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0. Introduction

0.1 Zeta functions of finite groups

There are some series associated to finite (or in-

finite) groups which remind us of zeta functions.

We start with an example from elementary group

theory ([Yo92]).

Let $G$ be a finite group. Define two series $\{a_{n}\}$

and $\{b_{n}\}$ by

$a_{n}:=\#\{g\in G|g^{n}=1\}=|Hom(C_{n}, G)|.$

$b_{n}:=\#\{g\in G||g|=n\},$

where $|g|$ denote the order of $g\in G$ . We call

$a_{n}$ Frvbenius numbers after Frobenius’s theorem

(1903):

$a_{n}\equiv 0$ mod $gcd(n, |G|)$

Note that $c_{n}$ $:=b_{n}/\varphi(n)$ , where $\varphi(n)$ is the Eu-

ler function, is equal to the number of cyclic sub-

groups of order $n$ . By the trivial formula $a_{n}=$

$\sum_{d|n}b_{d}$ , we have

$\sum_{m=1}^{\infty}\frac{a_{m}}{m^{z}}=\zeta(z)\sum_{g\in G}\frac{1}{|g|^{z}}=\zeta(z)\sum_{n\geq 1}\frac{b_{n}}{n^{z}}$ (1)

where $\zeta(z)$ $:= \sum_{n=1}^{\infty}\frac{1}{n^{z}}$ is the Riemann zeta func-

tion. This equation can be presented by the fol-

lowing product formula:

$Z_{G}(t):= \exp(\sum_{m=1}^{\infty}\frac{a_{m}}{m}t^{m})=\prod_{n=1}^{\infty}(\frac{1}{1-t^{n}})^{b_{n}/n}(2)$

In particular, when $G=C_{N}$ , a cyclic group of

order $N$ , we have

$a_{n}=(N, n)$ , $b_{n}=[Matrix]$

Thus

$Z_{C_{N}}(t)= \exp(\sum_{n=1}^{\infty}\frac{(N,n)}{n}t^{n})$

$= \prod_{n|N}(\frac{1}{1-t^{n}})^{\varphi(n)/n}$ (3)

0.2 Absolute zeta function

“Absolute mathematics” means mathematics

over the field $F_{1}$ with one element (see [KOW03],

[KK10] $)$ . This curious idea goes back to Tits

(1956). He stated that a Weyl group is a simple

algebraic group with corresponding Dynkin dia-

gram, for example, $GL(n, F_{1})=S_{n-1}.$

During the last twenty years, this imaginary

field has been studied mainly in algebra, especially

in algebraic number theory and algebraic geom-

etry. At present time, Kurokawa and Koyama’s

book [KKIO] is a unique and nice hterature on ab-

solute mathematics.
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In this book, we find many interesting state-
ments.

(Tits 1956) The $N$ -dimensional projective space
$\mathbb{P}^{N-1}(F_{1})$ over $F_{1}$ is an $N$-point set. Note that
$|\mathbb{P}^{N-1}(F_{q})|=1+q+q^{2}+\cdots+q^{N-1}arrow N$ $(qarrow 1)$

(Manin 1993) The zeta function of $\mathbb{P}^{N-1}(F_{1})$

should be

$\zeta(s,\mathbb{P}^{N}(F_{1})=s(s-1)(s-2)\cdots(s-N)$

(Soul\’e 1999) An extension field of $F_{1}$ of degree $N$

$\dot{u}$ defined to be

$F_{1^{N}}:=\{0\}\cup\mu_{N}$

where $\mu_{N}$ is the group of $N$ -th roots of unity. Thus
$F_{1^{N}}$ is a multiplicative monoid with zero element.

In absolute mathematics, an $F_{1}$ -algebra is de-
fined to be a multiplicative monoid with zero
element ([KK10]).

