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1. INTRODUCTION

This is a summary of the author’s talk at the RIMS workshop “Automorphic Repre-
sentations and Related Topics” on January 23, 2013. We report on a recent joint work
with Yoichi Mieda on supercuspidal representations appearing in the $\ell$-adic cohomology
of the Rapoport-Zink space for the unramified unitary similitude group in three variables
over $\mathbb{Q}_{p}$ for $p\neq 2$ . Details will appear elsewhere ([IM2]).

Rapoport-Zink spaces are certain formal schemes $\mathscr{M}$ parameterizing quasi-isogenies of
$p$-divisible groups with additional structures introduced by M. Rapoport and Th. Zink in
the $1990$ ’s ([RZ], [Ra]). These spaces are generalizations of Lubin-Tate spaces and Drin-
feld upper half spaces. They play an important role in the theory of $p$-adic uniformization
of Shimura varieties, which has many striking applications to number theory and auto-
morphic forms. It is widely believed that the $\ell$-adic cohomology of the Rapoport-Zink
spaces realize the local Langlands and Jacquet-Langlands correspondences in a rather
mysterious way.

Let us explain a rough outline of the story. For the background on Lubin-Tate spaces
and Drinfeld upper half spaces, see Carayol’s paper [Ca]. (Note that the definition of
general Rapoport-Zink spaces was not known at that time.) Let $M:=\mathscr{M}^{rig}$ be the rigid
analytic space associated to the generic fiber of the formal scheme $\mathscr{M}$ . We have a tower
of finite \’etale coverings $M_{r}arrow M$ defined by the level $p^{r}$-structures on the universal p-
divisible group on M. The pro-object $M_{\infty}=\{M_{r}\}_{r}$ is sometimes called the Rapoport-Zink
tower or the Rapoport-Zink space at infinite level. If the linear algebra datum (Rapoport-
Zink datum) defining the Rapoport-Zink space satisfies certain technical conditions, we
have a $p$-adic reductive group $G$ , an inner form $J$ of $G$ , and a finite extension $E$ of $\mathbb{Q}_{p}$ (local
reflex field). We have a natural action of the product of three groups $G(\mathbb{Q}_{p})\cross J(\mathbb{Q}_{p})xW_{E},$

where $W_{E}$ is the Weil group of $E$ , on the $\ell$-adic cohomology with compact support

$H_{c}^{i}(M_{\infty}, \overline{\mathbb{Q}}_{\ell})A_{r}\cdot$

Everybody working in this area believes that this $G(\mathbb{Q}_{p})\cross J(\mathbb{Q}_{p})\cross W_{E}$ -representation is
very interesting.

So far, many beautiful results are obtained for Lubin-Tate spaces and Drinfeld upper
half spaces, where $G$ or $J$ is isomorphic to $GLn$ $(e.g. [Ca], [HT], [Hal], [Bo], [Far2])$ . We
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would like to study more general Rapoport-Zink spaces. However, when the group $G$ is
not an inner form of $GL_{n}$ , we confront a fundamental problem – the local Langlands and
Jacquet-Langlands correspondences are not bijective for general $G$ . They are bijections
between certain representations of the Weil group ( $L$ -pammeters) and certain finite sets
of irreducible smooth representations of $G(\mathbb{Q}_{p})$ ( $L$ -packets). In order to understand the
description of the $\ell$-adic cohomology of Rapoport-Zink spaces, we need to understand the
structure of $L$-packets (and $A$-packets) in detail.

In this note, we study supercuspidal representations of $GU_{1,2}(\mathbb{Q}_{p})$ appearing in the $\ell-$

adic cohomology of the Rapoport-Zink space for $GU_{1,2}$ . The main results are summarized
in Theorem 4.2. Fortunately, thanks to Rogawski, we have enough tools in representation
theory and in geometry ([Rol], [Ro2]). We have a satisfactory classification of $L$-packets
and $A$-packets for $GU_{1,2}$ which enables us to state the main results clearly. We hope our
results shed a new light on the study of the $\ell$-adic cohomology in each degree of general
Rapoport-Zink spaces.

Our results might be considered ae a confirmation of a refinement of Kottwitz’s conjec-
ture on the alternating sum of the $\ell$-adic cohomology of the Rapoport-Zink spaces ([Ra,
Conjecture 5.1], [Ha2, Conjecture 5.3] $)$ . The alternating sum of the supercuspidal part of
the $P$-adic cohomology of the Rapoport-Zink space for $GU_{1,2}$ was studied by Fargues in
his thesis ([Farl, Th\’eor\‘eme 8.2.2]). Note that, in our theorem (Theorem 4.2), we study
the $\ell$-adic cohomology in each degree rather than the alternating sum. We also treat
supercuspidal representations whose $L$-parameters have nontrivial $SL_{2}(\mathbb{C})$-part. We dis-
covered peculiar phenomena for such supercuspidal representations. For example, they
appear both in $H_{c}^{2}$ (middle degree) and $H_{c}^{3}$ . This reflects the fact that such supercuspidal
representations can be obtained as local components of non-tempered cuspidal automor-
phic representations. On the other hand, we expect supercuspidal representations whose
$L$-parameters have trivial $SL_{2}(\mathbb{C})$-part appear only in $H_{c}^{2}$ . Our results may suggest a
kind of “duality” or “mirror symmetry” between the degree of cohomology (Lefschetz’s
$SL_{2})$ and the $SL_{2}(\mathbb{C})$-part in the $L$-parameter or $A$-parameter (see [Gr, Corollary 8.2] for
an archimedean analogue). We also have similar results for the Rapoport-Zink space for
$GSp_{4}/\mathbb{Q}_{p}.$

Aacknowledgements. The author would like to thank Atsushi Ichino for giving me an
opportunity to give a talk in the workshop. This work was supported by JSPS KAKENHI
Grant Number 20674001.

