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Abstract

We introduce some criteria for two links, which are related by a coherent band surgery,
using the determinant, and the Jones, HOMFLYPT, and $Q$ polynomials. We give a table of
coherent band-Gordian distances between two knots with up to seven crossings.

1 Introduction

There are several criterion for two links, which are related by a band surgery or crossing
change. In this paper, we introduce further criteria using the determinant, and the Jones,
HOMFLYPT, and $Q$ polynomials. $A$ band surgery and a crossing change are local changes
in a link diagram as shown in Figure. 1. If we consider oriented links, there are two types
for a band surgery according to an orientation; a coherent band surgery (Fig 2) and an
incoherent one. In particular, an incoherent band surgery between two knots is called an
$H(2)$-move [14] (Figure. 3). Recently, these local moves are studied in connection with
an application to the study of DNA site-specific recombination; see [5, 6, 9].
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Figure 1: $A$ band surgery and a crossing change.
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Figure 2: $A$ coherent band surgery.

Given two links $L$ and $L’$ , we want to decide whether they are related by a band
surgery or a crossing change. The signature and Arf invariant are most useful tools for
this problem (Propositions 2.2 and 2.3). There are also several other methods to deal
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with this problem: for a coherent band surgery, see [19, 21]; for a crossing change, see
[30, 32, 35, 40, 41, 42]; for an $H(2)$-move, see [20, 23, 26]; see also [1].
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Figure 3: An $H(2)$-move.

Our main results are two criteria: The first one is a condition on the determinant of a
link or knot which is obtained from a 2-bridge knot by a coherent band surgery or $H(2)-$

move (Theorem 3.2), which is easily obtained by using a condition on the determinant of
a knot obtained from a 2-bridge knot by a crossing change due to Hitoshi Murakami [32]
(Proposition 3.1).

The second one uses some special values of the polynomial invariants. For the Jones
polynomial, we have a criterion on two links which are related by a coherent band surgery
[19, Theorem 2.2] (Theorem 4.2). Developing this, we obtain Theorem 4.6. In a similar
way, for the HOMFLYPT polynomial we obtain Theorem 5.4 developing Proposition 5.1,
and for the $Q$ polynomial Theorem 6.2 developing Proposition 6.1. We give some examples
for each of these criteria, which display the efficiency of them. In a forthcoming paper
[24] we will make a detailed report on these criteria.

Notation. For knots and links with up to 9 crossings we use Rolfsen notations [38,
Appendix $C$]. For a knot or link $L$ , we denote by $L!$ its mirror image. For an oriented 2-
component link with $c$ crossings we use the notations $c_{n}^{2}$ and $c_{n}^{2’}$ , where we usually suppose
that linking number of $c_{n}^{2}$ is negative and that of $c_{n}^{2’}$ is positive as in Table 2 in [21]; more
precisely, $c_{n}^{2}$ denotes an oriented link with negative linking number with diagram as in
the table of [38] and $c_{n}^{2’}$ denotes one of the oriented links obtained from $c_{n}^{2}$ by reversing
the orientation of one component.

2 Some invariants

The Conway polynomial $\nabla(L;z)\in Z[z][4]$ , the Jones polynomial $V(L;t)\in Z[t^{\pm 1/2}][17],$

and the HOMFL $YPT$ polynomial $P(L;v, z)\in Z[v^{\pm 1}, z^{\pm 1}][10,17,36]$ are invariants of the
isotopy type of an oriented link $L$ , which are defined by the following formulas:

$\nabla(U;z)=1$ ; (1)
$\nabla(L_{+};z)-\nabla(L_{-};z)=z\nabla(L_{0};z)$ ; (2)

$V(U;t)=1$ ; (3)
$t^{-1}V(L_{+};t)-tV(L_{-};t)=(t^{1/2}-t^{-1/2})V(L_{0};t)$ ; (4)

$P(U;v, z)=1$ ; (5)
$v^{-1}P(L_{+};v, z)-vP(L_{-};v, z)=zP(L_{0};v, z)$ , (6)
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$L+ L_{-} L_{0}$
Figure 4: $A$ skein triple.

