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Abstract

Starting from the classical theory we describe Hirzebruch class and
the related Todd genus of a complex singular algebraic varieties. When
the variety is equipped with an action of an algebraic torus we localize
the Hirzebruch class at the fixed points of the action. We give some
examples of computations.

The paper is based on the talk given in Kyoto, November 2012.

1 Riemann-Roch theorem

More than 150 years ego Bernhard Riemann [14] proved certain inequality,
which in the contemporary language can be stated as follows: Let $C$ be a
smooth complete complex curve (i.e. a Riemann surface) of genus $g$ and let
$L$ be a line bundle over $C$ . Then

$h^{0}(C;L)\geq\deg(L)+1-g,$

where $h^{0}(C;L)$ denotes the dimension of the space of the holomorphic sec-
tions $H^{0}(C;L)$ and de$g(L)$ is the degree of the line bundle which is equal to
the integral of its first Chern class

$\deg(L)=\int_{C}c_{1}(L)$ .

Few years later a student of Riemann, Gustav Roch computed the error
term in the inequality. Now due to Serre duality we can write

Theorem 1
$h^{0}(C;L)-h^{1}(C;L)=\deg(L)+1-g.$
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This number is equal to the Euler characteristic $\chi(C;L)$ of the line bundle
$L$ . The Riemann-Roch theorem became an indispensable tool for algebraic
geometers. It was generalized to higher dimensions by Hirzebruch: Let $X$

be a projective smooth algebraic variety, $A^{1}$ an algebraic vector bundle over
$X$ , then

Theorem 2
$\chi(X;A^{1})=\int_{X}ch(B^{1})\cup td(^{r}lX)$ .

In this formula $ch(-)$ and $td(-)$ are expressions in Chern classes of a vector
bundle. The first ingredient of the formula is the Chern character of a vector
bundle. It satisfies two conditions:

$\bullet$ for a line bundle

$ch(L)=exp(c \iota(L))=1+c_{1}(L)+\frac{c_{1}(L)^{2}}{2!}+\frac{c_{1}(L)^{3}}{3!}+\frac{c_{1}(L)^{4}}{4!}+\ldots,$

$\bullet$ Chern character is additive

$ch(B_{1}^{1}\oplus B_{2}^{1})=ch(E_{1})+ch(A_{2}^{1})$ .

The second ingredient is the Todd class of the tangent bundle. This cha-
racteristic class satisfies:

$\bullet$ for a line bundle the Todd class is given by the formula

$td(L)= \frac{c_{1}(L)}{1-exp(-c_{1}(L))}=1+\frac{c_{1}(L)}{2}+\frac{c_{1}(L)^{2}}{12}-\frac{c_{1}(L)^{4}}{720}+\frac{c_{1}(L)^{6}}{30240}$. . . ,

$\bullet$
$\ulcorner\perp odd$ class is multiplicative

$td(B_{1}^{1}\oplus A_{2}^{1})=td(A_{1}^{1})\cup td(B_{2}^{1})$ .

The final elegant form of Riemann-Roch theorem was established by
Alexander Grothendieck, who added the functorial flavour. The Grothen-
dieck-Riemann-Roch deals with $K(X)$ , the $K$-theory of coherent sheaves
on $X$ . The elements of $K(X)$ are formal differences of isomorphism classes
of coherent sheaves $[A^{1}]-[F^{1}]$ . If $X$ is smooth, then the coherent sheaves
in the definition of $K(X)$ can be replaced by the locally free sheaves, i.e.
holomorphic vector bundles. For a proper map of smooth projective varieties
$f:Xarrow Y$ let

$f_{!}(B^{1}) := \sum_{i=0}^{\dim(X)}(-1)^{i}R^{i}f_{*}(A^{1})\in K(Y)$ .