2. THE LOCAL LANGLANDS CORRESPONDENCE FOR $GL_{n}$ AND THE $\ell$-ADIC

COHOMOLOGY OF LUBIN-TATE SPACES

We recall the local Langlands correspondence for $GL_{n}$ and its realization in the $\ell$-adic
cohomology of Lubin-Tate spaces. In this case, the group $G$ is $GL_{n}$ and the group $J$ is
the multiplicative group of a central division algebra of invariant $1/n$ . Most of the results
explained in this section are obtained by Harris-Taylor and Boyer ([HT], [Bo]). Prior to
[HT], Harris obtained similar results for the Drinfeld upper half spaces ([Hal]), where
the role of $G$ and $J$ are interchanged (i.e. the group $G$ is the multiplicative group of a
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central division algebra of invariant $1/n$ and the group $J$ is $GL_{n}$ ). For a relation between
Lubin-Tate spaces and Drinfeld upper half spaces at infinite level, see [Far2] (and also
[Fal], [SW] for recent developments).

Fix a prime number $p$ and a finite extension $F$ of $\mathbb{Q}_{p}$ . Denote the residue field of $F$ by
$\mathbb{F}_{q}$ . Let $W_{F}$ be the Weil group of $F$ . We have the following exact sequence of topological
groups:

$1arrow I_{F}-W_{F}arrow\langle Frob_{q}\rangle\cong \mathbb{Z}arrow 1,$

where $I_{F}$ is an open subgroup of $W_{F}$ called the inertia group, and $Frob_{q}\in$ Gal $(\overline{\mathbb{F}}_{q}/\mathbb{F}_{q})$

is the geometric Frobenius element (i.e. the inverse of the q-th power map). Local class
field theory gives us a canonical isomorphism of topological groups (local reciprocity iso-
morphism)

$Art_{F}:F^{\cross}arrow^{\cong}W_{F}^{ab}$

such that the uniformizers on the left hand side correspond to the lifts of $Frob_{q}$ on the
right hand side. Using the local reciprocity isomorphism $Art_{F}$ , we identify continuous
characters $\chi:F^{\cross}arrow \mathbb{C}^{\cross}$ and one dimensional continuous representations $\phi:W_{F}arrow \mathbb{C}^{\cross}$

The local Langlands correspondence for $GL_{n}/F$ is a non-abelian generalization of local
class field theory. Let $irr(GL_{n}(F))$ denote the set of equivalence classes of irreducible
smooth representations of the topological group $GL_{n}(F)$ . (The set Irr $(GL_{n}(F))$ is also
denoted by $\Pi(GL_{n}(F))$ by some authors.) Let $\Phi(GL_{n}/F)$ denote the set of $GL_{n}(\mathbb{C})-$

conjugacy classes of $L$-parameters for $GL_{n}/F$ . Recall that an $L$ -parameter for $GL_{n}/F$ is
a continuous homomorphism

$\phi:W_{F}\cross SL_{2}(\mathbb{C})arrow LGL_{n}:=GL_{n}(\mathbb{C})\cross W_{F}$

such that the second factor of $\phi(\sigma, x)$ is equal to $\sigma$ for all $(\sigma, x)\in W_{F}\cross SL_{2}(\mathbb{C})$ , the first
factor of $\phi(\sigma)$ is a semisimple element of $GLn(\mathbb{C})$ (i.e. $\phi$ is Frobenius semisimple), the image
of $\phi|_{SL_{2}(\mathbb{C})}$ is contained in $GL_{n}(\mathbb{C})$ , and the induced map $\phi|_{SL_{2}(\mathbb{C})}:SL_{2}(\mathbb{C})arrow GL_{n}(\mathbb{C})$ is
a homomorphism of algebraic groups over $\mathbb{C}$ . The group $LGL_{n}$ is called the $L$ -group of
$GL_{n}/F$ . The local Langlands correspondence for $GL_{n}$ is a canonical bijection

LLC: Irr $(GL_{n}(F))\Phi(GL_{n}\underline{1\cdot 1}/F)$

characterized in terms of $L$-factors and $\epsilon$-factors for pairs ([HT], [He]). Under the 10-
cal Langlands correspondence, supercuspidal representations of $GL_{n}(F)$ correspond to
irreducible $n$-dimensional representations of $W_{F}$ , and (essentially) discrete series repre-
sentations of $GL_{n}(F)$ correspond to irreducible $n$-dimensional representations of $W_{F}\cross$

$SL_{2}(\mathbb{C})$ . When two $L$-parameters $\phi_{1}\in\Phi(GL_{n_{1}}/F),$ $\phi_{2}\in\Phi(GL_{n_{2}}/F)$ correspond to
$\pi_{1}\in$ Irr $(GL_{n_{1}}(F)),$ $(\pi_{2}\in$ Irr $(GL_{n_{2}}(F))$ respectively, the direct sum $\phi_{1}\oplus\phi_{2}$ corresponds to
an irreducible smooth representation $\pi_{1}EB\pi_{2}\in\Phi(GL_{n_{1}+n_{2}}/F)$ called the Langlands sum
of $\pi_{1}$ and $\pi_{2}.$

