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The hypersurface in the sphere

Yang Jiang
School of Mathematics and Statistics, Northeast Normal University

Abstract

We consider hypersurfaces in the unit lightlike sphere. The unit sphere can be
canonically embedded in the lightcone and de Sitter space in Minkowski space. We
investigate these hypersurfaces in the framework of the theory of Legendrian dualities
between pseudo-spheres in Minkowski space. This is an anouncement of the results in
[15]

1. Introduction

In [2, 3], professor Izumiya has introduced the mandala of Legendrian dualities between
pseudo-spheres in Minkowski space. There are three kinds of pseudo-spheres in Minkowski
space (i.e., Hyperbolic space, de Sitter space and the lightcone). Especially, if we investigate
spacelike submanifolds in the lightcone, those Legendrian dualities are essentially useful
(see, also [7]). For de Sitter space and the lightcone in Minkowski (n + 2)-space, there exist
naturally embedded unit n-spheres. Moreover, we have the canonical projection from the
lightcone to the unit sphere embedded in the lightcone (cf., §2). In this paper we investigate
hypersurfaces in the unit n-sphere in the framework of the theory of Legendrian dualities
between pseudo-spheres in Minkowski (n + 2)-space ([3, 4, 12, 13], etc.). If we have a
hypersurface in the unit n-sphere, then we have spacelike hypersurfaces in the embedded
unit n-sphere in the lightcone and de Sitter space. Therefore, we naturally have the dual
hypersurfaces in the lightcone as an application of the duality theorem in [3]. There are
two kinds of lightcone dual hypersurfaces of a hypersurface in the unit n-sphere. One is the
dual of the hypersurface of the unit n-sphere embedded in de Sitter space and another is
the dual of the hypersurface of the unit n-sphere embedded in the lightcone. By definition,
these dual hypersurfaces are different.

On the other hand, we have studied the curves in the unit 2-sphere and the unit 3-sphere
from the view point of the Legendrian duality in [5, 6]. In the unit 2-sphere, it is known
that the evolute of a curve in the unit 2-sphere is the dual of the tangent indicatrix of the
original curve [11]. We have shown that the projection images of the critical value sets
of lightcone dual surfaces for a curve in the unit 2-sphere coincide with the evolute of the
original curve in [5]. However, this fact doesn’t hold for a curve in unit 3-sphere (cf., [6]).
For the curve case, these facts has been shown by the direct calculations in [5, 6]. We
have not known the geometric reason why the situations are different. In order to clarify
these situation, we investigate hypersurfaces in the unit n-sphere from the view point of the
theory of Legendrian singularities. The curves in the unit 2-sphere can be considered as a
special case of this paper. We can also show that the projection images of the critical value
sets of two different lightcone dual hypersurfaces for a hypersurface in the unit n-sphere
also coincide with the spherical evolute (cf., [10]) of the original hypersurface. We interpret



geometric meanings of the singularities of those two lightcone dual hypersurfaces. Here,
we remark that we do not have the notion of tangent indicatrices for higher dimensional
submanifolds in the sphere. Therefore, the situation is completely different from the curve
case. In [15], we give a classification of the generlc singularities of the lightcone duals of the
surface in the unit 3-sphere.

All maps and submanifolds considered here are of class C° unless otherwise stated.

2. The basic concepts
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Let R™"*2 be an (n-+2)-dimensional vector space. For any two vectors @ = (29,21, ..., Zni1), y =

(40,Y15- - -, Yns1) in R™*2, their pseudo scalar product is defined by (x,y) = —=zqyo +
Z1Y1 + ... + Tny1Yns1- Here, (R™F2,(,)) is called Lorentz- Minkowski (n 4 2)-space (simply,
Mmkowskz (n+2)-space), which is denoted by RT 2. For any (n+1) vectors @;, @, . .., Tn i1 €
R7*2, their pseudo vector product is defined by

