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A table of coherent band-Gordian distances between knots

Taizo Kanenobu (Osaka City University)
Hiromasa Moriuchi (OCAMI)

Abstract

We introduce some criteria for two links, which are related by a coherent band surgery,
using the determinant, and the Jones, HOMFLYPT, and Q polynomials. We give a table of
coherent band-Gordian distances between two knots with up to seven crossings.

1 Introduction

There are several criterion for two links, which are related by a band surgery or crossing
change. In this paper, we introduce further criteria using the determinant, and the Jones,
HOMFLYPT, and Q polynomials. A band surgery and a crossing change are local changes
in a link diagram as shown in Figure. 1. If we consider oriented links, there are two types
for a band surgery according to an orientation; a coherent band surgery (Fig 2) and an
incoherent one. In particular, an incoherent band surgery between two knots is called an
H(2)-move [14] (Figure. 3). Recently, these local moves are studied in connection with
an application to the study of DNA site-specific recombination; see [5, 6, 9].
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Figure 1: A band surgery and a crossing change.

k)

Figure 2: A coherent band surgery.

Given two links L and L', we want to decide whether they are related by a band
surgery or a crossing change. The signature and Arf invariant are most useful tools for
this problem (Propositions 2.2 and 2.3). There are also several other methods to deal
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with this problem: for a coherent band surgery, see [19, 21]; for a crossing change, see
[30, 32, 35, 40, 41, 42]; for an H(2)-move, see [20, 23, 26]; see also [1].
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Figure 3: An H(2)-move.

Our main results are two criteria: The first one is a condition on the determinant of a
link or knot which is obtained from a 2-bridge knot by a coherent band surgery or H(2)-
move (Theorem 3.2), which is easily obtained by using a condition on the determinant of
a knot obtained from a 2-bridge knot by a crossing change due to Hitoshi Murakami [32]
(Proposition 3.1).

The second one uses some special values of the polynomial invariants. For the Jones
polynomial, we have a criterion on two links which are related by a coherent band surgery
(19, Theorem 2.2] (Theorem 4.2). Developing this, we obtain Theorem 4.6. In a similar
way, for the HOMFLYPT polynomial we obtain Theorem 5.4 developing Proposition 5.1,
and for the Q polynomial Theorem 6.2 developing Proposition 6.1. We give some examples
for each of these criteria, which display the efficiency of them. In a forthcoming paper
[24] we will make a detailed report on these criteria.

Notation. For knots and links with up to 9 crossings we use Rolfsen notations [38,
Appendix C]. For a knot or link L, we denote by L! its mirror image. For an oriented 2-
component link with ¢ crossings we use the notations c2 and 0121', where we usually suppose
that linking number of c2 is negative and that of c2’ is positive as in Table 2 in [21]; more
precisely, ¢2 denotes an oriented link with negative linking number with diagram as in
the table of [38] and ¢’ denotes one of the oriented links obtained from c2 by reversing
the orientation of one component.

2 Some invariants
The Conway polynomial V(L; z) € Z|[2] [4], the Jones polynomial V (L;t) € Z[t*'/?] [17],

and the HOMFLYPT polynomial P(L;v,2) € Z[v*!, 2] [10, 17, 36] are invariants of the
isotopy type of an oriented link L, which are defined by the following formulas:

V({U;z) =1; (1)

V(Li;2) = V(L;2) = 2V(Lo; 2); (2)
V({U;t) =1 (3)

tTV(Lyst) = tV(Lo;t) = (872 = t712) V(Lo; t); (4)
P(U;v,2) =1; (5)

v P(Ly;v,2) —vP(L_;v, 2) = 2P(Lg; v, 2), (6)
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Figure 4: A skein triple.

where U is the unknot and (L, L_, L) is a skein triple.