Here $R^{i}f_{*}(\Delta)$ is a sheaf with the stalk over $y$ equal to $H^{i}(f^{-1}(y);A^{1})$ . In
general $ch(f_{!}(E))\neq f_{*}ch(E)$ , but the following diagram commutes
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Theorem 3
$f_{!}$

$K(X) arrow K(Y)$
$ch(-)\cup td(TX) \downarrow \downarrow ch(-)\cup td(TY)$

$H^{*}(X) arrow H^{*}(Y)$

$f_{*}$

The functorial point of view allowed to extend the theory to singular
varieties. Note that in the singular case there is no tangent bundle $\prime 1’ X$ . If
the functorial Todd class $td(X)$ existed for singular $X$ then for an embedding
$f$ : $X\hookrightarrow M$ into a smooth variety the diagram of Grothendieck-Riemann-
Roch would be commutative:

$f_{*}(ch(B^{1})\cup td(X))=ch(f_{!}(B^{\rceil}))\cup td(1’ M)$ .
For the trivial bundle $A^{1}=\mathcal{O}_{X}$ whose Chern character is equal to 1, we
would obtain.

$f_{*}(td(X))=ch(f_{!}(\mathcal{O}_{X}))\cup td(^{r}1’ M)\in H^{*}(M)$ .
In fact this expression may be taken as the definition of the Todd class,
or at least the definition of its image in $H^{*}(M)$ . But it takes a lot of
work $(done by Baum-Fulton-$MacPherson, $[3])$ to refine the construction of
the Chern character to obtain the Todd class localized on $X$ , i.e. to have
$td^{BFM}(X)\in H^{*}(M, M\backslash X)\simeq H_{*}(X)$ . From the practical point of view the
difficulty is hidden in the computation of $ch(f_{!}(\mathcal{O}_{X}))$ . Not only one has to
resolve the sheaf $f_{!}(\mathcal{O}_{X})$ in the sense of the homological algebra, i.e. find an
exact sequence of vector bundles on $M$ :

$0arrow E_{\dim(M)}arrow\cdotsarrow E_{1}arrow A_{0}^{1}arrow f_{!}(\mathcal{O}_{X})arrow 0.$

Next one has to ipply further nontrivial operations like “ graph construction”
to that sequence.

Another, nonequivariant definition of a Todd class for singular varieties
was proposed by Brasselet-Schuermann-Yokura [6]. Now one imposes $a$

”
$mc\succ$

tivic” condition. One considers not a variety itself, but a map of varieties.
To any map $f$ : $Xarrow Y$ one associates a homology class $td(f : Xarrow Y)\in$
$H_{*}(Y)$ . One demands that

$\bullet$ if $X$ is smooth, then

$td(f:Xarrow M)=f_{*}(td(X)\cap[X]\in H_{*}(M)$ ,

$\bullet$ if $Z\subset X$ is a closed subset, $U=X\backslash Z$ , then

$td(f : Xarrow M)=td(f_{|Z} : Zarrow M)+td(f_{|U} : Uarrow M)$ .
The existence of a Todd class is nontrivial, but the computations are quite
effective, provided, that one can resolve the singularities of $X$ in a geometric
sense. We will reserve the notation $td(-)$ for the motivic Todd class, while
the Baum-Fulton-MacPherson construction will appear only occasionally.
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2 Equivariant version

We will study the singular subvarieties admitting an action of a torus. We
assume that the torus $\mathbb{T}=(\mathbb{C}^{*})^{r}$ acts on smooth complex variety $M$ , and
$X$ is preserved. For $r1’=\mathbb{C}^{*}$ we can say that we consider quasihomogeneous
singularities, but actions of a bigger tori appear naturally and then more
information about the variety is involved. We compute the discussed invari-
ants in the equivariant cohomology $H_{T}^{*}(M)$ instead of the usual cohomology.
This cohomology group has reacher structure and it is a refinement of the
usual cohomology. Let us consider cohomology with rational coefficients.
For a point we have

$H_{T}^{*}(pt)=Sym(\mathbb{T}^{\vee}\otimes \mathbb{Q})\simeq \mathbb{Q}[t_{1}, t_{2}\ldots t_{r}],$

where $\mathbb{T}^{\vee}=Hom(\mathbb{T}, \mathbb{C}^{*})$ is the character group: The group $H_{T}^{*}(M)$ is and
algebra over $H_{T}^{*}(pt)$ .