__eo el e en+1
0 1 n+1
xl ml e 1
O .
I NZIN . ANBpy1 = 2 2 ,
mo xl DERERY $n+1
n+l n+1 n+1
where {eo, e, -, eni1} is the canonical basis of Rf™ and x; = (29,z},---,2"*!). A

non-zero vector € R772 is called spacelike, lightlike or timelike if (m ::3) > 0, (a: x)=0or
(x,x) <0 respectlvely The norm of ¢ € R72 is deﬁned by || = ||= v/|[{z, z)|. We define
the de Sitter (n + 1)-space by

St = {x e R}? | (x, ) = 1}.
We define the closed lightcone with the-vertex a by
| LC, = {x e R7*? | (x — a,x — a) = 0}.
We define the open lightcone at the origin by
— {z € RI*\(0} | (a,) = 0}.

We consider a submanifold in the lightcone defined by S? = {x € LC* | 2; = 1}, which is
called the lightlike unit sphere. We have a projection 7 : LC* —» S% defined by ’

(x) =2 (1 — .,:—Uﬁl—),
mo Zo

where & = (0,21, ... Zn11). We also define the n-dimensional Buclidean unit sphere in R3*

by S§ = {x € Sf'” | zo = 0}, where R§™ = {x € R7*? | 2, = 0}.

Let # : U — S7 be an embedding from an open set U C R"~!. We identify M = x(U)
with U through the embedding . Obviously, the tangent space T, M are all spacelike (i.e.,
consists only spacelike vectors), so M is a spacelike hypersuface in ST C R”+2 We have
amap ® : S7 — ST defined by ®(v) = v — e, which is an 1sometry Then we have a
hypersurface & : U — Si defined by Z(u) = ®(x(u)) = z(u) — e, so that x and F have the
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same geometric properties as spherical hypersurfaces. For any p = «(u), we can construct
a unit normal vector n(u) as

T(u) Neg A&y, (U)A .. Az, (u)

|Z(u) ANeg Ay, (W) A ... ATy, (W]

n(u) =

We have (n(u),n(u)) = 1, (eo,e0) = —1 and (e, ) = (n,z,,) = (n,x) = 0. The system
{eo, n(u), T(u), .y, (u), ..., &y, ,(u)} is a basis of 1,R7"2. We define a map G : U — S
by G(u) = n(u). We call it the Gauss map of the hypersurface M = x(U). We have a linear
mapping provided by the derivation of the Gauss map at p € M, dG(u) : T,M — T, M.
We call the linear transformation S, = —dG(u) the shape operator of M at p = x(u). The
eigenvalues of S, denoted by {x;(p) ;‘:“11 are called the principal curvatures of M at p. The
Gauss-Kronecker curvature of M at p is defined to be K(p) = det S,. A point p is called an
umbilic point if all the principal curvatures coincide at p and thus we have S, = x(p)idy, m
for some x(p) € R. We say that M is totally umbilic if all the points on M are umbilic. Since
x is a spacelike embedding, We have a Riemannian metric (or the first fundamental form)
on M given by ds® = Y 7" 1g”du,du,, where g;;(u) = (@y,(u),z,,(u)) for any u € U.
The second fundamental form on M is given by h;;(u) = —(ny,(u), z.,(u)) at any u € U.
Under the above notation, we have the following Weingarten formula [9]:

n—1
—Zhgwuj(iz L...,n—1),
i=1

where (h?) = (hi)(g*) and (g*) = (ge;)~1. This formula induces an explicit expression
of the Gauss-Kronecker curvature in terms of the Riemannian metric and the second funda-
mental invariant given by K = det(h;;/det(gog). A point p is a parabolic point if K(p) = 0.
A point p is a flat point if it is an umbilic point and K (p) =

In [10] the spherical evolute of a hypersurface has been introduced and investigated the
singularities. Each spherical evolute of M = E(U) is defined to be