For a skein triple (L, L_, Lo), the link L is obtained from L_ by changing a crossing,
and vice versa, and the link L, is obtained from L, or L_ by a coherent band surgery,
and vice versa. Conversely, it is easy to see the following:

Lemma 2.1. If a c-component link L and a (c + 1)-component link M are related by a
coherent band surgery, then there exist c-component links L, L_ and (¢ + 1)-component
links M, M_ such that each of the following is a skein triple: (L, L, M), (L,L_, M),
(M ,M,L), (M,M_,L).

For a c-component link L, "'V (L; —1) is an integer and the determinant det L is
given by det L = |V/(L; —1)|. Putting ¢t = —1 in Eq. (4), we obtain

—V(Ly;=1) + V(Lo =1) = 20V (Lg; —1); (7)
Let (L4, L_, Lo) be a skein triple. Then Murasugi [34, Lemma 7.1] has shown:
lo(Le) —o(Lo)| < 1. (8)

Since we may consider the link L, or L_ as obtained from Ly by a coherent band surgery,
and vice versa, we have the following.

Proposition 2.2. (i) If two oriented links L and L' are related by a coherent band surgery,
then

lo(L) —o(L)| < 1. (9)
(ii) If two oriented links L and L' are related by a crossing change, then
lo(L) —o(L)] < 2. (10)
The Arf invariant (or Robertello invariant) [37] of a knot K, Arf(K), is given by
Arf(K) = ay(K) € 2, (11)

where ay(K) is the coefficient of 22 of the Conway polynomial of XK. Whenever an equality
in this paper contains an Arf invariant it is to be understood in the sense of mod 2. We
say that an oriented link L is related (in the sense of Robertello [37]) to a knot K if there
exists a smooth embedding of a planar surface F' in S% x I such that F' meets S® x {0,1}
transversely in K and L, respectively. Let L be a proper link, that is, the sum of the
linking numbers of any component of L with all the other components is even. We may
define its Arf invariant to be the Arf invariant of any knot K related to it. In particular,
we have:

Proposition 2.3. If a knot K is obtained from a proper 2-component link L by a coherent
band surgery, then Arf(K) = Arf(L).
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3 Determinant of a link obtained from a 2-bridge knot by a
band surgery

For relatively prime integers p, ¢ with p > ¢ > 0 and p odd, we let S,  denote the 2-
bridge knot for which the lens space of type (p, q) is the 2-fold branched cover of S®. More

explicitly, let a1, as, as, ..., a, be positive integers obtained from the continued fraction
1
g = a'l + . (12)
q 1
@ 1
a ——
3 . 1
4 —
Qan
Then S, 4 is isotopic to a 2-bridge knot in Conway’s normal form C(ay, ag, as, ..., an—1,0n)

as shown in Figure. 5, where the box containing an integer a or —a, a > 0, denotes a
2-braid as shown in Figure. 6. Also, Sp_, presents the mirror image of S,g; cf. [25,
Sec. 2.1].

(i) n is odd. (ii) 1 is even.
a E[ """ a, a a | Gp

@, ~py @ -a,

1 Fr

Figure 5: The 2-bridge knot C(a1,as,a3,...,an-1,an)-

Halm =D Taf” = ool
~—_—— ~——
a crossings d crossings

Figure 6: 2-braids.

The following criteria is due to H. Murakami [32, Corollary 2.8].

Proposition 3.1. Suppose that a knot K is obtained from a 2-bridge knot S,4 by a
crossing change. Then there exists an integer s such that:

|det K — p|/2 = £qs* (mod p). (13)
Using this, we may deduce the following.