0.3 Absolute Weil zeta function

The Weil zeta function of an $F_{q}$-algebra $A$ is de-
fined by

$Z_{A}^{Wei1}(t):= \exp(\frac{|Hom_{F_{q}}(A,F_{q^{m}})|}{m}t^{m})$

Thus the absolute Weil zeta function of an $F_{1^{-}}$

algebra should be defined by formally replacing
$F_{q}$ by $F_{1}.$

In particular, the absolute zeta function of $A=$

$F_{1^{N}}$ is given by

$Z_{F_{1^{N}}}^{Wei1}(t)=\exp(\sum_{n=1}^{\infty}\frac{(N,n)}{n}t^{n})$

because an $F_{1}$ -algebra homomorphism from $F_{1^{N}}=$

$\{0\}\cup\mu_{N}$ to $F_{1^{m}}=\{0\}\cup\mu_{m}$ is uniquely given by
a group homomorphism from $\mu_{m}$ to $\mu_{N}$ , that is,

$Z_{F_{1^{N}}}^{Wei1}(t)=Z_{C_{N}}(t)$

As a consequence, the absolute Weil zeta func-
tion of the $F_{1}$ -algebra $F_{1^{N}}$ is nothing but the”zeta
function” of a cyclic group defined by (3).

0.4 Dynamical zeta functions

Let $X$ is a dynamical system, that is, $X$ is a fi-
nite set with permutation $\sigma$ : $Xarrow X$. Then the
Artin-Mazur zeta function of $X$ is defined by

$Z_{X}^{AM}(t):= \exp(\sum_{m=1}^{\infty}\frac{|Fix_{X}(\sigma^{m})|}{m}t^{m})$

Let $\mathbb{R}\cross Xarrow X;(t,x)\mapsto f^{t}(x)$ be a flow (or
$\mathbb{R}$-dynamical system), and so $f^{0}=id_{X},$ $f^{s+t}=$

$f^{S}of^{t}$ . Then the Ruelle zeta function is defined
by

$\zeta_{X}(s)=\prod_{\gamma}(1-e^{-sT(\gamma)})^{-1}$

where $\gamma$ runs over periodic orbits and where $T(\gamma 9$

is the period of $\gamma$ . The Artin-Mazur zeta functions
is a special case of the Ruelle zeta functions.

0.5 The universal zeta function

The universal zeta function (UZF) of a cat-
egory $\mathscr{C}$ is defined by

$Z_{\mathscr{C}}(t):= \mathscr{C}(t):=\sum_{N\in \mathscr{C}/\cong}\frac{1}{|Aut(N)|}t^{N}$

Here the formal summation on the right hand side
is taken over all isomorphism classes of objects of

$\mathscr{C}$. The symbols $t^{N}$ denotes a variable associated
to the object $N\in \mathscr{C}$ . Of course, every automor-
phism group Aut $(N)$ must be a finite group. The
author called such a series as an exponential func-
tion of $\mathscr{C}$ in the paper $[YoO1]$

Assume that $\mathscr{C}$ has any finite coproduct. In this
case, we usually assume that the symbols $t^{N\prime}s$ sat-
isfy the relations

$t^{M+N}=t^{M}\cdot t^{N},$ $t^{\emptyset}=1,$ $t^{N}=t^{N’}$ if $N\cong N’$

Thus $Z_{\mathscr{C}}(t)$ belongs to a complete semigroup alge-
bra $\mathbb{Q}[[\mathscr{C}^{op}/\cong]]$ . Furthermore, the Krull-Schmidt
property for $\mathscr{E}$ induces the exponential formula

$\mathscr{E}=\exp(J(t))$

123



where $J$ is the subcategory of connected objects.

0.6 Zeta properties

As is well-known, the Riemann zeta function
$\zeta(z)$ has has some remarkable properties called the

zeta properties (of course, Riemann hypothesis is

still open).

(M) $\zeta(z)$ is a meromorphic function on $\mathbb{C}$ with sim-

ple pole $z=1.$

($FE$) $\zeta(1-z)=2^{1-z}\pi^{-z}\cos(\pi z/2)\Gamma(z)\zeta(z)$.
( $EP$ ) Euler product: $\zeta(z)=\prod_{p}(1-p^{-z})^{-1}$

( $SV$) $\zeta(-n)=\frac{-B_{n+1}}{n+1},$ $\zeta(-2n)=0,$ $n\geq 1.$

( $RH$) Non-trivial zeros of $\zeta(z)$ lie on $\Re(z)=1/2.$

( $PF$ ) $\zeta(z)=\frac{-\pi^{z/2}}{z(1-z)\Gamma(z/2)}\prod_{\rho}(\begin{array}{l}1-\underline{z}\rho\end{array})(p$ runs

over nontrivial zeros).

