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NOTATION

Let $F$ be a number field and $\mathbb{A}$ be its ring of adeles. Let $\psi$ be a non-trivial
character of $\mathbb{A}/F$ . Let $E$ be a quadratic extension of $F$ . Let $\kappa=\kappa_{E/F}$ denote
the quadratic character of $\mathbb{A}^{\cross}/F^{\cross}$ corresponding to the quadratic extension $E/F$
in the sense of class field theory. Let $\sigma$ denote the unique non-trivial element in
Gal $(E/F)$ and take $\eta\in E^{\cross}$ such that $\eta^{\sigma}=-\eta.$

For a non-archimedean place $v$ of $F$ , we denote by $\mathcal{O}_{v}$ the ring of integers in $F_{v},$

and by $\Xi_{v}$ the characteristic function of $GSp_{4}(\mathcal{O}_{v})$ .
For any algebraic group $G$ , we will denote its center by $Z.$

1. SETUP

1.1. GSp(4) and the Novodvorsky subgroups. Let $G$ be the group GSp (4),
i.e. an algebraic group over $F$ defined by

$G=\{g\in GL$ (4) $|^{t}gJg=\lambda(g)J, \lambda(g)\in GL(1)\}$ , where $J=[Matrix].$

Here $t_{g}$ denotes the transpose of $g$ and $\lambda(g)$ is called the similitude norm of $g.$

Let us define the upper and lower Novodvorsky (or split Bessel) subgroups, resp.
$H$ and $\overline{H}$ , of $G$ by

$H=\{[Matrix][Matrix]|a, b\in GL(1), X\in Sym^{2}\}$

and

$\overline{H}=\{[Matrix][Matrix]|a, b\in GL(1), Y\in Sym^{2}\}.$

Here $Sym^{2}$ denotes the group of $2\cross 2$ symmetric matrices.
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1.2. Quaternion similitude unitary groups and the Bessel subgroups. For
each $\epsilon\in F^{\cross}$ , let $D_{\epsilon}$ denote the quaternion algebra over $F$ defined by

$D_{\epsilon}=\{(\begin{array}{ll}a b\epsilon b^{\sigma} a^{\sigma}\end{array})|a, b\in E\}.$

We shall identify $a\in E$ with $(\begin{array}{ll}a 00 a^{\sigma}\end{array})\in D_{\epsilon}$ . We recall that $\{D_{\epsilon}\}_{\epsilon}$ gives a set of

representatives for the isomorphism classes of quaternion algebras over $F$ containing
$E$ , when $\epsilon$ runs over a set of representatives for $F^{\cross}/N_{E/F}(E^{\cross})$ . Let $D_{\epsilon}\ni\alpha\mapsto$

$\overline{\alpha}\in D_{\epsilon}$ denote the canonical involution of $D_{\epsilon}$ , i.e.,

$\overline{(\begin{array}{ll}a b\epsilon b^{\sigma} a^{\sigma}\end{array})}=(\begin{array}{ll}a^{\sigma} -b\epsilon-b^{\sigma} a\end{array}).$

We define the quaternion similitude unitary $9^{roup}G_{\epsilon}$ of degree two over $D_{\epsilon}$ to

be

$G_{\epsilon}=\{g\in GL(2, D_{\epsilon})|g^{*}(\begin{array}{ll}0 11 0\end{array})g=\mu(g)(\begin{array}{ll}0 11 0\end{array}), \mu(g)\in GL(1)\}$

where $g^{*}=$ $(_{\overline{\beta}}^{\overline{\alpha}}$ $\overline{\frac{\gamma}{\delta}})$ for $g=(\begin{array}{ll}\alpha \beta\gamma \delta\end{array})$ . We recall that the, $G_{\epsilon}$ ’s are inner forms of

$G=$ GSp (4). When $\epsilon=1$ , we have $D_{1}\simeq Mat_{2\cross 2}(F)$ and $G=\alpha G_{1}\alpha^{-1}$ in $GL_{4}(E)$

where

$\alpha=(\begin{array}{llll}l 0 0 00 1 0 00 0 0 10 0 -1 0\end{array})(\begin{array}{llll}1 1 0 0\eta -\eta 0 00 0 1 10 0 \eta -\eta\end{array})$

We define the upper (resp. lower) (anisotropic) Bessel subgroup $R_{\epsilon}$ (resp. $\overline{R}_{\epsilon}$ )

of $G_{\epsilon}$ by

$R_{\epsilon}=\{(\begin{array}{ll}a 00 a\end{array})(\begin{array}{ll}1 X0 1\end{array})|a\in E^{\cross}, X\in D_{\epsilon}^{-}\},$