Theorem 3.2. Suppose that a link L is obtained from a 2-bridge knot S, by a coherent
or incoherent band surgery. Then there exists an integer s such that:

det L = £¢s*> (mod p). (14)



Proof. Suppose that L and S, 4 are related by a coherent band surgery. Then by Lemma 2.1
there exists a knot K such that (K, S,,, L) is a skein triple. From Eq. (7) we have

—V(K;=1) + V(Spq; —1) = 26V (L; -1), (15)
which implies
2det L = |2iV(L; ~1)| = | = V(K; =1) + V(Spq; —1)I. (16)
Since K and Sy, are related by a crossing change, by Proposition 3.1 there exists an
integer s such that Eq. (13) holds, which implies
det K +p=det K —p=+42gs®> (mod 2p), (17)

Since det K = [V/(K; —~1)| and p = |V(S,,¢; —1)|, combining Egs. (16) and (17), we obtain
Eq. (14).
]

By Theorem 3.2 a 2-bridge knot may have some condition on the values of det L, where
L is either a 2-component link with dep(Spq, L) = 1 or a knot with da(S, 4, L) = 1. For
2-bridge knots with up to 8 crossings, Table 1 lists these values; the remaining 2-bridge
knots 31, 52, 62, 71, T, s, 84, 8¢, 87, 814 have no such restrictions.

Table 1: Values which det L does not take with dep(Sp.q, L) = 1 or da(Spq, L) = 1

Spq #det L
4) = Ss9 1, 4 (mod 5)
51 = 55,1 2, 3 (mod 5)
61 = So2 3, 6 (mod 9)
63 = 51375, 81 = 813‘6 1, 3, 4, 9, 10, 12 (mod 13)
73 = 5133 2,5,6,7,8,11 (mod 13)
74 = S154 2,3,7,8,12,13 (mod 15)
75 = S17,5, 82 = S176 1,2,4,8,9,13, 15, 16 (mod 17)
T7 = So18 1,4,5,16, 17, 20 (mod 21)
83 = S174 3,5,6,7, 10,11, 12, 14 (mod 17)
8 = So5.9 2,3,5,7,8,10, 12, 13, 15, 17, 18, 20, 22, 23 (mod 25)
89 = So57 1,4,5,6,9, 10, 11, 14, 15, 16, 19, 20, 21, 24 (mod 25)
811 = Sa7,10 3, 6, 12, 15, 21, 24 (mod 27)
812 = 529,12, 813 =S2911 | 1,4, 5,6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28 (mod 29)

Example 3.3. Table 2 shows 2-component links which are not obtained from the 2-bridge
knots in Table 1 by a coherent band surgery. The symbol x means that the link in the
row is not obtained from the 2-bridge knot in the column by a coherent band surgery. For
example, the knot 6; and the link 62 are not related by a coherent band surgery; moreover
this implies that K € {61,6,!} and L € {6?,6%,62!,62'!} are not related by a coherent
band surgery; cf. [15, Table 2], [16, Table II].
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Table 2: Links and 2-bridge knots which are not related by a single coherent band surgery.

L detL |41 5, 67 63 73 75 77 8 8 89 819
74 81 8 89 813
U? 0
22 = H_ 2 X X X X
43,72 4| x X X X X X
3 #H_, 62 6| x N X X X X
52, 72, 82 8 X X X X
62, 41#H_, 51#H_ 10 X X X X
63, 31#42 12 X X X x
72, Bo#tH_ 14| x X X X
73, 72 16 | x X X X X X
73 18 X X X X
72 20 X X X X X X
22 X X X X X X
72 24 | x X X X X X

4 Coherent band-Gordian distance

The following is Proposition 2.3 in [22]:

Proposition 4.1. If two knots K and K' are related by a sequence of two coherent
band surgeries, then they are related by a single SH(3)-move, and vice versa. Thus
den(K, K') = 2sd3(K, K') and ue(K) = 2su3(K).

The following is Theorem 2.2 in [19].

Theorem 4.2. If two links L and L' are related by a coherent band surgery, den(L, L') = 1,
then

V(L;w)/V(L;w) € { +4, -\/5“} . (18)
Then we have the following, which is given in [22, Theorem 3.1].

