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FINITE QUADRATIC MODULES OVER NUMBER
FIELDS AND THEIR ASSOCIATED WEIL
REPRESENTATIONS

HATICE BOYLAN

ABSTRACT. In this survey we report about recent research results
in the theory of Weil representations of the Hilbert modular groups
(and of their two-fold central extensions) associated the finite qua-
dratic modules. We shall also indicate applications of these results
to the theory of Jacobi forms over number fields.

1. INTRODUCTION

In the study of Hilbert, Jacobi and orthogonal modular forms of low
weight over number fields it is essential to understand the representa-
tions of Hilbert modular groups or of their two-fold central extensions.
The representations that are interesting in this context are called con-
gruence representations.

Definition. Congruence representations are those complex represen-
tations of SLo(0) (o the ring of integers in a number field) which are
finite dimensional, and whose kernel is a congruence subgroup.

Remark. If o is the ring of integers of K # Q, and K not totally com-
plex, then every subgroup of finite index in SL(2,0) is a congruence
subgroup [Ser70, Thm. 2, Cor. 3]. In particular, for such K a con-
gruence representation is nothing else than a representation with finite
image.

Let us consider, first of all,the case of SL(2,Z). For K = Q, the key
to the study of the congruence representations of SL(2,Z) are the Weil
representations associated to finite quadratic modules. This is due to
the following fact:

Theorem 1. [NW76] Every congruence representation of SL(2,7Z) is
contained in a Weil representation associated to a finite quadratic mod-
ule. !

Knowing the congruence representations of SL(2, Z) gives rise to sev-
eral applications e.g.
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e determining all singular Jacobi forms over Q (for scalar index
see [Sko85], and for arbitrary lattice index see [BS13c]),

e determining all Jacobi forms of critical weight over Q (see the
article [BS13c]),

e proving vanishing results for Siegel modular forms of critical
weight of degree 2. There are no Siegel modular forms of degree
2 on I'o(N) of weight one [IS07],

e determining orthogonal modular forms of critical weight with
signature (2,n) (this is still an open project, critical weight is

n—1

here %5=).

Recall that Jacobi’s theta function is defined as

3, 2) = 3 () g
rez
=g (- [1-a"(1-a"¢)(1-q ¢

(q=e>" ¢ =e*forT € H, z € C).

The second identity is known as the Jacobi’s triple product identity.
(Here H denotes the upper half plané.) There is also another interesting
function which can be written as a quotient of ¥. Namely,

2 r 19(7- 2Z)
* = § 12y o3 =177
19(7-7/2)_7‘62(7»)(14{2 ﬂ(T,z)‘

We know that 9* equals the Watson quintiple product identity, i.e. J*

equals
JIa =@ =2q") (1 = 271" ) (1 = 22 H)(1 = 272> 7).

n>1
The funtions 9 and 9* have n® and 7 as the first Taylor coefficients, i.e.
I(r,z) =2+ 0(2%), 9*(1,2) =n+0(2?).

Here 7 is the Dedekind’s eta function 7(2) = ¢"/# ][, -,(1 — ¢").

The functions ¥ and ¥* are important since ¥ is the Weierstrass
o-function and ¥(7, z), for fixed 7, is the building block for all theta
functions on the elliptic curve E, := C/Z7+Z. If E. is defined over Q,
then (7, 2) is the contribution at infinity of the canonical height on E.
Moreover, ¥ and ¥* occur in the Jacobi triple and Watson quintuple
product formulas, and these formulas have connections with Weyl-Kac
denominator formulas for certain Kac-Moody algebras.

These two interesting functions can be characterized as the only sin-
gular Jacobi forms over Q. Informally, Jacobi forms can be character-
ized as follows

Definition. For a half integer k, a positive Z-lattice L = (L, ), an
integer a mod 24, Ji, (%) is the space of holomorphic functions ¢(7, z)
of 7 € H and 2z € C ®z L such that
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(i) For fixed 7, the function 2z + ¢(7,z) defines a section of a
certain line bundle of C®z L/(r @ L + 1 ® L).

(ii) For any pair of elements z,y in Q ®z L, the function o(r, 7 +
y) e(7B(z,x)/2) defines an elliptic modular form on SL(2, Z) of
weight k& with character 2.

Here ¢ is the character of the non-trivial double cover Mp(2,Z) of
SL(2,Z) afforded by 7. For the formal definition we refer the reader
to [BS13c].