where $U$ is the unknot and $(L_{+}, L_{-}, L_{0})$ is a skein triple.
For a skein triple $(L_{+}, L_{-}, L_{0})$ , the link $L_{+}$ is obtained from $L_{-}$ by changing a crossing,

and vice versa, and the link $L_{0}$ is obtained from $L+$ or $L_{-}$ by a coherent band surgery,
and vice versa. Conversely, it is easy to see the following:
Lemma 2.1. If a $c$ -component link $L$ and $a(c+1)$ -component link $M$ are related by a
coherent band surgery, then there exist $c$ -component links $L_{+},$ $L_{-}$ and $(c+1)$ -component
links $M+,$ $M$-such that each of the following is a skein triple: $(L_{+}, L, M),$ $(L, L_{-}, M)$ ,
$(M_{+}, M, L),$ $(M, M_{-}, L)$ .

For a $c$-component link $L,$ $i^{c-1}V(L;-1)$ is an integer and the determinant $\det L$ is
given by $\det L=|V(L;-1)|$ . Putting $t=-1$ in Eq. (4), we obtain

- $V(L_{+};-1)+V(L_{-};-1)=2iV(L_{0};-1)$ ; (7)
Let $(L_{+}, L_{-}, L_{0})$ be a skein triple. Then Murasugi [34, Lemma 7.1] has shown:

$|\sigma(L_{\pm})-\sigma(L_{0})|\leq 1$ . (8)
Since we may consider the link $L_{+}$ or $L_{-}$ as obtained from $L_{0}$ by a coherent band surgery,
and vice versa, we have the following.
Proposition 2.2. (i) If two oriented links $L$ and $L’$ are related by a coherent band surgery,
then

$|\sigma(L)-\sigma(L’)|\leq 1$ . (9)
(ii) If two oriented links $L$ and $L’$ are related by a crossing change, then

$|\sigma(L)-\sigma(L’)|\leq 2$ . (10)
The $Arf$ invariant (or Robertello invariant) [37] of a knot $K$ , Arf $(K)$ , is given by

Arf $(K)=a_{2}(K)\in Z_{2}$ , (11)
where $a_{2}(K)$ is the coefficient of $z^{2}$ of the Conway polynomial of $K$ . Whenever an equality
in this paper contains an Arf invariant it is to be understood in the sense of $mod 2$ . We
say that an oriented link $L$ is related (in the sense of Robertello [37]) to a knot $K$ if there
exists a smooth embedding of a planar surface $F$ in $S^{3}\cross I$ such that $F$ meets $S^{3}\cross\{0,1\}$

transversely in $K$ and $L$ , respectively. Let $L$ be a proper link, that is, the sum of the
linking numbers of any component of $L$ with all the other components is even. We may
define its Arf invariant to be the Arf invariant of any knot $K$ related to it. In particular,
we have:
Proposition 2.3. If a knot $K$ is obtained from a proper 2-component link $L$ by a coherent
band surgery, then Arf$(K)=$ Arf $(L)$ .
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3 Determinant of a link obtained from a 2-bridge knot by a
band surgery

For relatively prime integers $p,$ $q$ with $p>q>0$ and $p$ odd, we let $S_{p,q}$ denote the 2-
bridge knot for which the lens space of type $(p, q)$ is the 2-fold branched cover of $S^{3}$ . More
explicitly, let $a_{1},$ $a_{2},$ $a_{3},$

$\ldots,$
$a_{n}$ be positive integers obtained from the continued fraction

$\frac{p}{q}=a_{1}+\frac{1}{1}$ . (12)

$a_{2}+\overline{a_{3}+\frac{1}{+\frac{1}{a_{n}}}}$

Then $S_{p,q}$ is isotopic to a 2-bridge knot in Conway’s normal form $C(a_{1}, a_{2}, a_{3}, \ldots, a_{n-1}, a_{n})$

as shown in Figure. 5, where the box containing an integer $a$ or $-a,$ $a>0$ , denotes a
2-braid as shown in Figure. 6. Also, $S_{p,-q}$ presents the mirror image of $S_{p,q}$ ; cf. [25,
Sec. 2.1].