$\overline{R}_{\epsilon}=\{(\begin{array}{ll}a 00 a\end{array})(\begin{array}{ll}1 0Y 1\end{array})|a\in E^{\cross}, Y\in D_{\epsilon}^{-}\},$

where $D_{\epsilon}^{-}=\{X\in D_{\epsilon}|X+\overline{X}=0\}.$

2. RELATIVE TRACE FORMULA

2.1. Relative trace formula for $G$ . We define characters $\theta$ and $\psi$ of $H(A)$ and
$\overline{H}(\mathbb{A})$ by

$\theta[(\begin{array}{llll}a 0 0 00 b 0 00 0 b 00 0 0 a\end{array})(\begin{array}{ll}1_{2} X0 1_{2}\end{array})]=\kappa(ab)\psi[tr((\begin{array}{ll}0 11 0\end{array})X)]$

and

$\psi[(\begin{array}{llll}a 0 0 00 b 0 00 0 b 00 0 0 a\end{array})(\begin{array}{ll}1_{2} 0Y 1_{2}\end{array})]=\psi[tr((\begin{array}{ll}0 11 0\end{array})Y)]$
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For a cuspidal representation $\pi$ of $G(\mathbb{A})/Z(\mathbb{A})$ , we define the upper and lower
Novodvorsky periods (with respect to $\theta^{-1}$ and $\psi^{-1}$ )

$\mathcal{P}:\piarrow \mathbb{C}, \mathcal{P}’:\piarrow \mathbb{C}$

by

(2.1) $\mathcal{P}(\phi)=\mathcal{P}_{\theta-1}(\phi)=\int_{Z(A)H(F)\backslash H(A)}\phi(h)\theta^{-1}(h)dh,$

(2.2) $\mathcal{P}’(\phi)=\mathcal{P}_{\psi-1}’(\phi)=\int_{Z(\mathbb{A})\overline{H}(F)\backslash \overline{H}(A)}\phi(\overline{h})\psi^{-1}(\overline{h})d\overline{h}.$

Here we remark that the Novodvorsky periods necessarily vanish if $\pi$ is not generic.
If $\pi$ is generic, then these are essentially the integrals that arise in Novodvorsky’s
integral representation [14] for GSp(4) $\cross GL$ (1), i.e. the spinor $L$-functions $L(s, \pi)$

and $L(s, \pi, \otimes\kappa),$ . evaluated at $s= \frac{1}{2}$ . In particular we have
$\mathcal{P}\not\equiv 0\Leftrightarrow L(1/2, \pi\otimes\kappa)\neq 0,$

$\mathcal{P}’\not\equiv 0\Leftrightarrow L(1/2, \pi)\neq 0.$

For $f\in C_{c}^{\infty}(G(\mathbb{A}))$ , we consider the associated kernel function

$K(x, y)=K_{f}(x, y)= \sum_{\gamma\in Z(F)\backslash G(F)}\int_{Z(A)}f(x^{-1}\gamma yz)dz.$

Then one side of the relative trace formula of our concern will be derived from
(2.3) $J(f)= \int_{Z(A)\overline{H}(F)\backslash \overline{H}(A)}\int_{Z(A)H(F)\backslash H(\mathbb{A})}K_{f}(\overline{h}, h)\psi(\overline{h})^{-1}\theta(h)d\overline{h}dh.$

At least formally, the relative trace formula is an identity derived from the geo-
metric and spectral expansions of $K(x, y)$ , of the form

$J(f)= \sum_{\gamma\in\overline{H}(F)\backslash G(F)/H(F)}J_{\gamma}(f)=\sum_{\pi cusp}J_{\pi}(f)+J_{nc}(f)$ .