The functions ¢ described in this definition are called Jacobi forms of
weight k index L and character e. The first weight k& where we expect
‘non-zero Jacobi forms is n/2, where n = rank L. The Jacobi forms of
index L and of this weight are called singular-

We can classify all Jacobi forms of singular weight and scalar index
over K = Q. Namely, we have

Theorem 2. [Sko85, p. 27]
(1) ¥ e Jl/z,z_(é's), ¥ e JI/Z,Z(3)(€>-
(ii) The functions § and 9* are the only Jacobi forms (of scalar in-
dex) of weight 1/2 (up to trivial transformations in the z vari-
able).

The following explains the link between the space of singular Jacobi
forms and the Weil representations of Mp(2,Z). For any positive inte-
gral lattice L of rank n, one has

Space of invariants of the tensor
Tn (6a> o~ product of the Weil representa-
2L tion associated to the discrimi-
nant module of L(—1) with C(e?).
Here L(-1) = (L,-B) if L = (L,B), and C(e%) is the Mp(2,Z)-
module C with the Mp(2, Z)-action (o, 2) = £%(a) - 2.

There are various new results and developments in the theory of
Jacobi forms of singular weight for arbitrary lattice index over K = Q.
These are all joint work with Nils-Peter Skoruppa and can be found in
the preprint [BS13c].

e Complete classification of all singular weight Jacobi forms over
K = Q whose index is a rank 2-lattice.

e Complete classification of all singular weight Jacobi forms over
K = Q whose index is a maximal integral lattice.

e A concise theory of Jacobi forms whose index is an odd lattice
and the associated “shadow” representations (a generalization
of Weil representations to “include discriminant modules of odd
lattices”).

In analogy we developed in our thesis [Boy11] a theory of finite qua-
dratic modules over arbitrary number fields , and their associated Weil
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representations, and a (complete) theory for Jacobi forms over totally
real number fields, and we determined all singular Jacobi forms of lat-
tice rank one over totally real number fields.

In this article we shall report about the main features of this new
theory of finite quadratic modules and associated Weil representations
over arbitrary number field K, about an interesting new phenomena
arising in the general theory over arbitrary number fields, and we in-
dicate applications to the explicit construction of automorphic forms
over number fields.

‘For an arbitrary number field K with ring of integers o it is not
known whether every congruence representation is contained a Weil
representation (as it is the case over Q).

However, for linear characters of SL(2,0) (K totally real) it seems
to be true since there is evidence due to a recent result (see Theo-
rem 3 below) which describes explicitly the linear characters of Hilbert
modular groups, and the explicit construction of Weil representations
containing these characters for totally real number fields (which comes
essentially from the classification of singular Jacobi forms of index of
rank one over totally real number fields (see [Boyl1]).

We know from [BS13a] that the congruence linear characters (the
linear characters whose kernel is a congruence group) of SL(2, o) for an
arbitrary Dedekind domain o is given by

Theorem 3. Let o be a Dedekind domain. The group of congruence
linear characters of SL(2, 0) is given by:

[Tt > TT¢ew) I (fee) x (eia))

p all2 ©2[2

where p, q and t run through all prime ideals of 0 such that o/p =
Fs, 0/q = Fy, o/t = Fy, and such that g% does not divide 2 and v?
divides 2. (Here, for a = p,q%,t, we use ¢, = ey © red. modulo a,
where N € {2,3,4} is such that o/a = Z/N, and ey is a certain linear
character of SL(2,Z/N). Moreover, €/, = €jored. modulo t?, where €}
is a certain linear character of SL(2, F1[t]/(t2))).

2. FINITE QUADRATIC MODULES

In the following K is an arbitrary number field with ring of integers o
and different 9. In this section we shall cite several results from [Boy11],
where the theory of finite quadratic modules over number was first
introduced.

Definition. A finite quadratic module over K (shortly o-FQM) is a
pair (M,Q), where M is a finite o-module, and where @ is a non-
degenerate quadratic form on M, i.e. where Q : M — K/07! is a map
which satisfies the following properties:

(i) For all a € 0 and £ € M one has Q(ar) = a*Q(z).
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(i) The map B : M x M — K/o~! defined by B(z,y) = Q(z +
y) — Q(z) — Q(y) is o-bilinear and symmetric.
(iii) B is non-degenerate, i.e. B(z, M) = {0} if and only if z = 0.

We shall define some notions concerning 0-FQM, which will be useful
below for our considerations.