Figure 5: The 2-bridge knot $C(a_{1}, a_{2}, a_{3}, \ldots, a_{n-1}, a_{n})$ .

$a$ crossings $a$ crossings

Figure 6: 2-braids.

The following criteria is due to H. Murakami [32, Corollary 2.8].

Proposition 3.1. Suppose that a knot $K$ is obtained from a 2-bridge knot $S_{p,q}$ by a
crossing change. Then there exists an integer $s$ such that:

$|\det K-p|/2\equiv\pm qs^{2} (mod p)$ . (13)

Using this, we may deduce the following.

Theorem 3.2. Suppose that a link $L$ is obtained from a 2-bridge knot $S_{p,q}$ by a coherent
or incoherent band surgery. Then there exists an integer $s$ such that:

$\det L\equiv\pm qs^{2} (mod p)$ . (14)
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Proof. Suppose that $L$ and $S_{p,q}$ are related by a coherent band surgery. Then by Lemma 2.1
there exists a knot $K$ such that $(K, S_{p},{}_{q}L)$ is a skein triple. From Eq. (7) we have

-$V(K;-1)+V(S_{p,q};-1)=2iV(L;-1)$ , (15)
which implies

$2 \det L=|2iV(L;-1)|=|-V(K;-1)+V(S_{p,q};-1)|$ . (16)
Since $K$ and $S_{p,q}$ are related by a crossing change, by Proposition 3.1 there exists an
integer $s$ such that Eq. (13) holds, which implies

$\det K+p\equiv\det K-p\equiv\pm 2qs^{2} (mod 2p)$ , (17)
Since $\det K=|V(K;-1)|$ and $p=|V(S_{p,q};-1)|$ , combining Eqs. (16) and (17), we obtain
Eq. (14).

$\square$

By Theorem 3.2 a 2-bridge knot may have some condition on the values of $\det L$ , where
$L$ is either a 2-component link with $d_{cb}(S_{p},{}_{q}L)=1$ or a knot with $d_{2}(S_{p},{}_{q}L)=1$ . For
2-bridge knots with up to 8 crossings, Table 1 lists these values; the remaining 2-bridge
knots $3_{1},5_{2},6_{2},7_{1},7_{2},7_{6},8_{4},8_{6},8_{7},8_{14}$ have no such restrictions.

Table 1: Values which $\det L$ does not take with $d_{cb}(S_{p},{}_{q}L)=1$ or $d_{2}(S_{p)}{}_{q}L)=1$

Example 3.3. Table 2 shows 2-component links which are not obtained from the 2-bridge
knots in Table 1 by a coherent band surgery. The symbol $\cross$ means that the link in the
row is not obtained from the 2-bridge knot in the column by a coherent band surgery. For
example, the knot $6_{1}$ and the link $6_{1}^{2}$ are not related by a coherent band surgery; moreover
this implies that $K\in\{6_{1},6_{1}!\}$ and $L\in\{6_{1}^{2},6_{1}^{2’}, 6_{1}^{2}!, 6_{1}^{2’}!\}$ are not related by a coherent
band surgery; cf. [15, Table 2], [16, Table II].
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Table 2: Links and 2-bridge knots which are not related by a single coherent band surgery.

4 Coherent band-Gordian distance

The following is Proposition 2.3 in [22]:

Proposition 4.1. If two knots $K$ and $K’$ are related by a sequence of two coherent
band surgeries, then they are related by a single $SH(3)$ -move, and vice versa. Thus
$d_{cb}(K, K’)=2sd_{3}(K, K’)$ and $u_{cb}(K)=2su_{3}(K)$ .

The following is Theorem 2.2 in [19].

Theorem 4.2. If two links $L$ and $L’$ are related by a coherent band surgery, $d_{cb}(L, L’)=1,$

then
$V(L;\omega)/V(L’;\omega)\in\{\pm i, -\sqrt{3}^{\pm 1}\}$ . (18)

Then we have the following, which is given in [22, Theorem 3.1].