E%=i!1{:}:( l—t(?z /1+n2(p) n(u) )‘p_.w(u EM—w(U)}

3. The lightcone dual surfaces and the lightcone height
functions

In (3], professor Izumiya has introduced the Legendrian dualities between pseudo-spheres
in Minkowski space which is a basic tool for the study of hypersurfaceﬁ in pseudo-spheres
in Minkowski space. We define one-forms (dv,w) = —wodvy + 31" = ! widv;, (v,dw) =
—vgdwy + Z"+11 v;dw; on R”+2 X R”+2 and consider the following two double fibrations:
(1)(a) LC* x ST D> Az = {(v w) | (v, w) =1},

()7T31 Ag——)LC , 732 & Ag——)SI ;

(C) 931 = (d'v w>lA3,932 E ('v dw)|A3
(2)(a) LC* x LC* D Ay = {(v,w) | (v,w) = =2},

(b) T4y - A4 — LC* yT42 ¢ A4 — LC*

(C) 041 = (d’U >IA4,942 = ('v dw)|A4
Here, ;1 (v, w) = v, mi2(v,w) = w. We remark that ;;!(0) and 9 5 (0) define the same
tangent hyperplane field over A; which is denoted by K; (1. =3,4). It has been shown in [3]



that each (A;, K;)(¢ = 3,4) is a contact manifold and both of 7;;(j = 1,2) are Legendrian
fibrations. Moreover those contact manifolds are contact diffeomorphic to each other. In [3]
we have defined four double fibrations (A;, K;) (¢ = 1,2,3,4) such that these are contact
diffeomorphic to each other. Here, we only use (As, K3) and (A4, K4). If we have an
isotropic mapping i : L — A; (i.e., i*6;; = 0), we say that m;;(i(L)) and m(i(L)) are
A;-dual to each other (i = 3,4). For detailed properties of Legendrian fibrations, see [1].
We now define hypersurfaces in LC* associated with the hypersurfaces in S7 or S7. Let

x : U — ST be a hypersurface. We define Z—D% U xR — LC* by

LDxr(u, 1) = T(w) + pn(u) £ /42 + leo.
We also define LDy : U x R — LC* by
LDy (u, p) = (u*/4 = D)F(u) + pn(u) + (4*/4+ eo.
Then we have the following proposition.

Proposition 3.1. Under the above notatwn we have the follo'wmgs

(1) = and LDT,I are As-dual to each other.
(2) ® and LDy are Ay-dual to each other.

We call each one of E—E the lightcone dual hypersurface along M C S§ and LDys the

lightcone dual hypersurface along M C S7. Then we have two mappings ’R’O_L—E']:% :UxR —
ST and wo LDy : U X R — ST defined by

1
+ (ﬁf \/__'n(u ) -+ €y,
p?—4 Ap

o LD ) = T(u) +
7o LDy ) = Lom(w) 4ty

7o LD3(u,p) =

n(u) + ep.

Let  : U — ST be a hypersurface in the lightlike unit sphere. Then we define two
families of functions as follows:

H:UXLC* —R; Hu,?) = (Z(u),s) -1,
H:UxLC*—R; H(u,v)=(x(u),v)+2.

We call H a lightcone hezght functwn' of the de Sitter spherical hypersurface M. For any fixed
Ty € LC*, we denote hy, (u) = H(u,Dy). We also call H a lightcone height function of the
lightlike spherlcal hypersurface M. For any fixed vo € LC*, we denote h,,(u) = H (u, vo).

Proposition 3.2. Let M be a hypersurface in S§ and H the lightcone height function on
M. For p=x(u) and p = T(u) # vF, we have the followings:
(1) hgt(u) = Ohgx /Oui(u) =0(i = 1,...,n — 1) if and only if
= ﬁ-:-tﬁ(u,,u) for some pu € R\{0}.
(2) Py (u) = Ohgs /Ous(u) =0(i = 1,...,n— 1) and det Hess (hgt)(u) = 0 if and only if

= _miiz(u, ), 1/p is one of the non-zero principle curvatures x;(p) of M.
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Proposition 3.3. Let M be a hypersurface in ST and H be the lightcone height function on
M. For p= x(u) # v, we have the followings.
(1) hy(u) = Ohy/Oui(u) =0, (i =1,...,n— 1) if and only if

v = LDy (u,u) for some p € R\{0}.