Main advantages of the equivariant cohomology are
$\bullet$ If $M$ is a complex smooth compact algebraic variety, then

$H_{T}^{*}(M)\simeq H_{T}^{*}(pt)\otimes H^{*}(M)$

as modules over $H_{T}^{*}(pt)$ , see e.g. [8].

$\bullet$ Localization theorem: the kernel and cokernel of the restriction map
$H_{\mathbb{T}}^{*}(M)arrow H_{\mathbb{T}}^{*}(M^{T})$ is a torsion $H_{T}^{*}(pt)$-module, [13, 8]. If $M$ is a
complex smooth compact algebraic variety, then the restiction map is
in addition injective.

The second property is called the Localization Theorem, in fact it is due to
Borel (as pointed by Quillen [13]), but it was not formulated by him in that
form. The conclusion is that almost everything about equivariant cohomol-
ogy can be read from some data concentrated at the fixed points. The tip
of this iceberg is the well known fact: the Euler characteristic $\chi(M)$ is equal
to the Euler characteristic of the fixed point set $\chi(M^{T})$ . The situation when
the fixed point set is finite is of particular interest.

The topological version of the localization theorem was transformed into
a formula which is handy for computations. Suppose that $M$ is a compact
manifold of dimension $n$ and the torus $(S^{1})^{r}$ acts smoothly with a finite fixed
point set. For a fixed point $p\in M^{T}$ define the Euler class $e(p)\in H_{\mathbb{T}}^{2n}(\{p\})$

as the product of characters of $\mathbb{T}$ appearing in the tangent representation at
$p$ . The localization theorem implies that integral of a cohomology class over
$M$ can be expressed by the local data. Precisely

Theorem 4 (Atiyah-Bott[2] or Berline-Vergne [4]) For a class a $\in$

$H_{T}^{*}(M)$ the integral is the sum of $fraction\mathcal{S}$

$\int_{M}a=\sum_{p\in M^{T}}\frac{a_{1p}}{e(p)}.$
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Example 5 Suppose $M=\mathbb{P}^{2\prime}1’=(\mathbb{C}^{*})^{3}$ . Then

$M^{\mathbb{T}}=\{p_{0}=[1:0:0], p_{1}=[0:1:0], p_{2}=[0:0:1]\}$

is the fixed point set. Let $h:=c_{1}(\mathcal{O}(-1))$ be Chern class of the tautological
bundle. We apply Berline-Vergne formula to compute the integral for $a=h^{2}$

$\int_{\mathbb{P}^{2}}h^{2}=\frac{t_{0}^{\Delta}}{(t_{1}-t_{0})(t_{2}-t_{0})}+\frac{t_{1}^{2}}{(t_{0}-t_{1})(t_{2}-t_{1})}+\frac{t_{2}^{2}}{(t_{0}-t_{2})(t_{1}-t_{2})}=$

$=-{\rm Res}_{z=\infty} \frac{z^{2}}{(z-t_{0})(z-t_{1})(z-t_{2})}$

If we set $z=w^{-1}$ , then the integral is equal to the coefficient of $w$ in

$\frac{w^{-2}}{(w^{-1}-t_{0})(w^{-1}-t_{1})(w^{-1}-t_{2})}=1$

as it should be by obvious reasons. See [17] for further application of the
residue method applied to computations based on Localization Theorem.

We plan to use Localization Theorem to compute some invariants of $\mathbb{T}-$

invariant singular varieties $X\subset M$ . The Todd class is of main interest here.
Equally well we compute Hirzebruch class

$td_{y}(X)\in H_{*}(X)\otimes \mathbb{Q}[y],$

which is equal to the formal combination of classes corresponding to sheaves
of differential forms

$\sum_{k=0}^{\dim X}(ch(\Omega_{X}^{k})\cup td(l’ X))\cap[X]y^{k}$

for the smooth $X$ case. The motivic generalizations of the Hirzebruch class
to the singular case was proven to exist in [6]. Also there a relation with other
characteristic classes was discussed. As a particular case $y=-1$ we obtain
(after a suitable normalization) Chern-Schwartz-MacPherson class [10]. It is
straightforward to obtain an equivariant version of the Hirzebruch class as it
was done for the Todd class in [5] and for Chern classes in [12]. These $class\acute{\mathring{e}}s$

live in the equivariant homology. Poincar\’e duality isomorphism identifies
equivariant homology and cohomology of $M$ . If $M^{T}$ has isolated fixed points,
then the class $td_{y}(X)$ without loss of information can be replaced by the
image in $H_{\mathbb{T}}^{*}(M)$ . In the notation we indicate the embedding. We write