Corollary 4.3. If two knots K and K' are related by a single SH(3)-move, sd3(K, K') =
1, then

V(K;w)/V(K'w) € {ﬂ,ﬂ\/éﬂ,sﬂ}. (19)
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Figure 7: An SH(3)-move is correspond to two coherent band surgeries.

Example 4.4. Let K = 4; and K’ = 3;!#3;. Then sd3(K, K') > 1; see [15, Table 1].
Since o(K) = o(K’) = 0, the signature cannot show sds(K, K’) > 1. However, since
V(K;w) = -1, V(K';w) = 3, we can prove by using Corollary 4.3. In Table 3 we list all
such pairs of knots with up to 7 crossings.

Table 3: Pairs of knots K and K’ with |o0(K) — o(K’)| <2 and sd3(K, K') > 1.

~

K K' oK) oK) V(K;w) V(EK,w

4, 311#3, 0 0 -1 3
55 31l#3 2 0 -1 3
Te 31143 2 0 -1 3
6y  31#3; 2 4 1 -3
7o 31#3, 2 4 -3
Ts! 3143 4 4 1 -3

The following is Theorem 5.2 in [24].

Theorem 4.5. Suppose that a (c + 1)-component link L' is obtained from a c-component
link L by a coherent band surgery. If V(L';w) = niV(L;w) = +i°(iv/3)%, n = %1, then
iV(L;-1) = qi**V(L; —1) (mod 3°+1),

Theorem 4.6. Suppose that two links L and L' are related by a sequence of two coherent
band surgeries, dep(L,L') = 2. Let L be a c-component link. If V(Lw) = —V(L';w) =
+4°71(i1/3)?, then

V(L —1) = V(L5 -1)  (mod 3°HY) (20)
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By Proposition 4.1, we have:
Corollary 4.7. If two knots K and K' are related by a single SH(3)-move, sd3(K, K') =
1, and V(K;w) = =V (K';w) = £(3v/3)%, then
V(K;-1) = -V(K';~1) (mod 3°*!) (21)
Example 4.8. Let K = 6, and K’ = 3;. Then sd3(K,K’) > 1. Since o(K) = 0,
o(K') = 2, the signature cannot show sd3(K, K') > 1. However, since V(K;w) = V3,

V(K';w) = —iv3, V(K;-1) =9, V(K'; —1) = -3, we can prove by using Corollary 4.7.
In Table 4 we list all such pairs of knots with up to 7 crossings.

Table 4: Pairs of knots K and K’ with |o(K) — o(K')| < 2 and sd3(K, K') > 1.

K K’ o(K) o(K') V(Kw) V(Kiw) V(K;-1) V(K';-1)
61 3 0 2 i3 —-1V3 9 -3
61 74 0 -2 V3 WNE 9 -15
6: 77 0 0 V3 -3 9 21
61 31!#4 0 -2 V3 VE] 9 -15
74! 77 2 0 iv/3 —iV3 -15 21
77! 77 0 0 V3 —iV3 21 21
31#4; 77 2 0 V3 —iV3 -15 21

Similarly, we have:

Corollary 4.9. If two 2-component links L and L' are related by a sequence of two
coherent band surgeries, dew(L, L') = 2, and V(Lyw) = =V(L';w) = +i(iv/3)?, then

V(L;-1)/i = -V(L;-1)/i (mod 3°1) (22)

In Table 4 we list all pairs of 2-component links with up to 6 crossings, which can
be shown to have coherent band-Gordian distance > 2 by Corollary 4.9 but cannot be
shown by using the signature. Thus by Table 3 in [15] we can conclude they have coherent
band-Gordian distance 4.

Table 5: Pairs of links L and L’ with |o(L) — o(L')| < 2 and den(L, L') = 4.