(2) hy(u) = Ohy/Ous;(u) =0, (i=1,...,n— 1) and det Hess (h,)(u) =0 if and only if
v=LDp(u,pu), (u/4—1/u) is one the non-zero principle curvatures x;(p) of M.

Let (u,u) be a singular point of each one of L——Diﬁ By Proposition 3.2, we have 1/u =
ki(p)(1 < i < n— 1), where k;(p) is one of the non-zero principle curvatures of M at

p = x(u). It follows that x4 = 1/k;(p). Therefore the critical value sets of f—ﬁij\t,r— are given

by
n—1
C(ID%) = Eu)+Ln( + + leg uEU}
(L0 L:Jl{( "% T+

Let (u ) be a singular point of LDy (u,x). By Proposition 3.3, we have /4 — 1/p =

ki(p)(1 <1 < n—1). It follows that we have u = 2(k;(p) £ \/1+ #2(p)). For simplification,
we write that 0% (k;(p)) = i(p) £ v/1+ 62(p). Then the critical value sets of LDy are
given by

C(LDu)* U {((0™ (k:(P)))? = &B(w) + 20% (s (p))me(w) + (0% (m:(p)))? + 1)eo | u € U }.

We respectively denote that

n—1 _ 1 1
LF—;;—:g{w(u)-*-@n(u)i“%‘FleolueU }a
n—1

LFy = [JA( (6% (k:(p)))? = DE(w) + 20% (sa(p))m(us) + (0% (ki(p)))* + Leo |u €U }.

=1

We respectively call each one of L+ZE the lightcone focal surface of the de Sitter spherical

hypersurface & and each one of LFj; the ligtcone focal surface of the lightcone spherical
hypersurface . Then the projections of these surfaces to S7 are given as follows:

|_wip) _ [ 1
W(C(LD— { ( T 2(p) T(u) + l+l€2(p) )+e0'u€U},

T (et (mi(p)? -1 20% (ki(p))
m(OWDu)* U{‘ )71 )+ i Fin Feoluey |

By definition, we have eiM =®orn(C (Eﬁ)), where each one of E% is the spherical evolute
of M = E(U). This means that the spherical evolutes are obtained from the critical value



sets of the hghtcone dual hypersurfaces of M = m(U). Since 0 (k;(p)) = ki(p)£/1+ K2(p
we have(o® (k;(p)))? = 2k;(p)o* (ki(p)) + 1 . By straightforward calculatlons we have

((ai(m(pm?—l) _ K2(p)(0* (ri(p)))? K
FERPTI) ~ RO + R~ T+

and

( 20%(i(p)) )"': (0% (ki(p))? __ 1
@EEED2+1) RO @)+ (@ mE)? 1+

Thus we have the following proposition.
Proposition 3.4. Let x : U — ST be a hypersurface in ST. Then

()’ =1 205 (sip)) _ 20 L
(ofw(p)))u1""(”)+(ai(m,-(p>>>2+1"(“)‘*(\/Hn%(p) It T ™ )>‘

We define @ = ® o : LC* — SF. Then we have the following theorem as a corollary of
Proposition 3.4.

Theorem 3.5. Both of the projections of the critical value sets _C’(L_U%,I—) and C(LDy)*
in the unit sphere S§ are the images of the spherical evolutes of M.

#(C(LDg) = #(C(LDm)*) = k.