Here each $J_{\gamma}(f)$ is a certain relative orbital integral, $J_{nc}(f)$ denotes the non-cuspidal
contribution, and

$J_{\pi}(f)= \sum \mathcal{P}’(\pi(f)\phi)\overline{\mathcal{P}(\phi)}$

$\phi$

where $\pi$ is a cuspidal automorphic representation of $G(\mathbb{A})/Z(\mathbb{A})$ and $\phi$ runs over
an orthonormal basis for $\pi$ . In particular

$J_{\pi}\not\equiv 0\Leftrightarrow L(1/2, \pi)L(1/2, \pi\otimes\kappa)\neq 0.$

2.2. Relative trace formula for $G_{\epsilon}$ . Let $\tau$ and $\xi$ be the characters of $R_{\epsilon}$ and $\overline{R}_{\epsilon}$

defined by

$\tau[(\begin{array}{ll}a 00 a\end{array})(\begin{array}{ll}1 X0 l\end{array})]=\psi[tr(-\eta X)]$

and
$\xi[(\begin{array}{ll}a 00 a\end{array})(\begin{array}{ll}1 0Y 1\end{array})]=\psi[tr(-\eta^{-1}Y)].$

For a cuspidal representation $\pi$ of $G_{\epsilon}(\mathbb{A})/Z(\mathbb{A})$ , we define the upper and lower
Bessel periods (with respect to $\tau^{-1}$ and $\xi^{-1}$ )

$\mathcal{P}_{\epsilon}:\piarrow \mathbb{C}, \mathcal{P}_{\epsilon}’:\piarrow \mathbb{C}$
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by

(2.4) $\mathcal{P}_{\epsilon}(\phi)=\mathcal{P}_{\epsilon,\tau^{-1}}(\phi)=\int_{Z(A)R_{\epsilon}(F)\backslash R_{\epsilon}(A)}\phi(r)\tau^{-1}(r)dr,$

(2.5) $\mathcal{P}_{\epsilon}’(\phi)=\mathcal{P}_{\epsilon,\xi^{-1}}’(\phi)=\int_{Z(A)\overline{R}_{\epsilon}(F)\backslash \overline{R}_{\epsilon}(A)}\phi(\overline{r})\xi^{-1}(\overline{r})d\overline{r}.$

Here we remark that on $\pi,$
$\mathcal{P}_{\epsilon}\not\equiv 0$ if and only if $\mathcal{P}_{\epsilon}’\not\equiv 0$ since

$\mathcal{P}_{\epsilon}’(\phi)=\overline{\mathcal{P}_{\epsilon}(\pi(w_{\eta})\phi)}$ where $w_{\eta}=(\begin{array}{ll}0 -\eta^{2}1 0\end{array}).$

Thus if $\mathcal{P}_{\epsilon}\not\equiv 0$, we simply say $\pi$ has a Bessel period (with respect to $E$).

Let $f_{\epsilon}\in C_{c}^{\infty}(G_{\epsilon}(\mathbb{A}))$ and we consider the associated kernel function

$K_{\epsilon}(x, y)=K_{f_{\epsilon}}(x,y)= \sum_{\gamma\in Z(F)\backslash G_{\epsilon}(F)}\int_{Z(A)}f_{\epsilon}(x^{-1}\gamma yz)dz.$

Then the other side of the relative trace formula of our concern will be derived from

(2.6) $J_{\epsilon}(f_{\epsilon})= \int_{Z(A)\overline{R}_{\epsilon}(F)\backslash \overline{R}_{\epsilon}(A)}\int_{Z(A)R_{\epsilon}(F)\backslash R_{\epsilon}(A)}K_{f_{\epsilon}}(\overline{r}, r)\xi(\overline{r})^{-1}\tau(r)d\overline{r}$dr.

Ignoring convergence issues, (2.6) should have a geometric expansion of the form

$J_{\epsilon}(f_{\epsilon})= \sum_{\gamma_{\epsilon}\in\overline{R}_{\epsilon}(F)\backslash G_{\epsilon}(F)/R_{\epsilon}(F)}J_{\gamma_{\epsilon}}(f_{\epsilon})$

,

where the distributions $J_{\gamma_{\epsilon}}(f_{\epsilon})$ are given by certain (relative) orbital integrals.
On the other hand, (2.6) should also have a spectral expansion of the form

$J_{\epsilon}(f_{\epsilon})= \sum_{\pi_{\epsilon}cusp}J_{\pi_{\epsilon}}(f_{\epsilon})+J_{\epsilon,nc}(f_{\epsilon})$

where $\pi_{\epsilon}$ runs over the cuspidal automorphic representations of $G_{\epsilon}(\mathbb{A})/Z(\mathbb{A})$ and
$J_{\epsilon,nc}$ comprises the contribution from the non-cuspidal part of the spectrum. Then
we have

$\sqrt{}\pi_{\epsilon}(f_{\epsilon})=\sum \mathcal{P}_{\epsilon}’(\pi_{\epsilon}(f_{\epsilon})\phi)\overline{\mathcal{P}_{\epsilon}(\phi)},$

$\phi$

where $\phi$ runs over a suitable orthonormal basis for the space of $\pi_{\epsilon}$ . This implies
that $\pi_{\epsilon}$ has a Bessel period if and only if $J_{\pi_{\epsilon}}\not\equiv 0.$

3. RESULTS

Motivated by B\"ocherer’s conjecture [3] and inspired by Jacquet’s work [8], Shalika
and the author made the following conjectures.