Definition. The annihilator of 9 = (M, Q) is the ideal
ann(M) :={a € 0 | aM = 0}.
The level of 90t is the ideal
level(M) := {a € 0 | aQ = 0}.
Remark. The annihilator and the level contain the same prime ideals.

Example (Discriminant modules). Let L = (L, 8) be an even o-lattice,
i.e. L is a finitely generated torsion-free o-module and 8 : L x L — 91
is a finitely generated symmetric, non-degenerate o-bilinear form such
that B(z,z) € 2071

The dual of L is

IF={yeQ®L|py,L) Co'}
The discriminant module of L is
Dp=(L*/L,x+ L~ B(z) +07").
It is easy to see that Dy is an o-FQM.

Over Z, every 0-FQM can be written as a discriminant module of an
even Z-lattice. This fact is no longer true when we consider 0-FQM over
an arbitrary number field. The following provides a counter example.

Example. Consider the number field K = Q(V17). Then we have
0 = 0 = Z[lizﬂ] and 0 = \/1706. We have 20 = py’, where p =
mo and p' = 7’0 are two distinct principal prime ideals in o (with
m = (5++17)/2 and 7' = (5 — V17)/2). Then the 0-FQM 9 —
(0/7r0,a: + 70 —\/% + D“l) is not a discriminant module of an

o-lattice. Indeed, if MM equaled the discriminant module of the even o-

lattice L, then rank(L) = rank(o, ® L) = rank(oy ® L). But oy @ L
would have to be even unimodular, hence of even rank, whereas 0, ® L
would to have be the direct sum of a unimodular even lattice plus
times a unimodular lattice of rank 1, whence of odd rank.

Definition. An o-FQM (M, Q) is called cyclic, if the o-module M is
cyclic, i.e. if there exists + € M such that M = oz. Henceforth, a
cyclic 0-FQM is called o-CM.

Proposition 1. [Boyll, Thm. 1.1] Let w € K* and | be the denom-
inator of wd, assume that (2,1)*|l. Then (o/a,z + a — wa? + 071),
where a = 1(2,1)"! is an 0-CM, and every o-CM is 1somorphic to such
a module.
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Remark. Cyclic modules will play an important role for generalizing
Jacobi’s theta functions ¥(r, z) and ¥*(7, z) to arbitrary totally real
number fields.

There are three operations in the category of finite quadratic o-
modules: twisting, direct sums and quotients. The most important
one for our considerations is “taking quotients”. For that we need to
define

Definition. An o-submodule U of M = (M, Q) is called isotropic, if
(@ vanishes on U.

Definition. Let U be an isotropic submodule of 9. Then the o-FQM
M/U = (U*/U,Q)

is called the quotient of M by the isotropic submodule U. Here U # =
{r € M | B(z, M) =0} is the dual of U, and Q(z + U) := Q(=).

3. WEIL REPRESENTATIONS ASSOCIATED TO 0o-FQM

Theorem 4. [Boyll, Thm. 2.7] Let MM = (M, Q) be an 0-FQM. There
is a projective representation of SL(2,0) on C[M] such that

T, - e = e(bQ(2))ex

% 3 e(—Q(,9)),

where o(IM) = —\/ﬁzzeM e(—Q(z))%. Here T, = ['%] b € 0) and
S=[,""]

Remark. The proof of this theorem is not at all obvious. One can ei-
ther proceed by citing parts of Weil’s original paper [Wei64} and putting
them together, or (as the author did in [Boy11]) one can prove from
scratch by viewing the operators associated to this projective repre-
sentation as intertwiners of certain representations of the Heisenberg
group associated to the finite quadratic module in question. But in
both ways, the proof is quite long.

1 Sepm

Remark. The matrices Ty := [1%] (b € 0) and S = [, ~'] generate
SL(2, 0) [Vas72, First Thm.]. Hence, once we know that such a projec-
tive representation exits we know that it is unique.

Theorem 5. [BS12] If the annihilator of M is an odd ideal, then the
(projective) Weil representation associated to I is a true representa-
tion of SL(2,0).

2We use e(x) = e2mtrx/e(@),
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The projective Weil representation can not always be lifted to a
true representation to the well-known double cover Mp(2, ¢) of SL(2, o)
which occurs in the theory of Hilbert modular forms of half integral
weight, as we shall explain now.

For a p-module M = (M, Q) (an 0-FQM such that the annihilator

of M is a p-power) and a in o*, we set

y(a) = e(aQ(z
>
We call v the Weil index of 9.