0.7 Zeta properties for UZF

We are interested in a”category” whose univer-

sal zeta function (UZF) satisfy “zeta properties”.

However, a UZF is not a series with single vari-

able despite its appearance, but it is a series with

infinitely many variables in general. Zeta proper-

ties for UZF might be written by the language of

category theory. Perhaps, such a categorical zeta

property for UZF gives, for example, Riemann hy-

pothesis for a classical zeta function by applying a

suitable functor.

Example. A UZF give some classical zeta func-

tions by specializations. Let $DS$ be the cate-
gory of finite $DS$ ’s. Then the specialization $t^{N}$ $:=$

$|Hom(N, X)|u^{|N|}$ gives the Artin-Mazur zeta func-

tion:

$Z_{DS}(t)=Z_{X}^{AM}(u)$

The main purpose of this study is to find cate-

gorical zeta properties for categorical Artin-Mazur

zeta function $Z_{DS}(t)$

1 Dynamical systems and their zeta

1.1 Almost finite dynamical systems ( $DS$ )

A dynamical system ($DS$) $(X, \sigma)$ or simply $X$

is a set equipped with a permutation $\sigma\in$ Sym(X).

Thus a $DS$ is algebraically nothing but a $C$-set,

where $C=\langle\sigma\rangle$ is a infinite cyclic group. Such a

set is often called a cyclic set([DS89]).

Any $DS$ is a disjoint union of orbits. An orbit

is transitive (or often connected) as a $C$-set.

Let $C^{n}=\langle\sigma^{n}\rangle\leq C$ . Then $C(n):=C/C^{n}$ is

a dynamical system of size $n$ . Let $C^{\infty}$ $:=1$ , the

trivial subgroup of $C$ . Then $C(\infty)$ $:=C/C^{\infty}$ is

an infinite and transitive $C$-set and is called to be

free. Conversely, any transitive $DS$ of size $n\leq\infty$

is isomorphic to $C(n)$ .
Now, a $DS$ $X$ is called to be almost flnite

([DS89])if

(a) $X$ has only a finite number of orbits of given

length $n$ for any $n<\infty.$

(b) $X$ has no free orbits.

The condition (a) is equivalent to

(a’) $N_{m}$ $:=Fix_{X}(\sigma^{m})|<\infty$ for any $m=1,2,$ $\cdots.$

A DS satisfying (a) or (a’) is called to be essen-
tially flnite.

Furthermore, the condition (b) is equivalent to

(b’) Any element of $X$ is periodic, that is, it is con-
tained in an orbit of finite length, or equivalently,

for any $x$ , their exists $m\geq 1$ such that $\sigma^{m}x=x.$

For any infinite series of non-negative integers

$b=(b_{1}, b_{2}, \cdots)$ ,

$X(b) :=b_{1}C(1)+b_{2}C(2)+\cdots$

is almost finite. Here $bnC(n)$ is a disjoint union of

$n$ copies of $DS$ isomorphic to $C(n)$ .
Conversely, any almost finite $DS$ $X$ is isomor-

phic to $X(b)$ for a uniquely determined $b.$

124



Let $X^{per}$ (resp. $X^{aper}$ ) be the set of periodic

(resp. aperiodic) of a $DSX$ . Then any $DS$ $X$ is
the disjoint union of its periodic part $X^{per}$ and
its aperiodic part $X^{aper}$ . Thus for any essentially
finite $DSX$ , we have

$X\cong X(b)+b_{\infty}C(\infty)$ , (4)

for some integral vector $b$ and cardinal number $b_{\infty}.$

1.2 The Artin-Mazur zeta functions

Let $(X, \sigma)$ be an essentially finite $DS$ . Since

$N_{m}:=|Fix_{X}(\sigma^{m})|=\#\{x\in X|\sigma^{m}x=x\}<\infty,$

the Artin-Mazur zeta function (AMZ)

$Z_{X}^{AM}(u):= \exp(\sum_{m=1}^{\infty}\frac{N_{m}}{m}u^{m})$

is well-defined.