Conjecture 1. ([6, Conjecture 1.10]) Given a generic cuspidal representation $\pi$ of
$G(\mathbb{A})/Z(A)$ such that $L(1/2, \pi)L(1/2, \pi\otimes\kappa)\neq 0$ , there exists a $Jacquet-Langlands$

tmnsfer $\pi_{\epsilon}$ of $\pi$ to some $G_{\epsilon}(\mathbb{A})/Z(\mathbb{A})$ which has a Bessel period with respect to $E.$

Conversely, given a cuspidal representation $\pi_{\epsilon}$ of $G_{\epsilon}(A)/Z(A)$ which has a Bessel
period with respect to $E$ , there exists a generic Jacquet Langlands tmnsfer $\pi$ of $\pi_{\epsilon}$

to $G(\mathbb{A})/Z(\mathbb{A})$ such that $L(1/2, \pi)L(1/2, \pi\otimes\kappa)\neq 0.$
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Here, by Jacquet-Langlands transfer, we mean that $\pi_{v}\simeq\pi_{\epsilon,v}$ for almost all $v.$

While the existence of the global Jacquet-Langlands transfer for $G/Z$ and $G_{\epsilon}/Z$ is
not yet known, this should follow from the completion of Arthur’s Book Project [1]
(for split $SO$ (5) and inner forms) or, at least in the cases of Conjecture 1, the
relative trace formula below.

This non-vanishing conjecture should be viewed as the global Gross-Prasad con-
jecture for ($SO$ (5), $SO$ (2)) (with the trivial character on $SO$ (2)). While Conjecture 1
does not give a special value formula such as the ones conjectured by B\"ocherer [3],
the following more general (if somewhat imprecise) conjecture should.
Conjecture 2. ([6, Conjecture 1.8], first relative trace formula identity) For “match-
ing” functions $f$ and $(f_{\epsilon})_{\epsilon}$ , one has an identity of distributions
(3.1)

$J(f)= \sum_{\epsilon}J_{\epsilon}(f_{\epsilon})$
,

where these $distribution\mathcal{S}$ are suitably regularized.

Here, for $f$ to match with a family of functions $(f_{\epsilon})_{\epsilon}(\epsilon\in F^{\cross}/N_{E/F}(E^{\cross}))$

means the following. One defines a one-to-one correspondence between the set of
“regular” double cosets $\overline{H}(F)\gamma H(F)$ for $G(F)$ and union over $\epsilon$ of the “regular”
double cosets $\overline{R}_{\epsilon}(F)\gamma_{\epsilon}R_{\epsilon}(F)$ for $G_{\epsilon}$ . Then one says the functions $f$ and $(f_{\epsilon})_{\epsilon}$ match
if the orbital integrals $J_{\gamma}(f)=J_{\gamma_{\epsilon}}(f_{\epsilon})$ are equal whenever $\gamma$ corresponds to $\gamma_{\epsilon}.$

Roughly, the regular double cosets are the ones for which the orbital integrals as
defined above are convergent. Then in general, one wants to regularize the singular
(non-convergent $\rangle$ orbital integrals and show an equality of these regularized orbital
integrals to deduce (3.1).

Leaving the singular orbital integrals aside, to show the existence of sufficiently
many matching functions becomes the main issue. It can be easily reduced to
showing the existence of local matching functions. In particular, one would like to
choose $f_{v}=\Xi_{v}$ and $f_{\epsilon,v}=\Xi_{v}$ $($when $G_{\epsilon}(F_{v})\simeq G(F_{v}))$ for almost all $v$ and hence
one needs to show the local Novodvorsky orbital integrals for $\Xi_{v}$ equal the local
Bessel orbital integrals for $\Xi_{v}$ . This is known as the fundamental lemma for the
unit element, and was established in [6].