Definition. An integral ideal p is called bad for M = (M, Q), if a —
v(a)/~v(1) is not a character of o*, where ~ is the Weil index associated
to the p-part of 9M (i.e. the o-FQM (Mp, Q|ns,), where M, is the o-
submodule of elements of M which are killed by a p-power).

Recall that for a local field F', the Kubota cocyle of F' is the map
kp :SL(2,F) x SL(2, F) — {:{:1} defined by

J_Z_ z(B) o b _ C 1fc#0,
kr(A, B) = (a:(AB’x_(A_B)) z([¢a]) {d otherwise.

Let k = H Kp, where r, is the Kubota cocyle of the com-

p|2,p bad for M
pletion K, of K at p, and let G := [SL(2,0),x] denote the central
extension of SL(2, 0) defined by the cocyle .

Theorem 6. [BS13b, Thm. 6.2] Let 9 be an 0-FQM. Then O is a
G-module.

We have Mp(2,0) =~ [SL(2,0), ][, #pl(see [BS12]). This fact to-
gether with Theorem 6 show that unlike K = Q, the projective rep-
resentation (1) of SL(2,0) can indeed not always be lifted to a true
representation of Mp(2, o).

We can decompose Weil representations using the so-called methods
of embedding and intertwining with the orthogonal group. These meth-
ods were first introduced by [Klo46], and where extended in [Boy11] to
the theory of Weil representations over number fields.

Definition. We write W(91) for the G-module C[M] with the G-
action (1), where T, and S have to be replaced by (Ty, +1) and (S, +1).
We shall refer to W (M) as the Weil representation associated to 9.
The Weil representation associated to an o-CM is called a cyclic Weil
representation.

Lemma 1. Let U be an isotropic submodule of M. The map
W(ER/U) > WOR), ex> > e,

yeX
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defines a G-linear embedding (i.e. an injective G-module homomor-
phism,).

Definition. By O(9t) we denote the group of automorphisms of M,
i.e. the group of o-module automorphisms of M leaving @ invariant.

Lemma 2. The natural action of O(9M) on C[M] intertwines with the
action of G.

Definition. By < - >, we denote the Hermitian scalar product on
W (901) which is anti-linear in the second argument and which satisfies:

@) <€m|6y>={1 ifr=y

0 otherwise.

Definition. We define the new part W (90)" of W (90) as the orthog-
onal complement with respect to (2) of the subspace

> wW(m/U).
vcm
Uisotropic
U#0
Theorem 7. [Boyll, Thm. 2.2] We have the following decomposition
of W(IM) into G-submodules:

(3) WO =WEn™ e Y wW (/U
Uem
U isotropic
U#0.
If M contains only one mazimal isotropic submodule, then the second
sum in (3) is an orthogonal sum with respect to the scalar product (2).

The proof of the first part can be done by doing induction on the
dimension of W ().

The condition that there exists only one maximal isotropic submod-
ule is not necessary for the decomposition in (3) to be direct as the
subsequent example shows. However, this condition is also not super-
fluous as we shall show in the second example below.

Example. We show that the sum (3) applied to the finite quadratic Z-
module N := (Z/2Z x Z/2Z,Q), where Q(zx +2Z,y+2Z) = ry/2+ Z,
is direct. The nonzero isotropic submodules of M are Uy = (([0], [1])),
U, = (([1],[0])). (Here we use [z] = a +2Z.) Since |U¥| - |Us| = 4
(which follows from [Boyl1l, Prop. 1.7]) the quotient modules N/U; are
trivial, in particular, W (M/U;) = W(M/U;)"*. They are spanned by
the vectors e(o),[0]) + €((0},[1)) and e(o},jo)) t €1}, ‘respectively, which
are obviously linearly independent. We thus have W () = W ()™ &
L, W (NJUD)™ & vy, W (N/Uz) .
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Example. Let W := (Z/2Z x Z/2Z,Q’), where Q' denotes the qua-
dratic form Q'(x + 2Z,y + 27Z) = (2 + zy + y*)/2 + Z. We show
that the sum (3) applied to M = N & N, where N is as in the
previous example, is not direct. The nonzero isotropic submodules
of M are Uy = (([0], o)) & (0L, 1)), Ux = ([0}, ) & ([1],[0])),
Us = (([1,11]) @ (], (1)), Us = ([0}, [1]) @ (1], (1)) and Us =
(([1,10]) @ ([1],[1))). Note that, for all i, U; is mazimal. The or-
der of M/U; equals 4. Since the U; are mazimal, the finite quadratic
Z-modules M/U; are anisotropic, i.e have no nonzero isotropic submod-
ules. (In fact, one can show that IMM/U; is isomorphic to M'.) Hence
we have .y, W (IM/Us) = 1y, W (OM/U;)"*. Since W () has dimension
16 the sum of the five four-dimensional spaces vy, W (IM/U;)" cannot
be direct.