The Lubin-Tate space $LT$ is an $(n-1)$-dimensional rigid analytic space over $\hat{F^{ur}}$ , the
$p$-adic completion of the maximal unramified extension of $F$ . This space is defined by
the deformation theory of one dimensional formal $p$-divisible groups with $\mathcal{O}_{F}$-action. We
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do not give a precise definition of $LT$ here, but we only note that $LT$ is non-canonically
isomorphic to the countable disjoint union of open unit disks:

$LT\cong\prod_{i\in \mathbb{Z}}$ $(Spf \mathcal{O}_{\overline{F^{ur}}}[[T_{1}, \ldots, T_{n-1}]])$

rig

By putting the level $p^{r}$-structure on the universal $p$-divisible group on $LT$ , we have a
pro-\’etale Galois covering (Lubin-Tate tower) : $LT\infty=\{LT_{r}\}_{r}arrow LT$ . The Galois group
of the Lubin-Tate tower is $GL_{n}(\mathcal{O}_{F})$ . On the $\ell$-adic cohomology with compact support

$H_{c}^{i}( LT\infty, \overline{\mathbb{Q}}_{\ell}) :=\frac{1i_{\mathfrak{R}}}{r\prime}H_{c}^{i}(LTr, \overline{\mathbb{Q}}_{\ell})$
,

we have a natural action of the product of three groups $GL_{n}(\mathcal{O}_{F})\cross \mathcal{O}_{D}^{\cross}\cross I_{F}$ , where
$D$ is a central division algebra over $F$ of invariant $1/n$ , and $I_{F}$ is the inertia group of
$F$ . It is a nontrivial but important fact that this action naturally extends to an action
of $GL_{n}(F)\cross D^{\cross}\cross W_{F}$ using Hecke correspondences and the Weil descent datum ([Ca],
[HT], [RZ] $)$ .

Using local and global methods, Harris-Taylor and Boyer obtained the following fan-
tastic results.

Theorem 2.1 (Harris-Taylor, Boyer ([HT], [Bo])). Let $\tau\in$ Irr $(D^{\cross})$ be an irreducible
smooth representation of $D^{\cross}$ , and let $JL(\tau)\in$ Irr $(GL_{n}(F))$ be the discrete serves repre-
sentation of $GL_{n}(F)$ corresponding to $\tau$ by the local Jacquet-Langlands correspondence.
By Zelevinsky’s classification, $JL(\tau)\cong Sp_{s}(\pi)$ , where $n=st$ and $\pi$ is a supercuspidal rep-
resentation of $GL_{t}(F)$ . Then, we have an isomorphism as $GL_{n}(F)\cross W_{F}$ -representations:

$(\underline{\mathfrak{R}}\prime$

$\cong\{\begin{array}{ll}(Sp_{s-i}(\pi)EH\pi|\det|^{s-i} ffl \cdots EH\pi|\det|^{s-1})\otimes LLC (\pi^{\vee})(\frac{n-s+2i}{2}) 0\leq i\leq s-10 otherwise,\end{array}$

where Frob-ss denotes the Frobenius semisimplification, LLC $(\pi^{\vee})$ denotes the local Lang-
lands correspondence composed with contragredient, and $( \frac{n-s+2i}{2})$ denotes the Tate twist.

Precisely speaking, Harris-Taylor proved the equality of the alternating sum of the coho-
mology groups, and Boyer calculated the $coh_{01}$nology in each degree. They use vanishing
cycle cohomology (or nearby cycle cohomology) which is dual to the $\ell$-adic cohomology
of Lubin-Tate spaces. For an interpretation of the results of Harris-Taylor and Boyer
in terms of the $\ell$-adic cohomology of Lubin-Tate spaces, see the proof of Proposition
2.2 in [S]. Historically, when Harris-Taylor studied the Lubin-Tate spaces, they in fact
proved the local Langlands correspondence for $GL_{n}/F$ and (an alternating sum version
of) Theorem 2.1 simultaneously by a rather indirect inductive argument.

Let us observe the statement of Theorem 2.1 a little more. Assume that $JL(\tau)$ is
supercuspidal. Then, we have $JL(\tau)=\pi$ and $t=n,$ $s=1$ . The left hand side of Theorem

108



2.1 survives only when $i=0$ . When $i=0$ , we have

$(\underline{1i_{0}}Hom_{D^{\cross}}r,(H_{c}^{n-1}(LT_{r}, \overline{\mathbb{Q}}_{\ell}),$ $\tau))$

Frob-ss
$\cong\pi\otimes$ LLC $( \pi^{\vee})(\frac{n-1}{2})$ .

We see that the local Jacquet-Langlands correspondence $JL$ : $\tau\mapsto\pi$ and the local Lang-
lands correspondence LLC are encoded in the $\ell$-adic cohomology of the Lubin-Tate space.
Since the right hand side of Theorem 2.1 is not supercuspidal unless $i=0$ (in fact, it is
not discrete series), we have the following observation: supercuspidal representations of
$GL_{n}(F)$ appear only in the middle degree cohomology $H_{c}^{n-1}$ of Lubin-Tate spaces. $A$ local
elegant proof of this non-supercuspidality result was obtained by Mieda ([Mi]). Next,
assume that $JL(\tau)$ is not supercuspidal. We have $s>1$ . We also have the following
observation: When $i$ becomes larger, the cohomology $H_{c}^{n-1+i}$ becomes farther away from
the middle degree, and the representation $Sp_{s-i}(\pi)$ ffl $\pi|\det|^{s-i}$ ffl $\cdots$ ffl $\pi|\det|^{s-1}$ becomes
‘farther away” from the discrete series $Sp_{s}(\pi)$ . In some sense, the distance of the coho-
mological degree from the middle degree measures the “distance” of the representation
from the discrete series. It seems interesting to pursue it from the viewpoint of the derived
category version of Theorem 2.1 established by Dat ([D]).