Corollary 4.3. If two knots $K$ and $K’$ are related by a single $SH(3)$ -move, $sd_{3}(K, K’)=$

$1$ , then
$V(K;\omega)/V(K’;\omega)\in\{\pm 1, \pm i\sqrt{3}^{\pm 1},3^{\pm 1}\}$ . (19)
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Figure 7: An $SH(3)$-move is correspond to two coherent band surgeries.

Example 4.4. Let $K=4_{1}$ and $K’=3_{1}!\# 3_{1}$ . Then $sd_{3}(K, K’)>1$ ; see [15, Table 1].
Since $\sigma(K)=\sigma(K’)=0$ , the signature cannot show $sd_{3}(K, K’)>1$ . However, since
$V(K;\omega)=-1,$ $V(K’;\omega)=3$ , we can prove by using Corollary 4.3. In Table 3 we list all
such pairs of knots with up to 7 crossings.

Table 3: Pairs of knots $K$ and $K’$ with $|\sigma(K)-\sigma(K’)|\leq 2$ and $sd_{3}(K, K’)>1.$

$\overline{\frac{KK’\sigma(K)\sigma(K’)V(K;\omega)V(K’;\omega)}{4_{1}3_{1}!\# 3_{1}00-13}}$

$5_{2} 3_{1}!\# 3_{1} 2 0 -1 3$
$7_{6} 3_{1}!\# 3_{1} 2 0 -1 3$
$6_{2} 3_{1}\# 3_{1} 2 4 1 -3$
$7_{2} 3_{1}\# 3_{1} 2 4 1 -3$
$7_{3}! 3_{1}\# 3_{1} 4 4 1 -3$

The following is Theorem 5.2 in [24].

Theorem 4.5. Suppose that $a(c+1)$ -component link $L’$ is obtained from a $c$ -component
link $L$ by a coherent band surgery. If $V(L’;\omega)=\eta iV(L;\omega)=\pm i^{c}(i\sqrt{3})^{\delta},$ $\eta=\pm 1$ , then
$i^{c}V(L’;-1)\equiv\eta i^{c-1}V(L;-1)(mod 3^{\delta+1})$ .
Theorem 4.6. Suppose that two links $L$ and $L’$ are related by a sequence of two coherent
band surgeries, $d_{cb}(L, L’)=2$ . Let $L$ be a $c$ -component link. If $V(L;\omega)=-V(L’;\omega)=$
$\pm i^{c-1}(i\sqrt{3})^{\delta}$ , then

$i^{c-1}V(L;-1)\equiv-i^{c-1}V(L’;-1) (mod 3^{\delta+1})$ (20)
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By Proposition 4.1, we have:

Corollary 4.7. If two knots $K$ and $K’$ are related by a single $SH(3)$ -move, $sd_{3}(K, K’)=$

$1$ , and $V(K;\omega)=-V(K’;\omega)=\pm(i\sqrt{3})^{\delta}$ , then

$V(K;-1)\equiv-V(K’;-1) (mod 3^{\delta+1})$ (21)

Example 4.8. Let $K=6_{1}$ and $K’=3_{1}$ . Then $sd_{3}(K, K’)>1$ . Since $\sigma(K)=0,$

$\sigma(K’)=2$ , the signature cannot show $sd_{3}(K, K’)>1$ . However, since $V(K;\omega)=i\sqrt{3},$

$V(K’;\omega)=-i\sqrt{3},$ $V(K;-1)=9,$ $V(K’;-1)=-3$ , we can prove by using Corollary 4.7.
In Table 4 we list all such pairs of knots with up to 7 crossings.