L L' o(L) ol!)) V(Liw) V(I;w) V(L;-1)/i V(L';-1)/i

31#H, 63 1 3 -3 V3 6 -12
J#H, 6} 1 -1 -3 V3 6 ~12
Ts'! 62 1 3 -3 V3 6 -12
Ts't 6% 1 -1 -3 V3 6 -12




5 The HOMFLYPT polynomial

Let X¢(L) be the k-fold cyclic covering space of S% branched over a link L. Lickorish and
Millett [27, Theorem 2] have shown:

P(L;i,i) = (=2)7?, (23)
where 7 = dim H,(X3(L); Z5). Putting v = z = i in Eq. (6), we obtain
P(Ly;i,4) + P(L_;i,4) + P(Lo; i,5) = 0, (24)

where (Ly,L_, L) is a skein triple. Using this, we have a criterion on the HOMFLYPT
polynomials of two links which are related by a crossing change [29, Theorem 1.1] or a
coherent band surgery [21, Proposition 2.4].

Proposition 5.1. If two links L and L' are related by either a crossing change or a
coherent band surgery, then

P(L;4,4)/P(L;i,1) € {1, -2%1}. (25)

The Conway polynomial V(L; z) of a c-component link L may be written V(L; 2) =
2°1p(2), where ¢(2) is an integer polynomial in 22. Then we obtain a symmetric integer
polynomial Ay (t) by

Ar(t) = (¢ — 712, (26)

which is called the Hosokawa polynomial [12]; cf. [33, pp.120]. Then Hosokawa and
Kinoshita [13] have shown the following; cf. [28, Corollary 9.8]:

Proposition 5.2. The order of the first homology group of the k-fold cyclic covering space
of S3 branched over a c-component link L, H; (Zk(L); Z), is given by

k-1

kT ALE), (27)

=1
where £ is a primitive kth root of unity.
Using Proposition 5.2, we obtain:

Lemma 5.3. Let L be a c-component link. If P(L;i,i) = (—2)", then
[V(L;2)/2° Y03 =0 (mod 27). (28)

Using this lemma, we obtain the following.

Theorem 5.4. Suppose that a (¢ + 1)-component link L' is obtained from a c-component
link L by a coherent band surgery. If P(L;i,i) = P(L';i,i) = (=2)*, then

V(L;2) + 2V(L z)] {V(L; 2) — 2V(L'; 2)

zc~—1 2C— 1

=0 (mod2"1). (29)

22=-3
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6 The Q polynomial

The @ polynomial Q(L;z) € Z[z*!] [3, 11] is an invariant of the isotopy type of an
unoriented link L, which is defined by the following formulas:

QU;z) =1, (30)
Q(L+;2) + Q(L-; 2) = 2(Q(Lo; 2) + Q(Loo; 2)) (31)
where U is the unknot and (L, L_, Lo, L) is an unoriented skein quadruple.
AN / /N
L, Ly

Figure 8: An unoriented skein quadruple.
Let p(L) = Q (L; (v/5 — 1)/2)). Then Jones [18] has shown
p(L) = V5 (32)
where r = dim H,(X(L); Z5).

Furthermore, Rong [39] has shown that there are six cases for the ratios among p(L_),
p(L+), p(Lo), p(Lso) as in Table 6.

Table 6: The values of the Q polynomials at z = (v/5 —1)/2.

Cases | p(L-)/p(Loo) p(Lo)/p(Leo) p(L+4)/p(Leo) p(L+)/p(L-)
(a) 1 V5 1 1
(b) N 1 -1 ~V5
(c) 1 -1 -1 -1
(d) -1 -1 1 -1
(e) -1 1 V5 -5
(f) \/5—1 \/5—1 \/—5——1 1

Using Table 6, we have criteria on the Q polynomials of two links which are related
by a crossing change [40, Theorem 4.1] or a band surgery [19, Theorem 3.1].

Proposition 6.1. (i) If two links L and L' are related by a crossing change, then

pD)/p(L) € { £1,—vE" }. (33)



(ii) If two links L and L' are related by a band surgery, then
+1
pL)/p(L) € { +1, V5™ }. (34)

Moreover, using Table 6, we have the following.