Theorem 8. [Boyll, Thm. 2.3] For each irreducible character of the
group O(9M), the sum the spaces W (IM)"¥X of those O(IN)-submodules
of W(IM)™" which afford the character x, is invariant under G. In
particular, we have the decomposition of W(OR)"¥ into G-submodules

(4) W(m)new: @ W(m)new,x'

X€O(M)

(Recall O/(‘ﬂ)T) denotes the set of irreducible characters of the orthogonal
group O(IMN).)

The proof uses standard facts from representation theory. The group
O(9M) intertwines with the action of the representation.

If we confine ourselves to 0-CM, we obtain in fact complete decom-
positions of Weil representations as the subsequent theorem shows:

Theorem 9. [Boyll, Thm. 2.4] Let 9 be an 0-CM with level | and
annihilator a. We set m = [(2,1)72.
(i) We have the decomposition of W(I) into G-submodules:

W (M) = € tag-+ 1 W (DT /ab ™M),
b2|m

Here the sum is over all integral o-ideals b whose square di-
vides m.
(ii) For W(OM)"¥ we have the decomposition

W(m)new — @ W(gﬁ)new,f

flm
fsquare— free

mto G-submodules. The spaces W (O™ are irreducible G-
submodules.
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(iii) For any square-free divisor f of m, the dimension of the space
W (M) equals

1 p(f, p) 1 1
Norm(a) | | = (1 + —————> H = (1 - ——————Z—) .
;!% 2 Norm(p) i 2 Norm(p?)

Remark. The proof follows from the previously stated two theorems
and an upper bound for the number of irreducible submodules of a
Weil representation. The decomposition (3) is a direct sum for 0-CM,
since a cyclic 9 contains only one maximal isotropic submodule (one
can determine explicitly the isotropic submodules of an 0-CM).

The components of the decomposition (4) are in general not irre-
ducible G-modules. However, for 0-CM, they are irreducible. Indeed,
we count the number of components occurring in the decomposition (4)
and we compare this number to the upper bound for the number of ir-
reducible representations occurring in a cyclic Weil representation. As
it turns out the upper bound is sharp for cyclic o-FQM. '

The upper bound follows from a formula for the absolute values of
the traces of the Weil representations, which drop out when viewing the
operators defined by the Weil representations as intertwiners of certain
representations of the Heisenberg group associated to cyclic o-FQM.

4. AN APPLICATION TO AUTOMORPHIC FORMS

One can introduce a theory of Jacobi forms over totally real number
fields which exhibits a lot of similarities with the theory of Jacobi forms
over Q of lattice index.

In particular, Jacobi forms of weight k and index of rank n cor-
respond to vector valued Hilbert modular forms of weight k — n/2.
Singular weight Jacobi forms (k = n/2) correspond to vector-valued
Hilbert modular forms of weight 0. From this we see that singular
weight Jacobi forms whose index is an even o-lattice L correspond to
one-dimensional submodules of the Weil representation of Mp(2, 0) as-
sociated to the discriminant module of L(—1). For Jacobi forms of
lattice rank 1 these Weil representations are cyclic Weil representa-
tions. Hence, our decomposition yields all singular Jacobi forms over
totally real number fields with rank one index.

5. FUTURE WORK

There is also a work in progress in the theory of Jacobi forms over
number fields. Namely,

e Determining the critical weight Jacobi Forms of rank one index
over (totally real) number fields. This depends on a character-
ization of Hilbert modular forms of weight 1/2. In the narrow
class number one case these are all theta series [AS08]. This is
a generalization of a theorem of Serre-Stark. The key is again
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[AS08]

[Boy11]

[BS12]
[BS13a]
[BS13b]
[BS13¢]
 [1507]

[Klo46]
[NW76)

[Ser70]

[Sko85]

[SS13]
[VasT72]

[Wei64]

the study of decomposition of certain Weil representations and
determining one dimensional subrepresentations.

Dimension formulas for vector valued modular forms and J acobl
forms over number fields [SS13].
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