We would like to generalize Theorem 2.1 to general Rapoport-Zink spaces. Our knowl-
edge is very limited for the moment. There are several difficulties both in representation
theory and geometry. We can overcome the difficulties when the group $G$ is $GU_{1,2}/\mathbb{Q}_{p}$

and the $G(\mathbb{Q}_{p})$ -representation is supercuspidal.

3. THE LOCAL LANGLANDS CORRESPONDENCE FOR THE UNITARY SIMILITUDE
GROUPS IN THREE VARIABLES $($ AFTER ROGAWSKI)

Let $p$ be a prime number, $F$ a $parrow adic$ field, and $E/F$ a quadratic extension. We recall
Rogawski‘s results on the local Langlands correspondence for the unitary similitude group
$GU_{1,2}/F$ . Of course, our references are $[Ro1]$ and $[Ro2].$

Let us consider the unitary similitude group in three variables defined by

$GU_{1,2}(R):=\{(g, \lambda)\in GL_{3}(R\otimes_{F}E)\cross R^{\cross}|g(1 -1 1)t_{\overline{g}=\lambda}(1 -l 1)\}$

for an $F$-algebra $R$ , where $g\mapsto\overline{g}$ denotes the action of the nontrivial element of Gal $(E/F)$ .
Let $G’$ be another unitary similitude group in three variables with respect to $E/F$ . By
Landherr’s theorem, there are exactly two isomorphism classes of hermitian forms in
three variables with respect to $E/F$ , and the unitary similitude groups defined by the two
hermitian forms are isomorphic. Hence $G’$ is (non-canonically) isomorphic to $GU_{1,2}/F,$

and isomorphisms between them are unique up to inner automorphisms. Therefore, we
can canonically identify Irr $(GU_{1,2}(F))$ and Irr $(G’(F))$ . Hence we need only to consider
$GU_{1,2}/F$ in this section.

The local Langlands correspondence for $GU_{1,2}/F$ was established by Rogawski. Let

$LGU_{1,2}:=(GL_{3}(\mathbb{C})\cross \mathbb{C}^{\cross})\rtimes W_{F}$
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be the $L$-group of $GU_{1,2}/F$ . Let $\Phi(GU_{1,2}/F)$ be the set of $(GL_{3}(\mathbb{C})\cross \mathbb{C}^{\cross})$ -conjugacy
classes of $L$-parameters

$\phi:W_{F}\cross SL_{2}(\mathbb{C})-LGU_{1,2}$

$(for the$ definition $of L-$groups $and L-$parameters, $see [Rol], [Ro2])$ . Rogawski defined a
surjective map with finite fibers:

LLC: $Irr(GU_{1,2}(F))-\Phi(GU_{1,2}/F)$ .

For an $L$-parameter $\phi\in\Phi(GU_{1,2}/F)$ , the fiber $\Pi_{\phi}$ $:=LLC^{-1}(\phi)$ is called the $L$ -packet.
Unlike the case of $GL_{n}/F$ , the map LLC is not bijective. The cardinality of the $L$-packet
$\Pi_{\phi}$ is either 1,2 or 4 depending on $\phi$ . The elements of $\Pi_{\phi}$ are parameterized by characters
of a finite abelian group $S_{\phi}$ , which is isomorphic to either $0,$ $\mathbb{Z}/2\mathbb{Z}$ or $(\mathbb{Z}/2\mathbb{Z})^{2}.$

Rogawski also defined the $A$ -packets for $GU_{1,2}/F$ . The $A$-packets are finite subsets of
Irr $(GU_{1,2}(F))$ parameterized by $A$-parameters

$\phi:W_{F}\cross SL_{2}(\mathbb{C})\cross SL_{2}(\mathbb{C})-LGU_{1,2}.$

The cardinality of an $A$-packet for $GU_{1,2}/F$ is either 1,2 or 4. In most cases, $L$-packets
are the same as $A$-packets. But there are few exceptions. In general, $A$-packets are not L-
packets, and two $A$-packets may have nontrivial intersection. The notion of $A$-packets are
important when we study global automorphic representations. The multiplicity formula
for global automorphic representations is described in terms of global and local $A$-packets
rather than $L$-packets (see [Ro2]). See also [BRl], [BR2], where the $P$-adic cohomology of
Shimura varieties (Picard modular surfaces) was studied in terms of $A$-packets.

Precisely speaking, in [Rol], Rogawski defined $L$-packets and $A$-packets for the uni-
tary group $U_{1,2}/F$ rather than the unitary similitude group $GU_{1,2}/F$ using endoscopic

character relations. The definition of the $L$-packets for $GU_{1,2}/F$ is given in [Ro2, \S 2].
Fortunately, the representation theory of $GU_{1,2}(F)$ is almost identical to that of $U_{1,2}(F)$

because $GU_{1,2}(F)$ is generated by its center and $U_{1,2}(F)\subset GU_{1,2}(F)$ . We define $L$-packets
(resp. $A$-packets) for $GU_{1,2}/F$ as follows: a finite set of irreducible smooth representa-
tions of $GU_{1,2}(F)$ is an $L$-packet (resp. $A$-packet) if and only if they have the same central
character, and the restriction of them to $U_{1,2}(F)$ forms an $L$-packet (resp. $A$-packet) of
$U_{1,2}/F.$

Rogawski classified $L$-packets for $U_{1,2}/F$ and $GU_{1,2}/F$ into 9 types according to the
structure of $L$-parameters. See the list (1) $-(9)$ in page 174 of [Rol, \S 12.2], where the list

is written for $U_{1,2}/F$ . The list for $GU_{1,2}/F$ is essentially the same. Among 9 types of
$L$-packets, the following 4 types of $L$-packets contain supercuspidal representations (for
unexplained notation on endoscopic transfer, see [Rol] $)$ .