$td_{y}(Xarrow M)\in H_{\mathbb{T}}^{*}(M)$ .
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Now the equivariant Todd class can be studied locally. One can consider
the local Todd class

$td(X arrow M)_{1p}\in\prod_{k=0}^{\infty}H_{T}^{k}(pt)=\mathbb{Q}[[t_{1}, t_{2}, \ldots t_{r}]]$

for a fixed point $p\in X$ . More generally

$td_{y}(X arrow M)_{1p}\in\prod_{k=0}^{\infty}H_{T}^{k}(pt)[y]=\mathbb{Q}[[t_{1}, t_{2}, \ldots t_{r}]][y]$

is an invariant of a $\mathbb{T}$-equivariant singularity germ. Let us concentrate on
the case of $td$ i.e. $y=0$ . Due to the integration formula of Theorem 4 every
fixed point of the $T$-action contributes to the integral

$\int_{X}td(X)=\int_{M}td(Xarrow M)=\chi(X;\mathcal{O}_{X})$ ,

that is to the Todd genus of $X$ . The contribution of each point $p\in X^{\mathbb{T}}$ is

just a Laurent series in $t_{i}$ . Moreover if we introduce new variables $T_{i}=e^{-t_{i}}$

the answer is of the form

$\frac{W(l_{1},l_{2},\ldots 1_{r})}{\prod_{i=1}^{n}(1-e^{-w_{i}}’)}=\frac{W(1_{1},1_{2},\ldots 1_{r}^{1})}{\prod_{i=1}^{n}(1-\prod_{j=1^{r}}^{r}1_{i}^{\tau}a_{i}^{j})}.$

Here $n$ is the dimension of the ambient space, and $w_{i}= \sum_{j=1}^{r}a_{i}^{j}t_{j}$ for
$i=1,2,$ $\ldots,$

$n$ are the weight vectors of the tangent representation. The
numerator $W$ $($

‘
$)$ $=W(1i, r1_{2}, \ldots r1_{r})$ is a polynomial in $\prime 1_{i}^{\tau}$ . If the point

$p\in X$ is smooth, then
$W(1_{1},1_{2}^{\tau \prime}1_{r})=1,$

$\ln$ general the local contribution to the $\chi_{y}$-genus of $X$ is the local Hirzebruch
class

$\frac{td_{y}(Xarrow M)_{1p}}{e(p)}=\prod\frac{1+ye^{-\omega_{i}}}{1-e^{-\omega_{i}}},$

A question arises for singular points: How to compute the invariant $W(^{r}1’)$

effectively? Using motivic nature of Todd genus one can decompose $X$ into
smooth strata and compute the Todd class separately for each stratum.
Then one has to sum up the strata contribution. We will also propose
another method, based on localization theorem, which is effective e.g. for
determinant varieties.

We note that for toric varieties the answer is due to Brion-Vergne [4]
and Brylinski-Zhang [5]. The Hirzebruch class for toric varieties is studied
in [11] (although not from the equivariant point of view)
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3Computation by means of a resolution
Below we will present some computations just for Todd class, i.e. for $y=0.$

Example 6 Whitney umbrella. We will show step by step how to compute
the equivariant Todd class localized at the origin.