Theorem 6.2. Suppose that two links L and L' are related by either a crossing change
or a band surgery and that p(L) = p(L') = £v/5 . Then

det L +det L' =0 or detL —detL' =0 (mod 5™). (35)
Example 6.3. de(930!,65) > 1. Since p(93!) = p(62) = —/5, det(95!) = 55, and
det(63) = 10, the result follows by Theorem 6.2. Note that since o(939!) = 2, 0(62) = 3,
we cannot use Proposition 2.2.

7 Table of d(K, K)

We give a table of coherent band-Gordian distances between two knots (cf: [15, Table 1))

Table 7: Coherent band-Gordian distances between two knots with up to 6 crossings.

[ EIE 3] 4, B [511] 52 [52!] 6, [ 6.1 62 [62!] 6 ]31#31]31!#31!]31!#31]

U 0|2|2|24(4f2|2]|2]|2|2|2|2]| 4 4 2
31 O(4|2]2|6 2|44 22|42 2 6 2
3;! 026|242 24" ]al2|2]| 6 2 2
4 O(4|4(2]2|2]| 22|22 4 4 4
51 0[8|2(6|4|4]2|6|4| 2 8 4
51! 0|6|2|4]4|6|2]4]| 8 2 4
52 ol4|2|2]|2]4]2]| 2 6 4
55! ol212]4{2]|2] 6 2 4
61 0|2 |2(2|2] 4 4 2
61! 02|22 4 4 2
62 0|42 4 6 2
62! 02 6 4 2
63 0] 4 4 2
31#3; 0 8 4
311#34! 0 4
31143, 0

t: corrected
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Table 8: Coherent band-Gordian distances between two knots with up to 7 crossings.

In]nt] 7 [ 7 [ 7 [ 7 | 7 [ 7 | 70t | 7676t 70 | 7 [Bigpa 3004

L

= = | =
v|lajajolalwalwialw|Sialolalalo|w|w S| mlo|ar|ola|w|ala|w]|w|o
= = N
Nl lalojalslalw|mlt alalolalvlo Slw|lol SN |alola|wiwialo
= = =
N alwlvlglaiaivlaiaialwisialolo|S|a|w|wiw Sl w Qo
= = <
Njala sl ialFitialale alw|slalololal vl lRlw|v|wia|alo
v|la|lalola|lw|lala|lalvlalcalo|lalw|o|v|v|a|ca|lo|a|w|o|lajw|o
Ao |la|dla|la(dfdga|clo|wr|w|lo|la|rola|wralalo]o
3 o
olaiwiolale als violSiwlola|lwQlalo|lalao|lalo|o|o
Ay =
Njolwialo|lalo|lw|v Slolvialo|lwria|T|alololalolalo
= = = =
Al Nalo|la|ls|lale|X|w|Na|lo|N|r|o|a|v|o|lca|w]|o
o N o [ ]
= - | = =
vlalNoja|lvla|lvjalr|NNo|la|No|lw|w|a|la]o|o
~ NN ™
Njo|w|a|o|la|o|w|wria|lo|wr|t|o|lasica|S|(x|w|lwo]o
o|la(r|lo|alola|t|r|lola||o|lw|r|S|lalolalo
N =
valalo ol a|alniv|alalolw|Slo|lw|wlo
= =
Al alajolalviglalalwialwlo|l=lw|o|o
o|w|o|D|a|lo|w|o|lo|o|w|o|Z|ale|Nlo
v|lojo |G |[w]ow|o|lo|r|o|jo|a|S|lo|o
o =] = 1 =
AElslesl 2 olzlel el 3l el BRI E] o2l ol sl ol B o=l ol el o= TR
3345555666661|.|.77777777777777#.»1n'.
= )
A | o

2 or 4.

The symbol 2/4 means dcp (K, K')
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