Type (2) $\Pi(St_{H}(\xi))=\{\pi^{2}(\xi), \pi^{s}(\xi)\}$

$\xi$ is a one-dimensional representation of the elliptic endoscopic group $U_{1,1}(F)\cross$

$U_{1}(F)$ . $\pi^{2}(\xi)$ is non-supercuspidal discrete series, and $\pi^{s}(\xi)$ is supercuspidal.
Type (4) $\Pi(\rho)=\{\pi_{0}, \pi_{1}\}$

Both $\pi_{0},$ $\pi_{1}$ are supercuspidal. $\rho$ is a supercuspidal representation of $U_{1,1}(F)\cross$

$U_{1}(F)$ , and not contained in any $L$-packet obtained from $U_{1}(F)\cross U_{1}(F)\cross U_{1}(F)$ .
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Type (5) $\Pi(\rho(\theta))=\{\pi_{0}, \pi_{1}, \pi_{2}, \pi_{3}\}$

All of $\pi_{0},$ $\pi_{1},$ $\pi_{2},$ $\pi_{3}$ are supercuspidal. $\theta$ is a regular character of $U_{1}(F)\cross U_{1}(F)\cross$

$U_{1}(F)$ .
Type (9) $\Pi=\{\pi_{0}\}$

$\pi_{0}$ is supercuspidal. $\pi_{0}$ is not contained in any $L$-packet obtained from an $L$-packet
of $U_{1,1}(F)\cross U_{1}(F)$ .

In this list, all representations except for $\pi^{2}(\xi)$ in Type (2) are supercuspidal. For L-
packets of Type (4), (5),(9), the $L$-parameters have trivial $SL_{2}(\mathbb{C})$-part. But for $L$-packets
of Type (2), the $L$-parameters have nontrivial $SL_{2}(\mathbb{C})$-part.

All of the $L$-packets of Type (2),(4),(5),(9) are also $A$-packets. There is another type
of $A$-packets of the form $\Pi(\xi)=\{$ Zel $(\pi^{2}),$ $\pi^{s}(\xi)\}$ consisting of a non-tempered unitary
representation Zel $(\pi^{2})$ and a supercuspidal representation $\pi^{s}(\xi)$ in an $L$-packet of Type (2)
([Rol, \S 13.1]). The non-tempered representation Zel $(\pi^{2}(\xi))$ is the Zelevinsky dual to the
discrete series $\pi^{2}(\xi)$ . In [Rol], Zel $(\pi^{2}(\xi))$ is denoted by $\pi^{n}(\xi)$ . Therefore, a supercuspidal
representation of the form $\pi^{s}(\xi)$ is $co$ntained in two different $A$-packets. According to
[Rol], a supercuspidal representation not of the form $\pi^{s}(\xi)$ is contained in exactly one
$A$-packet.

The (standard) base change map is a natural map from the set of $L$-packets of $GU_{1,2}/F$

to the set of $L$-packets of $GL_{3}/E$ . The $L$-group $LGU_{1,2}$ is a semidirect product of
$GL_{3}(\mathbb{C})\cross \mathbb{C}^{\cross}$ and $W_{F}$ , which is split when it is restricted to $W_{E}\subset W_{F}$ . For an
$L$-parameter $\phi\in\Phi(GU_{1,2}/F)$ , the restriction of $\phi$ to $W_{E}\cross SL_{2}(\mathbb{C})$ composed with
$GL_{3}(\mathbb{C})\cross \mathbb{C}^{\cross}arrow GL_{3}(\mathbb{C}),$ $(g, \lambda)\mapsto\lambda g$ gives the following homomorphism

$\phi_{E}:W_{E}\cross SL_{2}(\mathbb{C})arrow GL_{3}(\mathbb{C})\cross \mathbb{C}^{\cross-}GL_{3}(\mathbb{C})$ .

The map $\phi_{E}$ is an $L$-parameter for $GL_{3}/E$ . By the local Langlands correspondence for
$GL_{3}/E,$ $\phi_{E}$ corresponds to an irreducible smooth representation $\pi_{E}\in$ Irr $(GL_{3}(E))$ . The
map $\Pi_{\phi}\mapsto\{\pi_{E}\}$ is called the (standard) base change map. There is a variant of this map,
called the non-standard base change map or variant base change map, which is useful
when we study a relation between base change and endoscopic transfer $([Ro2, \S 2.4])$ .