Consider the torus $\mathbb{T}=(\mathbb{C}^{*})^{2}$ acting on $\mathbb{C}^{3}$ by the formula

$(1_{1}, l_{2})\cdot(xx, x)=(^{r}1_{1}l_{2^{X}1}, \prime 1_{1^{X}2}, l_{23}^{2_{X}})$ .
Let us denote the characters $’ 1’arrow \mathbb{C}^{*}$

$t_{1}:(’1_{1},1_{2}^{\tau})arrow\prime 1_{1}, t_{2}:(1_{1}, l_{2})arrow 1_{2}.$

The considered representation have the characters $t_{1}+t_{2},$ $t_{1},2t_{2}$ . The
action preserves the Whitney umbrella

$X=\{(x_{1}, x_{2}, x_{3})\in \mathbb{C}^{3}|x_{1}^{2}-x_{2}^{2}x_{3}=0\}.$

We will show that the local equivariant Todd class divided by the Euler class
is equal to

$\frac{td(Xarrow \mathbb{C}^{3})_{|0}}{e(0)}=\frac{1+e^{-(t_{1}+t_{2})}}{(1-e^{-t_{1}})(1-e^{-\Delta t_{2}})}$

We will compute the Todd class by additivity property. Let

$Z=\{(x_{1}, x_{2}, x_{3})\in \mathbb{C}^{3}|x_{1}=0, x_{2}=0\}$ and $X^{0}=X\backslash Z.$

We have
$td(Xarrow \mathbb{C}^{3})=td(X^{O}arrow \mathbb{C}^{3})+td(Zarrow \mathbb{C}^{3})$ .

Let
$f:\tilde{X}=\mathbb{C}^{2}arrow \mathbb{C}^{3}, f(u, v)=(uv, u, v^{2})$ ,

be the resolution of the Whitney Umbrela. The map $f$ is proper and it is
an isomorphism of the open subsets

$\tilde{X}^{o}=(\mathbb{C}\backslash \{0\})\cross \mathbb{C}arrow X^{o}.$

The map $f$ is equivariant provided that the characters of $\mathbb{C}^{2}$ are $t_{1},$ $t_{2}.$

Therefore

$td(Xarrow \mathbb{C}^{3})_{|0}=td(X^{o}arrow \mathbb{C}^{3})_{|0}+td(Zarrow \mathbb{C}^{3})_{|0}$

$=f_{*}td(\tilde{X}^{o}arrow \mathbb{C}^{2})_{|0}+td(Zarrow \mathbb{C}^{3})_{|0}.$

Let $\mathbb{C}\hookrightarrow \mathbb{C}^{2}$ be the inclusion as the $v$-coordinate line. First let us compute

$td( \tilde{X}^{o}arrow \mathbb{C}^{2})_{|0}=td(\mathbb{C}^{2})_{|0}-td(\mathbb{C}\hookrightarrow \mathbb{C}^{2})_{|0}=\frac{t_{1}t_{2}}{(1-e^{-t_{1}})(1-e^{-t_{2}})}-t_{1}\frac{t_{2}}{1-e^{-t_{2}}}$
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The map $f_{*}:H_{T}^{k}(\mathbb{C}^{2})arrow H_{T}^{k+2}(\mathbb{C}^{3})$ is a map of $H_{T}^{*}(pt)$-modules sending 1
to $\deg(X)=2(t_{1}+t_{2})$ , therefore $td(Xarrow \mathbb{C}^{3})$ is equal to

$2(t_{1}+t_{2})( \frac{t_{1}t_{2}}{(1-e^{-t_{1}})(1-e^{-t_{2}})}-t_{1}\frac{t_{2}}{1-e^{-t_{2}}})+(t_{1}+t_{2})t_{1}\frac{2t_{2}}{1-e^{-2t_{2}}}=$

$= \frac{2t_{1}t_{2}(t_{1}+t_{2}\prime)(1-e^{-2(t_{1}+t_{2})})}{(1-e^{-t_{1}})(1-e^{-2t_{2}})(1-e^{-(t_{1}+t_{2})})}=td(\mathbb{C}^{3})_{|0}(1-e^{-2(t_{1}t_{2})})$

The image of the Baum-Fulton-MacPherson class is also equal to

$td(\mathbb{C}^{3})_{|0}\cup ch(\mathcal{O}_{X})=td(\mathbb{C}^{3})_{|0}(1-e^{-2(t_{1}+t_{2})})$ .