4. The lightcone dual hypersurfaces as wave fronts

We now naturally interpret the lightcone dual hypersurfaces of the submanifolds in S7 as
wave front sets in the theory of Legendrian singularities. Let 7 : PT*(LC*) — LC™* be the
projective cotangent bundles with canonical contact structures. Consider the tangent bundle
7 : TPT*(LC*) — PT*(LC*) and the differential map dx : TPT*(LC*) — T(LC*) of
7. For any X € TPT*(LC*), there exists an element o € T*(LC*) such that 7(X) = [a].
For an element V € 1,(LC*), the property (V) = 0 dose not depend on the choice of
representative of the class [o]. Thus we have the canonical contact structure on PT*(LC*)
by -

K ={X e TPT*(LC*) | 7(X)(d7(X))} = 0.

On the other hand, we consider a point v = (vg,v1,...,Vnt1) € LC*, then we have vy =

+4/v? 4+ ...+ 02, . So we adopt the coordinate system (v1,...,v,41) of LC*. For the local
coordinate neighborhood (U, (£4/v? 4+ ...+ v2, |, v1,...,Un41)) in LC*, we have a trivial-

ization PT*(LC*) = LC* x P(R™)* and we call ((£4/v? + ...+ v2 1,01, .., Vn41),[&1 ¢

: €nt1]) homogeneous coordinates of PT*(LC*), where [£] : -+ : £,41] are the homoge-
neous coordinates of the dual projective space P(R")*. It is easy to show that X € K, )
1f and only if E"“ wi& = 0, where dr(X) = "+1 wi0/0v; € 1,LC*. An immersion

:. L — PT*(LC*) is said to be a Legendrian i 1mmers1on if dim L = n and d «(TyL) C Kyq)
for any ¢ € L. The map 7 o is also called the Legendrian map and we call the set
W (i)=imageT o4 the wave front of i. Moreover, i(or the image of ) is called the Legendrian



44

lift of W(s). Let F : (R* x R*,0) — (R,0) be a function germ. We say that F is a
Morse family of hypersurfaces if the map germ A*F : (R* x R*,0) — (R**! 0) defined
by A*F = (F,0F/0u;,--- ,0F/0ug). is nonsingular. In this case, we have the following
smooth (n — 1)-dimensional smooth submanifold. ‘

. 5F ‘
To(F) = § (u,v) € (R* xR™,0) | F(u,v) = z—(u,v) = = E(u,v) =0p = (A"F)"(0).
Ou, Ouy,
The map germ Ly : (X.(#),0) — P1*R"™ defined by
OF oF
Lp(u,v) = ('v, [57):(“’”) N —(%—n(u,v)J> :
is a Legendrian immersion germ. Then we have the following fundamental theorem of
Arnol’d and Zakalyukin [1, 14].

Proposition 4.1. All Legendrian submanifold germs in PT*R™ are constructed by the above
method. .

We call F a generating family of Lr(X.(F)). Therefore the wave front of Lp is
oF

W(Lp) = {v € R" | Ju € R* such that F(u,v) = —(u,v) = ... = Q—F—(u,v) =0,.
8’(1/1 aUk

We claim here that we ha\)e a trivialization as follows:
n+1
®: PT*(LC*) = LC* x P(R™)*; ®([) _ &dvy]) = (Wo,v1, -+, Uns1), [ 1 -+ - Ena])

=1
by using the above coordinate system.

Proposition 4.2. The lightcone height function H : U x LC* — R 18 a Morse family of
the hypersurface around (u,v) € L.(H).

We also have the following proposition.

Proposition 4.3. The lightcone height function H : U x LC* — R is a Morse family of
the hypersurface around (u,v) € ¥..(H).