4. SUPERCUSPIDAL REPRESENTATIONS IN THE $\ell$-ADIC COHOMOLOGY OF THE
RAPOPORT-ZINK SPACE FOR GUl,2

From now on, we assume the following:

Assumption 4.1. $p\neq 2,$ $F=\mathbb{Q}_{p}$ , and $E$ is a unramified quadratic extension of $\mathbb{Q}_{p}.$

The main reason why we need such a technical assumption is geometric. We use
Vollaard-Wedhorn’s results on the underlying space of the Rapoport-Zink space for $GU_{1,2}/\mathbb{Q}_{p}.$

Their papers [V], [VW] are written under this assumption. (In fact, Vollaard-Wedhorn
obtained similar results for $GU_{1,n-1}/\mathbb{Q}_{p}$ for any $n$ ([VW]). In [Z], Wei Zhang studied
the Rapoport-Zink space for $GU_{1,2}/F$ when $F\neq \mathbb{Q}_{p}$ (still assuming $p\neq 2$ and $E/F$ is
unramified). But a cautious reader will note that the details of proofs are not written in
[Z]. Instead, [VW] is cited in that paper.)
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Let $M$ be the Rapoport-Zink space for $GU_{1,2}/F$ . This is the rigid analytic space
associated with the moduli space of quasi-isogenies of 3-dimensional p–divisible groups
with $\mathcal{O}_{E}$-action satisfying certain conditions on the Lie algebra (for the precise definition,
see [V], [VW] $)$ . Let

$M_{\infty}=\{M_{r}\}_{r}arrow M$

be the Rapoport-Zink tower on M. On the $\ell$-adic cohomology with compact support

$H_{c}^{i}(M_{\infty}, \overline{\mathbb{Q}}_{\ell})_{\frac{1in!}{r\prime}}:=H_{c}^{i}(M_{r}, \overline{\mathbb{Q}}_{l})$
,

we have a natural action of $G(\mathbb{Q}_{p})\cross J(\mathbb{Q}_{p})\cross W_{E}$ . We would like to study $H_{c}^{i}(M_{\infty}, \overline{\mathbb{Q}}_{\ell})$

as a representation of $G(\mathbb{Q}_{p})\cross J(\mathbb{Q}_{p})\cross W_{E}$ . The p–adic reductive groups $G$ and $J$ are
(non-canonically) isomorphic to the unitary similitude group $GU_{1,2}/\mathbb{Q}_{p}$ . Hence we can
use results on the local Langlands correspondence for $GU_{1,2}/\mathbb{Q}_{p}$ as in \S 3.

By several technical reasons, we cannot study $H_{c}^{i}(M_{\infty}, \overline{\mathbb{Q}}_{\ell})$ directly. Instead, we study
the following space. For $\tau\in$ Irr $(J(\mathbb{Q}_{p}))$ , we define a $G(\mathbb{Q}_{p})\cross W_{E}$-representation $M^{i}(\tau)$

by

$M^{i}(\tau):=(_{\frac{1in:}{r^{\gamma}}}Hom_{J(\mathbb{Q}_{p})}(H_{c}^{i}(M_{r}, \overline{\mathbb{Q}}_{\ell}), \tau))^{Frob-ss,G(\mathbb{Q}_{p})-\sup ercusp}$

where “Frob-ss” denotes the Frobenius semisimplification and $G(\mathbb{Q}_{p})$ -supercusp” denotes
the $G(\mathbb{Q}_{p})$ -supercuspidal part. We would like to determine $M^{i}(\tau)$ as a representation of
$G(\mathbb{Q}_{p})\cross W_{E}.$

Now we give the statement of our main results. As you may imagine, the structure of
$M^{i}(\tau)$ depends on the type of the $L$-packet containing $\tau$ . Recall that there are 4 types
of $L$-packets of $G\cong J\cong GU_{1,2}/\mathbb{Q}_{p}$ (see \S 3) containing supercuspidal representations.
There is another type of $A$-packet containing both supercuspidal representations and
non-tempered representations. Recall that, for an $L$-parameter $\phi\in\Phi(GU_{1,2}/\mathbb{Q}_{p})$ ,

$\phi_{E}:W_{E}\cross SL_{2}(\mathbb{C})-GL_{3}(\mathbb{C})$

denotes the base change of $\phi.$

Theorem 4.2. Let $\tau\in$ Irr $(J(\mathbb{Q}_{p}))$ be an irreducible smooth representation of $J(\mathbb{Q}_{p})$

with $L$ -parameter $\phi\in\Phi(GU_{1,2}/\mathbb{Q}_{p})$ . Assume that $\tau$ belongs to an $L$ -packet or $A$ -packet
containing a supercuspidal representation. (Note that $\tau$ itself need not be supercuspidal.)
Then, we calculate the $G(\mathbb{Q}_{p})\cross W_{E}$ -representation $M^{i}(\tau)$ as follows.

$\bullet$ Assume that $\tau$ belongs to an $L$ -packet of Type (9) $(i.e.$ $\tau$ is supercuspidal and $\{\pi\}$

forms an $L$ -packet). We consider $\tau\in$ Irr $(G(\mathbb{Q}_{p}))$ via an isomorphism $G(\mathbb{Q}_{p})\cong$

$J(\mathbb{Q}_{p})$ . $Then,$ $.we$ have

$M^{i}(\tau)=\{\begin{array}{ll}\tau\otimes\phi_{E}(1) i=20 i\neq 2\end{array}$

Here, (1) denotes the Tate twist. In this case, $\phi_{E}$ is an irreducible 3-dimensional
representation of $W_{E}.$

112



$\bullet$ Assume that $\tau$ belongs to an $L$ -packet of Type (4) $(i.e.$ $\tau$ belongs to an $L$ -packet
of the form $\{\pi_{0}, \pi_{1}\}$ , where $\pi_{0}$ is generic supercuspidal and $\pi_{1}$ is non-generic
supercuspidal.). Then, $\tau$ is either $\pi_{0}$ or $\pi_{1}$ . In this case, $\phi_{E}$ is a direct sum of
a chamcter of $W_{E}$ and an irreducible 2-dimensional representation of $W_{E}$ . We
decompose it as $\phi_{E}=\phi_{1}\oplus\phi_{2}$ , where $\dim\phi_{i}=i$ . Then, for $k=0,1$ , we have