Table 4: Pairs of knots $K$ and $K’$ with $|\sigma(K)-\sigma(K’)|\leq 2$ and $sd_{3}(K, K’)>1.$

$\overline{\frac{KK’\sigma(K)\sigma(K’)V(K;\omega)V(K’;\omega)V(K;-1)V(K’;-1)}{6_{1}3_{1}02i\sqrt{3}-i\sqrt{3}9-3}}$

$6_{1} 7_{4} 0 -2 i\sqrt{3} -i\sqrt{3} 9 -15$
$6_{1} 7_{7} 0 0 i\sqrt{3} -i\sqrt{3} 9 21$
$6_{1} 3_{1}!\neq 4_{1} 0 -2 i\sqrt{3} -i\sqrt{3} 9 -15$
$7_{4}! 7_{7} 2 0 i\sqrt{3} -i\sqrt{3} -15 21$
$7_{7}! 7_{7} 0 0 i\sqrt{3} -i\sqrt{3} 21 21$

$\underline{3_{1}\neq 4_{1}7_{7}20i\sqrt{3}-i\sqrt{3}-1521}$

Similarly, we have:

Corollary 4.9. If two 2-component links $L$ and $L’$ are related by a sequence of two
coherent band surgeries, $d_{cb}(L, L’)=2$ , and $V(L;\omega)=-V(L’;\omega)=\pm i(i\sqrt{3})^{\delta}$ , then

$V(L;-1)/i\equiv-V(L’;-1)/i (mod 3^{\delta+1})$ (22)

In Table 4 we list all pairs of 2-component links with up to 6 crossings, which can
be shown to have coherent band-Gordian distance $>2$ by Corollary 4.9 but cannot be
shown by using the signature. Thus by Table 3 in [15] we can conclude they have coherent
band-Gordian distance 4.

Table 5: Pairs of links $L$ and $L’$ with $|\sigma(L)-\sigma(L’)|\leq 2$ and $d_{cb}(L, L’)=4.$

$\overline{\frac{LL’\sigma(L)\sigma(L’)V(L;\omega)V(L’;\omega)V(L;-1)/iV(L’;-1)/i}{3_{1}\neq H_{+}6_{3}^{2}13-\sqrt{3}\sqrt{3}6-12}}$

$3_{1}\# H+ 6_{3}^{2’} 1 -1 -\sqrt{3} \sqrt{3} 6 -12$
$T_{6’}! 6_{3}^{2} 1 3 -\sqrt{3} \sqrt{3} 6 -12$

$\underline{T_{6^{J}}!6_{3}^{2’}1-1-\sqrt{3}\sqrt{3}6-12}$
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5 The HOMFLYPT polynomial

Let $\Sigma_{k}(L)$ be the $k$-fold cyclic covering space of $S^{3}$ branched over a link $L$ . Lickorish and
Millett [27, Theorem 2] have shown:

$P(L;i, i)=(-2)^{\tau/2}$ , (23)

where $\tau=\dim H_{1}(\Sigma_{3}(L);Z_{2})$ . Putting $v=z=i$ in Eq. (6), we obtain

$P(L_{+};i, i)+P(L_{-};i, i)+P(L_{0};i, i)=0$ , (24)

where $(L_{+}, L_{-}, L_{0})$ is a skein triple. Using this, we have a criterion on the HOMFLYPT
polynomials of two links which are related by a crossing change [29, Theorem 1.1] or a
coherent band surgery [21, Proposition 2.4].

Proposition 5.1. If two links $L$ and $L’$ are related by either a crossing change or a
coherent band surgery, then

$P(L;i, i)/P(L’;i, i)\in\{1, -2^{\pm 1}\}$ . (25)

The Conway polynomial $\nabla(L;z)$ of a $c$-component link $L$ may be written $\nabla(L;z)=$

$z^{c-1}\varphi(z),$ $wh_{\sim}ere\varphi(z)$ is an integer polynomial in $z^{2}$ . Then we obtain a symmetric integer
polynomial $\triangle_{L}(t)$ by

$\triangle_{L}(t)=\varphi(t^{1/2}-t^{-1/2})\sim$ , (26)
which is called the Hosokawa polynomial [12]; cf. [33, pp. 120]. Then Hosokawa and
Kinoshita [13] have shown the following; cf. [28, Corollary 9.8]:

Proposition 5.2. The order of the first homology group of the $k$ -fold cyclic covering space
of $S^{3}$ branched over a $c$ -component link $L,$ $H_{1}(\Sigma_{k}(L);Z)$ , is given by

$k^{c-1} \prod_{j=1}^{k-1}\triangle_{L}(\xi^{j})\sim$ , (27)

where $\xi w$ a primitive $kth$ root of unity.