In general, if $X$ is a complete intersection $X= \bigcap_{i=1}^{k}\{f_{i}=0\}$ then we have

$ch( \mathcal{O}_{X})=\prod_{i=1}^{k}(1-e^{-\deg(f_{i})})$ ,

where $\deg(f)\in \mathbb{T}^{\vee}=H_{T}^{2}(pt)$ is understood as the multidegree of a $T$-

invariant function (if $T=\mathbb{C}^{*}$ this is the quasihomogeneous degree of $f$ ). It
happens in may cases that $td(Xarrow M)=td(M)ch(\mathcal{O}_{X})$ but the equality
does not hold in general. An easy counterexample is the cusp $x^{3}=y^{2}$

in $\mathbb{C}^{2}$ . In fact the equality is quite rare. For affine cones over a smooth
hyperplane of degree $d$ in $\mathbb{P}^{n-1}$ the equality holds if and only if $d\leq n$ . One
can say that the difference between Baum-Fulton-MacPherson class and the
Brasselet-Schuermann-Yokura class measures how difficult the singularity is.

There might be a similar relation for full Hirzebruch class. For the Chern-
Schwartz-MacPherson class, i.e. for $y,=-1$ , the discrepancy between the
expected value and the actual value of the discussed expression was widely
studied. In the case of isolated singularities the difference is equal up to a
$sign$ to the Milnor number, [7, \S 14.1].

4 Procedure to compute $td(X)$ via localization

Now, we describe another a method of computing the local Hirzebruch class.
As before we present the computations for Todd class. Suppose that $X\subset M$

is an invariant subvariety in a $\mathbb{T}$-manifold with isolated fixed points:

$\int_{M}td(Xarrow M)=\sum_{p\in X^{\mathbb{T}}}\frac{td(Xarrow M)_{1p}}{e(p)}$

If $X$ has a decomposition into algebraic cells the integral is equal to the num-
ber of $0$-cells. Suppose the point $p\in X^{T}$ is smooth. Then the contribution
to $\int_{M}td(Xarrow M)$ is equal to

$td(X arrow M)_{1p}=\prod\frac{w_{i}}{1-exp(-w_{i})}\cdot\prod n_{j}=e(p)\prod\frac{1}{1-exp(-w_{i})},$
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Here

$\bullet$

$w_{i}$ are the characters of tangent representation $l_{p}X,$

$\bullet$

$n_{j}$ are the characters of normal representation.

Suppose that all but one points of $X$ are smooth. $r1^{1}hen$ one can compute

$td(X arrow M)_{1p_{sing}}=e(p_{sing})(\int_{M}td(Xarrow M)-\sum_{smoothp\in X^{\mathbb{T}}}\frac{td(Xarrow M)_{1p}}{e(p)})$

$\frac{td(Xarrow M)_{1p_{sing}}}{e(p_{sing})}=\int_{M}td(Xarrow M)-$
$\sum_{\prime,smoothp\in X^{F}}\prod\frac{1}{1-exp(-w_{i})}$

Amazingly, computing the local Todd class of a singular variety this way
one does not use $\backslash its$ definition but only the knowledge how it looks like at
the smooth points.

We will show how to compute the local Todd class when $X$ is the set of
singular square matrices: $X$ is a hypersurface in $M(n\cross n;\mathbb{C})=\mathbb{C}^{n^{2}}$ given by
the equation $\det(A)=0$ . This set can be compactified: the matrix defines
a linear map $\mathbb{C}^{n}arrow \mathbb{C}^{n}$ , and its graph is an element of the Grassmannian
$Gr_{n}(\mathbb{C}^{2n})$ . The closure of the set of singular matrices is the Schubert variety
of codimension one.

Example 7 Let $X$ be the codimension one Schubert variety in $Gr_{2}(\mathbb{C}^{4})$ .

The torus $’ 1’=(\mathbb{C}^{*})^{4}$ acts on $Gr_{2}(\mathbb{C}^{4})$ . The action is induced from the
action on $\mathbb{C}^{4}=\mathbb{C}_{s}^{2}\oplus \mathbb{C}_{t}^{2}$ . The space of linear maps $Hom(\mathbb{C}_{s}^{2}, \mathbb{C}_{t}^{2})$ is identified
with a subset of $Gr_{2}(\mathbb{C}^{4})$ . Let $\overline{X}$ be the set of planes satisfying the Schubert
condition

$\overline{X}=\{V\in Gr_{2}(\mathbb{C}^{4}:V\cap(\mathbb{C}_{s}^{2}\oplus 0)\neq0\}.$