Here, we consider the Legendrian immersion
Ly:(u,p) — Ay La(u, p) = (LDym (u, p), z(u)).
We define the following mapping: ‘
U: Ay — LC* x P(R™)"; ¥ (v, w) = (v, [vow; —v1wp : + - : VoWnt1 — Unt1Wo))-

For the canonical contact form 8 = E?;Lll sdv; on PT*(LC*), we have ¥*0 = (vow; —
viwe)duy + - - + (VWni1 — Vnt1W0)dVny1|a, = vo(—wodvg + widvy + -+ + Wpi1dvp 1) —
wo(—vodvy + vV1dv1 + - + Unt1dUni1)|a, = vo(w, dv)|a, = vo0a2|a,. Thus ¥ is a contact
morphism.
Theorem 4.4. For any hypersurface  : U — S%, the lightcone height function H :
U x LC* — R is a generating family of the Legendrian immersion L.

Similarly, we consider the Legendrian immersions £3 : (u, u) — As defined by LE(u,p) =
(LD7f(u, p), Z(u)). Then we have the following theorem.

Theorem 4.5. For any hypersurface ® : U — S}, the lightcone height function H :
U x LC* — R is a generating family of the Legendrian immersions Lgi.



5. Contact with parabolic (n — 1)—sphetes and parabolic
n-hyperquadrics

Before we start to consider the contact between hypersurfaces in the sphere with parabolic
(n — 1)-sphere and parabolic n-hyperquadrics, we briefly review the theory of contact due
to Montaldi[8]. Let X;,Y;(¢ = 1,2) be submanifolds of R"® with dim X;=dim X, and
dimY;=dim Y;. We say that the contact of X; and Y; at y; is the same type as the contact of
X2 andYs at y, if there is a diffeomorphism & : (R™, ;) — (R™, y2) such that &(X;) = X,

and ®(Y1) = Y. In this case, we write K(X1,Y1;y1) = K(Xa,Ys;y2). Of course, in the ,

definition, R™ can be replaced by any manifold. Two function germs f; : (R™, a;) — R(4 =
1,2) are called K-equivalent if there is a diffeomorphism germ @ : (R™,a;) — (R", a3), and
a function germ A : (R",a;) — R with A(a1) # 0 such that f1 = A- (fa 0o ®).

Theorem 5.1 (Montaldi [8]). Let X;, Y; (for i=1,2) be submanifolds of R™ with dimX; =dimX

and dimY, =dimYs. Let g; : (X;,z;) — (R",yl) be immersion germs and f; : (R™,y;) —
(RP, 0) be submersion germs with (Y;, ;) = (£ (0),v:). Then K(X1,Y1;91) = K(Xg, Yo; y2)
if and only if f1 0 g1 and fa 0 gy are K- equwalent

Returning to the lightcone dual hypersurface LDjs, we now consider the function  :
8% x LC* — R defined by h(u,v) = (u,v) + 2 and the function g : LC* x LC* — R
defined by g(u,v) = (u,v) +2 . For a given vg € LC*, we denote b, (u) = h(u, vg) and
Bu,(®) = g(u, vo), then we have h;1(0) = S?NH P(wo, —2) and g; 1 (0) = LC*NHP(vg, —2).
For any ug € U, up € R, we take the point v = LDy (ug, po)- Then we have

Buo 0x(up) = go(x X idrex) (w0, Vo) = by, oz () = ho(x Xidrcs)(ug, vo) = H(up,vg) =0.

We also have o ) a(h )
Hug © T vy O
—_—— = ——— = e— = O
Ou; (uo) Au; (uo) Ou; (uo, vo)
fori=1,---,n~—1. This means that the (n—1)-sphere b }(0) = STNHP(vo, —2) is tangent
to M = x(U) at po = x(ug). In this case, we call it the lightcone tangent parabolic (n— 1)-
sphere of M at po, which is denoted by TPS7 !(x,ug). The n-hyperquadric g, L(0) =
LC* N HP(vo, —2) is also tangent to M at py. In this case, we call it the lightcone tangent
parabolic n-hyperquadric of M at py, which is denoted by TPH "(a, uo) For the lightcone
dual surfaces LDjt,, we consider a function h : SF x LC* — R defined by h(u,v) =
(u,v) — 1 and a function § : S7™* x LC* — R defined by §(u,v) = (u,v) — 1. For a

given vy € LC*, we denote that b, (@) = h(u,v0) and g, (u) = §(u,vo). Then we have