$M^{i}(\pi_{k})=\{\begin{array}{ll}(\pi_{k}\otimes\phi_{1}(1))\oplus(\pi_{1-k}\otimes\phi_{2}(1)) i=20 i\neq 2\end{array}$

$\bullet$ Assume that $\tau$ belongs to an $L$ -packet of Type (5) $(i.e.$ $\tau$ belongs to an $L$ -packet
of the form $\{\pi_{0}, \pi_{1}, \pi_{2}, \pi_{3}\}$, where $\pi_{0}$ is generic supercuspidal and $\pi_{1},$ $\pi_{2},$ $\pi_{3}$ are
non-generic supercuspidal.) Then, $\tau$ is either $\pi_{0},$ $\pi_{1},$ $\pi_{2}$ or $\pi_{3}$ . In this case, $\phi_{E}$

is a direct sum of three different characters, $i.e.$ $\phi_{E}=\theta_{1}\oplus\theta_{2}\oplus\theta_{3}$ . For each
$k=0,1,2,3$, we have a bijection

$\sigma_{k}:\{0,1,2,3\}\backslash \{k\}arrow^{1\cdot 1\cdot}\{1,2,3\}$

Then, for $k=0,1,2,3$ , we have

$M^{i}(\pi_{k})=\{\begin{array}{ll}\oplus_{j\in\{0,1,2,3\}\backslash \{k\}}(\pi_{j}\otimes\theta_{\sigma_{k}(j)}(1)) i=20 i\neq 2\end{array}$

(Note that $\pi_{k}$ does not appear in $M^{i}(\pi_{k})$ . We do not explain how to specify $\theta_{1},$ $\theta_{2},$ $\theta_{3}$

and how to define $\sigma_{k}$ . They can be defined explicitly in terms of characters of
$S_{\phi}\cong(\mathbb{Z}/2\mathbb{Z})^{2}.)$

$\bullet$ Assume that $\tau$ belongs to an $L$ -packet of Type (2) $(i.e.$ $\tau$ belongs to an $L$ -packet of
the form $\{\pi^{2}, \pi^{s}\}$ , where $\pi^{2}$ is non-supercuspidal discrete series and $\pi^{s}$ is supercus-
pidal.) In this case, $\phi_{E}|_{SL_{2}(\mathbb{C})}$ is nontrivial. As a representation of $W_{E}\cross SL_{2}(\mathbb{C})$ ,

$\phi_{E}=$ $(v\otimes$ std$)\oplus(\xi\otimes$ triv$)$ ,

where $\nu,$ $\xi$ are characters of $W_{E}$ , and std (resp. triv) denotes the standard (resp.
trivial) representation of $SL_{2}(\mathbb{C})$ . Then, we have

$M^{i}(\pi^{2})=\{\begin{array}{ll}\pi^{s}\otimes\nu(-\frac{1}{2}) i=20 i\neq 2’\end{array}$
$M^{i}(\pi^{s})=\{\begin{array}{ll}\pi^{s}\otimes\xi i=20 i\neq 2\end{array}$

(Note that we take the $G(\mathbb{Q}_{p})$ -supercuspidal part in the definition of $M^{i}$ . Hence $\pi^{2}$

does not appear in $M^{i}(\pi^{2}),$ $M^{i}(\pi^{s})$ . It seems natural to expect that $\pi^{2}$ also appears
in the space $\frac{1i_{\Psi}}{\prime}rHom_{J(\mathbb{Q}_{p})}(H_{c}^{2}(M_{r}, \overline{\mathbb{Q}}_{\ell}), \tau).)$

$\bullet$ Assume that $\tau$ is non-tempered, and $\tau$ belongs to an $A$ -packet containing a super-
cuspidal representation. Then, there is an $L$ -packet $\{\pi^{2}, \pi^{S}\}$ of Type (2) such that
$\tau=$ Zel $(\pi^{2})$ . Then, $\{\tau=$ Zel $(\pi^{2}),$ $\pi^{S}\}$ is an $A$ -packet containing $\tau$ and a super-
cuspidal representation $\pi^{s}$ . Let $\phi’$ be the $L$ -parameter of the $L$ -packet $\{\pi^{2}, \pi^{s}\},$

and denote the base change of $\phi’$ as $\phi_{E}’=(v\otimes std)\oplus(\xi\otimes triv)$ . Then, we have

$M^{i}(Ze1(\pi^{2}))=\{\begin{array}{ll}\pi^{s}\otimes v(\frac{1}{2}) i=30 i\neq 3\end{array}$
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(Note that $\pi^{s}$ appears in $H_{c}^{3}$ (not in $H_{c}^{2}$) in this case. The $L$ -pammeter $\phi_{E}$ can
be obtained from $\phi_{E}’$ by the same method as in the definition of $\phi_{\psi}$ in page 19 of
[Al]. $)$

Interested reader may compare Theorem 4.2 with Theorem 2.1. Note that all super-
cuspidal representations of $G(\mathbb{Q}_{p})$ appears in the middle degree cohomology $H_{c}^{2}$ of the
Rapoport-Zink space. Supercuspidal representations of $G(\mathbb{Q}_{p})$ whose $L$-parameters have
nontrivial $SL_{2}(\mathbb{C})$-part (i.e. those belonging to $L$-packets of Type (2) in Rogawski’s list)
appear both in $H_{c}^{2}$ and $H_{c}^{3}.$