Assume that the action on $\mathbb{C}_{s}^{2}$ component is through negative characters - $s_{1}$

$and-s_{2}$ and on the second component $\mathbb{C}_{t}^{2}$ is through $t_{1}$ and $t_{2}$ . The action
of $\mathbb{T}$ on $Gr_{2}(\mathbb{C}^{4})$ has exactly six fixed points which are the coordinate planes.
The variety $\overline{X}$ contains all fixed points except $0\oplus \mathbb{C}_{t}^{2}$ . The only singular
point of $\overline{X}$ is $p_{sin}9=\mathbb{C}_{s}^{2}\oplus 0$ , which corresponds to $0\in X\subset Hom(\mathbb{C}_{S}^{\Delta}, \mathbb{C}_{t}^{2})$ in
the affine neighbourhood. The action of $\mathbb{T}$ on the tangent space is through
characters $s_{i}+t_{j}$ . The equation of $X=\overline{X}\cap Hom(\mathbb{C}_{s}^{2}, \mathbb{C}_{t}^{2})$ is

$\det(\begin{array}{ll}a bc d\end{array})=0.$

117



The characters of the coordinates are the following:

$\chi_{a}=s_{1}+t_{1}, \chi_{b}=s\iota+t_{2},$

$\chi_{\mathcal{C}}=s2+t_{1}, \chi_{d}=s_{2}+t_{2}.$

Let us introduce new variables $S_{i}=e^{-s_{i}}$ and $1_{i}=e^{-t_{i}}$ , since in the
formulas for $\frac{td(Xarrow \mathbb{C}^{4})_{1p}}{e(p)}=\prod\frac{1}{1-e^{-x_{i}}}$ only $e^{-x_{i}}$ appears, not the character
$x_{i}$ itself. We compute the contribution to Berline-Vergne formula at the
smooth points. For example the fixed point $p=lin\{(1,0,0,0), (0,0,1,0)\}$

contributes with

$\frac{1}{(1-\frac{S_{1}}{S_{2}})(1-\frac{1}{s_{2}\tau_{1}})(1-\frac{\tau_{2}}{T_{1}})}=\frac{S_{2’}^{2}1_{1}^{2}}{(S_{1}-S_{2})(1-S_{2}1_{1}^{1})(^{r}l_{2}-l_{1})}.$

Now let us compute the Todd class at the singular point:

$\frac{td(Xarrow \mathbb{C}^{4})_{1p_{12}}}{e(p_{12})}=(\chi(\mathcal{O}_{X})- \sum_{\prime,smoothp\in X^{1}’}td(Xarrow \mathbb{C}^{4})_{1p})=$

$1- \frac{S_{2’1}^{z_{1^{2}}}\ell}{(S_{1}-S_{2})(1-S_{2^{r}}1_{1})(’1_{2^{-}}’1_{1})}-\frac{S_{1}^{2\prime}1_{1}^{2}}{(S_{2}-S_{1})(1-S_{1^{r}}1_{1})(l_{2}-1_{1})}$

$- \frac{S_{2’}^{2}l_{2}^{2}}{(\prime r}-\frac{S_{1}^{2\prime}1_{2}^{12}}{(S_{2}-S_{1})(1-S_{1}1_{2})(’1_{1}-1_{2}^{1})}=$

$= \frac{1-S_{1}S_{2}1_{1^{r}}^{1}1_{2}}{(1-S_{1’}1_{1})(1-S_{1^{r}}1_{2})(1-S_{2}l_{1})(1-S_{2^{r}}1_{2})}$

Again we see that

$td(Xarrow \mathbb{C}^{4})=td(\mathbb{C}^{4})(1-S_{1}S_{2}1_{1^{r}}^{1}1_{2})=$

$=td(\mathbb{C}^{4})(1-e^{-(s_{1}+S2+t_{1}+t_{2})})=td(\mathbb{C}^{4})(1-e^{-\deg(f)})$ ,

where $f$ is the function defining the variety $X$ . The formula for $td_{y}(X)_{1p_{12}}$

is much more complicated. On the other hand the class $\underline{t}d_{A}e$ of the open cell
$Gr_{2}(\mathbb{C}^{4})\backslash X$ is quite friendly