E;OI (0) = SO N HP(vg, 1) and gvel(O) SN HP(vg,1). For any ug € U and the points

Ty = LDM(uO,yO) we have

Gy 0F(10) = Go(@xidror) (w0, Ty) = b oF(uo) = ho(@xidro-) (w0, By) = H(uo, T3) = 0.
We also have ( G )

OFox o) O(bgt o F OH _

_—#‘uo Z——a(jui—UO :a—ui(UO,vg:)IO

fori=1,--.,n—1.1It follows that each one of the (n — 1)-sphere E;Oil (0) = S NHP(w%,1)

is tangent to M at Py = T(ug). In this case, we call each one the tangent parabolic
(n — 1)-sphere of M at By, which are denoted by TPSg‘*li(w,uo). Also we have each of
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the n-hyperquadric §=1 (0) = SP*' N HP(wE, 1) is tangent to M at . In this case, we call
Yo

each one the de-Sitter tangent parabolic n-hyperquadric of M at p,, which are denoted by
TPST (&, ug).

Let ; : (U,w;) — (S7,pi)(¢ = 1,2) be hypersurface germs. For v; = LDug, (u;, ps),
we denote h;,, : (U,u;) — (R,0) by h;,,(u;) = H(u;,v;). Then we have h;,, (u) =
(Bi.v, 0%;) (1) = (g, 02;)(u). For oF = L_D%E,I- (Wi, i), We denote b, o= : (U, u;) — (R,0)
by k;, o= (wi) = H(uy, +). Then we have b, ot (u) = (b; 5= o) (u) = (8; 5+ o %) (u). By
Theorem 5.1, we have the following prop051t10n

Proposition 5.2. Let x; : (U,u;) — (S%,p:)(i = 1,2) be hypersurface germs. For v; =
LD, (us, i), the following conditions are equivalent:
(1) K(wl(U),TPS:‘_—l(wl,ul),vl) = K(mz(U),TPSi_l(wz,’UQ),'Uz).
(2) K(x1(U), TPH™(x1,u,),v1) = K(x2(U), TPH" (22, u2), v2).
(3) b1y, and hg,v2 are K-equivalent.
Moreover, for 6 = Ej@ (s, i), the following conditions are equivalent:
(4) K(2, (U), TPSy li(wlvul)avl)— K (z(U), TPS5™ (g, ug), T3 ).
(5) K(21(U), TPST* (1, 1), ¥7) = K(@2(U), TPST* (wa,uz) Ty).

(6) hy 5 and h2’—;L— are K-equivalent.

On the other hand, we return to the review on the theory of Legendrian singularities. We
introduce a natural equivalence relation among Legendrian submanifold germs. Let F,G :
(R* x R",0) — (R, 0) be Morse families of hypersurfaces. Then we say that Lp(X,(F))
and Lg(X.(G)) are Legendrian equivalent if there exists a contact diffeomorphism germ
H : (PT*R",z) — (PT*R", 2’) such that H preserves fibers of m and that H(Lp(Z.(F))) =
Lz(E.(Q)), where z = Lp(0),2 = L(0). By using the Legendrian equivalence, we can
define the notion of Legendrian stability for Legendrian submanifold germs by the ordinary
way (see, [1][Part III]). We can interpret the Legendrian equivalence by using the notion of
generating families. We denote by &, the local ring of function germs (R™,0) — R with
the unique maximal ideal 90, = {h € &, | R(0) =0 }. Let F, G : (RF x R",0) — (R, 0) be
function germs.