Using Proposition 5.2, we obtain:

Lemma 5.3. Let $L$ be a $c$ -component link. If $P(L;i, i)=(-2)^{h}$ , then

$[\nabla(L;z)/z^{c-1}]_{z^{2}=-3}\equiv 0 (mod 2^{h})$ . (28)

Using this lemma, we obtain the following.

Theorem 5.4. Suppose that $a(c+1)$ -component link $L’$ is obtained from a $c$ -component
link $L$ by a coherent band surgery. If $P(L;i, i)=P(L’;i, i)=(-2)^{h}$ , then

$[ \frac{\nabla(L;z)+z\nabla(L’;z)}{z^{c-1}}]_{z^{2}=-3}\equiv[\frac{\nabla(L;z)-z\nabla(L’;z)}{z^{c-1}}]_{z^{2}=-3}\equiv 0$ $(mod 2^{h+1})$ . (29)
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6 The $Q$ polynomial

The $Q$ polynomial $Q(L;z)\in Z[z^{\pm 1}][3,11]$ is an invariant of the isotopy type of an
unoriented link $L$ , which is defined by the following formulas:

$Q(U;z)=1$ ; (30)
$Q(L_{+};z)+Q(L_{-};z)=z(Q(L_{0};z)+Q(L_{\infty};z))$ , (31)

where $U$ is the unknot and $(L_{+}, L_{-}, L_{0}, L_{\infty})$ is an unoriented skein quadruple.

$)(\wedge\vee$

$L_{+}$ $L_{-}$ $L_{0}$ $L_{\infty}$

Figure 8: An unoriented skein quadruple.

Let $\rho(L)=Q(L;(\sqrt{5}-1)/2))$ . Then Jones [18] has shown

$\rho(L)=\pm\Gamma 5$ (32)

where $r=\dim H_{1}(\Sigma(L);Z_{5})$ .
Furthermore, Rong [39] has shown that there are six cases for the ratios among $\rho(L_{-})$ ,

$\rho(L_{+}),$ $\rho(L_{0}),$ $\rho(L_{\infty})$ as in Table 6.

Table 6: The values of the $Q$ polynomials at $z=(\sqrt{5}-1)/2.$

Using Table 6, we have criteria on the $Q$ polynomials of two links which are related
by a crossing change [40, Theorem 4.1] or a band surgery [19, Theorem 3.1].

Proposition 6.1. (i) If two links $L$ and $L’$ are related by a crossing change, then

$\rho(L)/\rho(L’)\in\{\pm 1, -\sqrt{5}^{\pm 1}\}$ . (33)
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(ii) If two links $L$ and $L’$ are related by a band surgery, then

$\rho(L)/\rho(L’)\in\{\pm 1, \sqrt{5}^{\pm 1}\}$ . (34)

Moreover, using Table 6, we have the following.

Theorem 6.2. Suppose that two links $L$ and $L’$ are related by either a crossing change
or a band surgery and that $\rho(L)=\rho(L’)=\pm\Gamma 5$ . Then

$\det L+\det L’\equiv 0$ $or$ $\det L-\det L’\equiv 0$ $(mod 5^{r+1})$ . (35)

Example 6.3. $d_{cb}(9_{39}!, 6_{2}^{2})>1$ . Since $\rho(9_{39}!)$ $=\rho(6_{2}^{2})=-\sqrt{5},$ $\det(9_{39}!)=55$ , and
$\det(6_{2}^{2})=10$ , the result follows by Theorem 6.2. Note that since $\sigma(9_{39}!)=2,$ $\sigma(6_{2}^{2})=3,$

we cannot use Proposition 2.2.

7 Table of $d_{cb}(K, K’)$

We give a table of coherent band-Gordian distances between two knots (cf: [15, Table 1])

Table 7: Coherent band-Gordian distances between two knots with up to 6 crossings.

$\dagger$ : corrected
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Table 8: Coherent band-Gordian distances between two knots with up to 7 crossings.

The symbol2/4 means $d_{cb}(K, K’)=2$ or 4.
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