objective of a physics research project is the output
of the analysis and Mathematica provides one such innovative approach. The traditional approach to solve a mathematical-
physics problem in most scenarios encounters solving complicated equations analytically. One devotes considerable efforts
doing so and fails in most cases. This derails the focus on the objectives. The author believes CAS and particularly Mathe-
matica is an alternative effective approach. The examples shown in this article demonstrate how effectively one can focus on
the objectives of the proposed problems and conveniently without distraction achieve the set goals. The examples are chosen
from electromagnetism and the proposed approach easily may be applied to other fields of interest. Also it is worthwhile
pointing out that the entire manuscript including text, symbolic and numeric computations, tables, and graphs are embodied
in one single file. This by itself is a tremendous advantage assisting to avoid compiling multiple individual files.
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