Let @Qn41(,up) be the local ring of the function germ h,, : (U, uy) — R defined by

Qn1(x,u0) = Co (U)/ ((hoo) oz vy + MREY),

and Q| (T, uo) be the local rings of the function germs Fﬁoi : (U,up) — R defined by
Qi1 (B, u0) = CH (V) ((hgt ) oo vy + P D),

where vy = LDy (uo, o), T3 = fD_—iM-(uo, o) and CZ2(U) is the local ring of function germs
at ug with the unique maximal ideal I, _;.

Theorem 5.3. Let x; : (U,u;) — (ST,p:)(i = 1,2) be hypersurface germs such that
the corresponding Legendrian immersion germs are Legendrian stable. Then the following
conditions are equivalent.

(1) The lightcone hypersurface germs LDy, (U x R) and LDy, (U x R) are diffeomorphic.

(2) Legendrian immersion germs L} and L2 are Legendrian equivalent.

(3) The lightcone height functions germs H; and Hy are P-K-equivalent.

(4) b1, and hy,, are K-equivalent.

(5) K(:I:l(U), TPS_?_—l (:171, ’U,l), 'Ul) = K(mg(U),TPSi_l(wg, 'UQ), ’02).



(6) K(:cl(U), TPH”(:Bl,ul), ’01) = K(:L'Q(U), TPH"(:BQ, ’UQ), 'v2) .
(7) Local rings Qni1(x1,u1) and Qui1(x2,us) are isomorphic as R-algebras.

Theorem 5.4. Let ®; : (U,u;) — (S§,p:)(i = 1,2) be hypersurface germs such that
the corresponding Legendrian immersion germs are Legendrian stable. Then the following
conditions are equivalent.

(1) The lightcone hypersurface germs ID% 77, (U xR) and D% 77, (U xXR) are diffeomorphic.

(2) Legendrian immersion germs Eli and CQi are Legendrian equivalent.

(3) The lightcone height functions germs H, and Ho are P-K-equivalent.

4) hl o+ and by vt are K-equivalent.

(5) K(:z:l(U) TP.S’” 1i(a31,u1) ”1) K@ (U), TPSy % (Fo, us), 75).

(6) K(z1(U), TPSl (®1,w1),77) = K(@2(U), TPS}: (wz,uz),v:zt)

(7) Local rings Q. (%1, u1) and Qf+1(w2,UQ) are isomorphic as R-algebras.

Lemma 5.5. Let x : U — S% be a hypersurface germ such that the corresponding Lég-
endm(m mmersion ge’rms Ly and £3 are Legendrian stable. Then at the singular pomt
= LDp(ug, 20+ (m(po)))(l < i < n—1) of LDy and the singular points 5= =

LD (%o, 1/Ki(po)) of ID% 7, we have the following equwalent assertions:

(1) The lightcone hypersurface germs LDy (U x R) and LD+ 77U x R) are diffeomorphic.
(2) Legendrian immersion germs £3 and Ly are Legendrian equivalent.
(3) The lightcone height functions germs H and H are P-K-equivalent.
(4) hy, and h—i are K-equivalent.
(5) K(=(V), TPS" '(@,u0), vo) = K (®(U), TPS;{:T&(E o), Ty).
(6) K(x(U), 1PH"(m uo), vo) = K (ZF(U), TPST™* (%, uo), vg)
(7) Local rings Q; +1(:13 ug) and Qn41(x,uo) are isomorphic as R-algebras. .

By Lemma 5.5, we have our main result as the following theorem.

Theorem 5.6. Let x; : (U,u;) — (S%,p;)(i = 1,2) be hypersurface germs such that
the correspondmg Legendman immersion germs are Legendman stable. At the singular
points T = LD—(ug,l/ﬁJ(p))(l <ji<n-1)of LDM, and the singular points v; =
LDy (u0,20 (kj(p))) of LDy, the conditions (1) ~ (7) in Theorem 5.8 and the conditions
(1) ~ (7) in Theorem 5.4 are all equivalent. :
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