Lemma. For AMZ’s of essentially finite $DS$ ’s, the
following hold:

(i) $Z_{X}^{AM}(u)=Z_{X^{per}}^{AM}(u),$ $Z_{X^{aper}}^{AM}(u)=1.$

(ii) $Z_{\emptyset}^{AM}(u)=1,$ $Z_{X+Y}^{AM}(u)=Z_{X}^{AM}(u)\cdot Z_{Y}^{AM}(u)$ .
(iii) $Z_{C(n)}^{AM}(u)=\overline{1-u^{n}}.$

(iv) $Z_{X(b)}^{AM}(u)= \prod_{n=1}^{\infty}(\frac{1}{1-t^{n}})^{b_{n}}$

PROOF. (i) and (ii) are trivial. (iii) For $C(n)=$

$\langle\sigma\rangle/\langle\sigma^{n}\rangle,$

$N_{m}=|Fix_{C(n)}(\sigma^{m})|=\{\begin{array}{l}n if n|m0 else\end{array}$

Thus

$Z_{C(n)}^{AM}(u)= \exp\sum_{m\equiv 0(n)}\frac{n}{m}u^{m}=\exp\sum_{k\geq 1}\frac{1}{k}u^{kn}$

$= \frac{1}{1-u^{n}}$

(iv) follows from (4).

1.3 Zeta properties of AMZ of finite $DS$

AMZ of a finite $DS$ satisfies some zeta properties

and they are proved easily.

Theorem. Let $(X, \sigma)$ be a finite $DS$. Then the
following hold:

( $EP$ ) $Z_{X}^{AM}(u)= \prod_{P}(\frac{1}{1u^{|P|}})$ ,

where $P$ runs over $peri_{0}^{-}dic$ orbits. In particular,
$AMZ$ is a rational function.

($DE$ ) $Z_{X}^{AM}(u)=\det(I_{X}-A_{\sigma}u)^{-1},$

where $A_{\sigma}=(\delta_{x,\sigma y})_{x,y\in X}$ is the permutation ma-
tri associated to $\sigma.$

( $FE$ ) $Z_{X}^{AM}(1/u)=(-u)^{|X|}\det(\sigma)Z_{X}^{AM}(u)$ .

($RH$) $Z_{X}^{AM}(u)$ has no zero on C. Its poles lie on
$|u|=1$ . Furthermore, $u=e^{-s}$ is a pole if and

only if $\Re(s)=0.$

The theory of AMZ of almost finite but not fi-

nite $DS$ ’s becomes extremely difficult. The zeta
properties except for ($EP$ ) do not hold in general.

There are some examples of well-known $DS$ which

show the difficulty.

1.4 lhara zeta functions

Let $(V, E)$ be a finite simple graph and $X^{I}(V, E)$

the set of walks with no backtrak:

$X^{I}(V, E)$ $:=\{(x_{i})\in V^{Z}|(x_{i}, x_{i+1})\in E,x_{i+2}\neq x:\}$

makes an essentially finite $DS$ together with right

shift operator:

$\sigma:(x_{i})_{i}\mapsto(x_{i-1})_{i}$

Then the Ihara zeta function: is defined by

$Z_{(V,E)}^{I}(u)=Z_{X^{I}(V,E)}^{AM}(u)= \prod_{P}(1-u^{|P|})^{-1}$

where $P$ runs over prime walks with no backtrack.
See [GIL08]
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If $G=(V, E)$ is $(q+1)$-regular, then

$Z_{G}^{I}(u)=(1-u^{2})^{\chi(G)}\det(I-uA+qu^{2})^{-1},$

where $\chi(G)$ $:=|E|-|V|+1$ and $A$ is the incidence

matrix.