We explain the outline of the proof. In short, our proof is a combination of the methods
of Harris-Taylor for Lubin-Tate spaces (so-called “Boyer’s trick”), and the methods of
Harris for Drinfeld upper half spaces using p–adic uniformization and the Hochshild-
Serre spectral sequence ([HT], [Hal]). We use the Hochschild-Serre spectral sequence
constructed by Fargues ([Farl, Corollaire 4.5.21]):

$E_{2_{\frac{1i\eta}{r^{\gamma}}}}^{i,j_{=}}Ext_{J(\mathbb{Q}_{p})-smooth}^{i}(H_{c}^{4-j}(M_{r}, \overline{\mathbb{Q}}_{\ell}), \mathscr{A})\Rightarrow H^{i+j}(Sh_{basic}^{rig}, \overline{\mathbb{Q}}_{\ell})$
,

where $\mathscr{A}$ denotes a space of automorphic forms on an inner form $I$ of $GU_{1,2}/\mathbb{Q}$ such that
$I(\mathbb{R})$ is compact modulo center. This spectral sequence is $GU_{1,2}(\mathbb{A}_{f})\cross W_{E}$ -equivariant,
and it connects the $\ell$-adic cohomology of the Rapoport-Zink space and the $\ell$-adic coho-
mology of the rigid analytic space associated with the formal completion along the basic
locus (supersingular locus in the notation of [V], [VW]) of the Shimura variety (Picard

modular surface). Since the split semisimple rank of $J\cong GU_{1,2}/\mathbb{Q}_{p}$ is equal to 1, this
spectral sequence degenerates at $E_{2}$-terms ([SS, Corollary III 3.3]). Hence we can ob-
tain information on the $\ell$-adic cohomology of the Rapoport-Zink space from that of the
Shimura variety. The calculation of the $\ell$-adic cohomology of unitary Shimura varieties
was finally completed by Shin ([S]). In order to isolate the $G(\mathbb{Q}_{p})$-supercuspidal part,
we use non-supercuspidality results as in [IMl]. In order to obtain the information of
$M^{i}(\tau)$ for each $i$ , we globalize $\tau$ to an automorphic representation of $GU_{1,2}(\mathbb{A})$ appro-
priately. Rogawski’s multiplicity formula for global $A$-packets plays an important role
([Rol], [Ro2]).

5. CONCLUDING REMARKS AND SOME SPECULATIONS

Theorem 4.2 seems one of the first results on the endoscopic decomposition of the $\ell$-adic
cohomology in each degree of the Rapoport-Zink spaces where the group $G$ (or $J$) is not
an inner form of $GL_{n}$ . Of course, it is a natural question to generalize Theorem 4.2 to
more general Rapoport-Zink spaces.

Results similar to Theorem 4.2 can be obtained for $GSp_{4}/\mathbb{Q}_{p}$ . The geometry of the
supersingular locus of the Siegel threefolds is classically known (cf. [LO]). We have non-
supercuspidality results ([IMl]). Thanks to the work of Gan, Takeda, Tantono, Chan, we
have fairly complete information about the local Langlands and Jacquet-Langlands corre-
spondences for $GSp_{4}$ and its inner forms ([GTakl], [GTan], [GC]). In fact, understanding

the results of [GTakl], [GTan] was a source of inspiration and motivation of our work.

114



For more general Rapoport-Zink spaces, very little is known. There are many difficulties
both in representation theory and geometry. Representation theoretically, we do not yet
have satisfactory results on the local Langlands and Jacquet-Langlands correspondences
in general. Thanks to the recent results of Arthur and Mok, we can now understand L-
packets and $A$-packets better than before $([A2], [Mo])$ . We would like to understand more.
We would like to know which members in $L$-packets (and $A$-packets) are supercuspidal
(see also [Moe]). They treat quasi-split semisimple groups (such as $Sp_{2n}$ ), but we need
to work with inner forms with similitudes (such as $GSp_{2n}$ or an inner form of it). For
the comparison between $L$-packets for $Sp_{4}$ and $GSp_{4}$ , see [GTak2]. Geometrically, the
situation seems more serious and we need new ideas. The geometry of Rapoport-Zink
spaces seems more complicated for higher rank groups such as $GU_{r,s}(r+s\geq 4)$ and
$GSp_{2n}(n\geq 3)$ . For example, for $G=GSp_{2n}$ , the dimension of the underlying space
of the Rapoport-Zink space is $\lfloor n^{2}/4\rfloor$ ([LO]), which is much larger than the semisimple
rank of $GSp_{2n}$ . The analysis of the $Ho$chshild-Serre spectral sequence would become more
difficult for higher rank groups.

Nevertheless, it seems natural to expect that a supercuspidal representation $\pi$ of $G(\mathbb{Q}_{p})$

appears outside the middle degree cohomology of the Rapoport-Zink space if and only if
the $L$-parameter of $\pi$ has nontrivial $SL_{2}(\mathbb{C})$ -part. Perhaps, it might be helpful to study
particular supercuspidal representations as a motivating example. For example, in [HKS],
Harris-Kudla-Sweet constructed supercuspidal representations of unitary groups over a p-
adic field whose (conjectural) $L$-parameter have large $SL_{2}(\mathbb{C})$-part ([HKS, Speculation
7.7] $)$ .

Of course, there are many other problems on the geometry and the cohomology of
Rapoport-Zink spaces which are not discussed in this note. It is interesting to study the
contribution of non-supercuspidal representations as in Boyer’s work ([Bo]). Except for
Lubin-Tate spaces and Drinfeld upper half spaces, very little is known so far.
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