$td(\mathbb{C}^{4})(1+y)^{2}S_{1}S_{2}1_{1}1_{2}((1-y)(1-yS_{1}S_{2}1_{1}1_{2})+y(S_{1}+S_{2})(^{r}1_{1}+^{r}1_{2}))$

Applying this method inductively as described in [15] one can compute the
local Hizebruch class of determinant varieties of higher dimensions. The
result for all $y$ are messy, but for the special values $y=1$ , i.e. the local
$L$-class we always have

$\frac{td_{1}((\mathbb{C}^{n^{2}}\backslash X)arrow \mathbb{C}^{n^{2}})}{e(0)}=2^{n}td(\mathbb{C}^{n^{2}})\prod_{i<j}(S_{i}+S_{j})\prod_{i<j}(’1_{i}+\prime 1_{j})\prod_{i}(S_{i^{r}}1_{i})$
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with the convention $1_{i}=e^{-t_{i}}$ and $S_{i}=e^{-s_{i}}$ . For the Todd class in higher
dimensions we have

$\frac{td(Xarrow \mathbb{C}^{n^{2}})}{e(0)}=td(\mathbb{C}^{n^{2}})(1-\prod_{i=1}^{n}S_{i}T_{i}))$ .

To finish the list of computations let us display the $td_{y}$-class for the
open cell for $n=4$ but with the substitution $s_{1}=s_{2}=s_{3}=s_{4}=0,$
$t_{1}=t_{2}=t_{3}=t_{4}=t$ , that is for the radial action of $\mathbb{C}^{*}$ on $\mathbb{C}^{4}$ . The common
factor is $td(\mathbb{C}^{16})(1+y)^{4\prime}1^{4}$ . lt should be multiplied by the sum

$(1-y)^{2}(1+y^{2})(1-y+y^{2})+$

$+1’ 16(1-y)y(1-y+y^{2})^{2}+$

$+\prime 1^{2}112(1-y)^{2}y^{2}(10-13y+10y^{2})+$

$+’1^{3}16(1-y)y^{2}(1+44y-79y^{2}+44y^{3}+y^{4})+$

$-1^{4}(1-y)^{2}y(1+29y+62y^{2}-2902y^{3}+62y^{4}+29y^{5}+y^{6})+$

$-1^{5}16(1-y)y^{3}(11+62y-492y^{2}+62y^{3}+11y^{4})+$

$+1^{6})4y^{3}(9-86y-1139y^{2}+3456y^{3}-1139y^{4}-86y^{5}+9y^{6})+$

$+1^{7}16(1-y)y^{4}(11+62y-492y^{2}+62y^{3}+11y^{4})+$

$-1^{8}(1-y)^{2}y^{3}(1+29y+62y^{2}-2902y^{3}+62y^{4}+29y^{5}+y^{6})+$

$-1^{9}16(1-y)y^{5}(1+44y-79y^{2}+44y^{3}+y^{4})+$

$+’1^{10}12(1-y)^{2}y^{6}(10-13y+10y^{2})+$

$-1^{11}16(1-y)y^{6}(1-y+y^{2})^{2}+$

$+^{r}1^{12}(1-y)^{2}y^{6}(1+y^{2})(1-y+y^{2})$

It remains to say that the meaning of this coefficients is not clear. When
written in that form one can see certain symmetry, which comes from
Poincar\’e duality. On the other hand after substitution $y=-1-\delta,$ $\prime 1’=1+S$

one finds that all coefficients are nonnegative. This feature is related to some
positivity of the logarithmic vector fields sheaves on the resolution of the de-
terminant variety. In detail it will be explained in [16].

Also, by the substitution $1^{r}=e^{-(y+1)t}$ and taking the limit $yarrow-1$

we obtain the Chern-Schwartz-MacPherson class studied in [1]. The corre-
sponding positivity property in the nonequivariant case was proven in [9]
Hopefully computing the entire Hirzebruch class one may gain better in-
sight into Chern-Schwartz-MacPherson classes and find nontrivial relation
between them.
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