Supposing now one has (3.1), one would like to deduce that
(3.2) $J_{\pi}(f)=J_{\pi_{\epsilon}}(f_{\epsilon})$

for suitable Jacquet-Langlands pairs $\pi$ and $\pi_{\epsilon}$ . The fundamental lemma for the
Hecke algebra established in [5] says that at almost all places we can vary our
matching functions $f$ and $(f_{\epsilon})_{\epsilon}$ in the Hecke algebra. Thus the principle of infinite
linear independence of characters (or, in our case, Bessel distributions) gives an
equality of the form

(3.3)
$\sum_{\pi\in\Pi}J_{\pi}(f)=\sum_{\epsilon}\sum_{\pi_{\epsilon}\in\Pi_{\epsilon}}J_{\pi_{\epsilon}}(f_{\epsilon})$

,

where $\Pi$ and $\Pi_{\epsilon}$ denote certain near equivalence classes for $\pi$ and $\pi_{\epsilon}$ . These near
equivalence classes should be contained in the global $L$-packets of $\pi$ and its trans-
fers $\pi_{\epsilon}$ . This would follow, for instance, from the completion of Arthur’s Book
Project [1]. Strong multiplicity one for generic representations of GSp(4) (proven
by Jiang and Soudry [10] for $F$ totally real) says the left hand side of (3.3) has
at most one term. On the other hand, the weak form of the local Gross-Prasad
conjectures say the right hand side of (3.3) has at most one term (the strong form
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of local Gross-Prasad says which $\epsilon$ and $\pi_{\epsilon}$ should appear). Hence one obtains (3.2),

from which one should be able to obtain the desired $L$-value formula as in the
$GL$ (2) cases in [9], [12] and [2]. We refer to [15] and [13] for local Gross-Prasad
conjectures. See also Lapid-Offen [11] and the recent work of W. Zhang [17] for

instances of deducing $L$-value formulas from Bessel identities in higher-dimensional
unitary cases.

Let us state our main results. To make our statements as simple as possible,
we will assume strong multiplicity one for generic representations for arbitrary $F,$

the near equivalence classes above are contained in global $L$ -packets, and (the weak

form of) the local $Gross-$Prasad conjectures for ( $SO$ (5), $SO$ (2)). We expect these
assumptions will be validated in the near future with the completion of Arthur’s
Book Project [1].

Suppose $\pi$ is generic, locally tempered everywhere, and supercuspidal at some
place split in $E/F$ . Let $\epsilon,$ $\pi_{\epsilon}$ be such that $\pi_{\epsilon}$ is the unique $Jacquet-$Langlands trans-
$fer$, assumed to exist and be automorphic, determined at all local places by the local
$Gross-$Pmsad conjectures so as to have non-vanishing local Bessel periods.

Theorem 1. There exists a class of matching functions $f$ and $f_{\epsilon}$ such that the

Bessel identity (3.2) holds.

We note that our choice of matching functions guarantees the geometric and
spectral expansions of our trace formulas are convergent without any regularization

of integrals. To get from (3.2) to a special value formula, a detailed study of local
Bessel distributions as in [9], [12], [2], [11] or [17] is needed. At present, we merely

conclude
Corollary 1. Suppose now that $E/F$ is split at each archimedean place. Then

$L(1/2, \pi)L(1/2, \pi\otimes\kappa)\neq 0$

if and only if $\pi_{\epsilon}$ has a Bessel period with respect to $E.$

Thus we establish Conjectures 1 and 2 under certain assumptions.
We remark that, by completely different methods, Ginzburg-Jiang Rallis [7]

made substantial progress towards the global Gross-Prasad conjecture for $(SO(2n+$

1 $)$ , $SO$ (2) $)$ . However, they assume that their representations of $SO(2n+1)$ and
$SO$ (2) transfer to cuspidal representations of $GL(2n)$ and $GL$ (2). Under these

hypotheses, they obtain one direction of the global Gross-Prasad conjecture, and
partial results for the converse direction. Our Corollary 1 establishes b\’oth directions
of the global Gross-Prasad conjecture for the case ( $SO$ (5), $SO$ (2)) (under our local

hypotheses) in the case that the $SO$ (2) representation is trivial, whence the $SO$ (2)

representation does not transfer to a cuspidal representation of $GL$ (2). Thus, there

is no overlap of this result with the results of [7].
We hope to remove our local assumptions and eventually obtain an $L$-value

formula with future work on these trace formulas. We also remark that W. Zhang

[16] also recently established a global Gross-Prasad conjecture for certain unitary

groups under some local assumptions by using a simple relative trace formula.

This note is an exce$7pt$ from [4], to which we refer the reader for details.
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