1.5 Symbolic dynamical systems

A symbolic $DS$ on alphabet $Q$ with $|Q|=q$ is

defined by

$Q^{Z}:=\{(x_{i})_{i\in Z}|x, \in Q\}$

with shift operator $\sigma$ : $(x_{i})\mapsto(x_{i-1})$ . It is essen-
tially finite because

$x=(x_{i})\in$ Fix$(\sigma^{m})\Leftrightarrow x_{i+m}=x_{i}(\forall i\in Z)$

$N_{m}=|$Fix$(\sigma^{m})|=q^{m}<\infty$

Thus AMZ has the following form:

$Z_{Q^{z}}^{AM}(u)= \exp\sum_{m=1}^{\infty}\frac{q^{m}}{m}u^{m}=\frac{1}{1qu}$

$Q^{z}$ is essentially finite and
$furtherm^{-}ore$

we have

$(Q^{z})^{per}\cong_{n=1}II^{M(q,n)C(n)}\infty$

$Z_{Q^{z}}^{AM}( u)=\frac{1}{1-qu}=\prod_{n=1}^{\infty}(\frac{1}{1t^{n}})^{M(q,n)}$

where $M(q, n)$ is the Necklace
$pol^{-}ynomia1$

:

$M(q, n):= \frac{1}{n}\sum_{k|n}\mu(\frac{n}{k})q^{k}$ (5)

1.6 Weil zeta functions as AMZ

The Weil zeta function (or congruence zeta
function) of a variety $X$ over a finite field $F_{p}$ is

defined by

$\zeta(X, u)=\exp\sum_{m=1}^{\infty}\frac{|X(F_{p^{m}})|}{m}u^{m}$

where $X(F_{p^{m}})$ is the (flnite) set of $F_{p^{m}}$ -rational
points.

Let $F:Xarrow X$ be the Frobenius automorphism

(induced by $x\mapsto x^{p}$ ). Then $(X, F)$ is essentially

finite $DS$ . Since $Fix_{X}(F^{m})=X(F_{p^{m}})$ , the Weil

zeta function is equal to the AMZ of this $DS$ :

$\zeta(X, u)=Z_{(X,F)}^{AM}(u)$

Zeta properties for Weil zeta functions

called Weil conjectures were proved mainly by

Grothendieck and Deligne.

The Weil zeta function is essentially same as
$Z_{A}^{Wei1}(t)$ of $F_{p}$-algebra $A$ appeared in section 0.3.

2 The Burnside ring $\Omega(C)$

2.1 The category of dynamical systems

Let $C=\langle\sigma\rangle$ be an infinite cyclic group. Since a

finite $DS$ is nothing but a finite $C$-set, we denote

by set$c$ the category of finite $DS$ ’s. Furthermore,

we denote by afse$t^{C}$ the category of almost finite
$dDS’ s$ . These categories are like to set$G$ , the cat-

egory of finite $G$-sets, where $G$ is a finite group.
$X\cross Y,$ $X+Y$ denote a direct product and a

disjoint union of two $DS$ ’, respectively. In partic-

ular, $X^{n}$ (resp. $nX$ ) denotes the direct product

(resp. disjoint union) of $n$-copies of $X.$

$Map_{C}(X, Y)$ denotes the set of $C$-maps between

two $DS$ ’s $X$, Y. Note that for $m=1,2,$ $\cdots,$

$Map_{C}(C(m), X)\cong Fix_{X}(\sigma^{m});f\mapsto f(C^{m})$

$Map_{C}(C(\infty), X)\cong X;f\mapsto f(C^{\infty})$

$Map_{C}(C(m), C(\infty))=\emptyset$

Let $Y^{X}$ be the set of maps between from $X$ to $Y,$

so that $Y^{X}$ is a $DS$ with $C$-action defined by

$\sigma f:Xarrow Y;x\mapsto\sigma f(\sigma^{-1}x)$

If $X$ is finite and $Y$ is almost finite, then $Y^{X}$ is

almost finite. If $Y$ is finite and if $X$ is essentially

finite, then $Y^{X}$ is essentially finite iff $X$ has only

finite number of aperiodic orbits. In particular, $Y$

is a finite set with trivial $C$-action, then $Y^{C(\infty)}$ is

a symbolic $DS.$

126



2.2 The Burnside ring

The Burnside ring $\Omega(G)$ of a $pre\succ$finite group
$G$ is the Grothendieck ring of set$G$ , the category of
finite $G$-sets, that is, the abelian group generated
by the symbols [X], where $X$ is any finite $G$-set,
with relation

$[X]=[X’]$ if $X\cong X’$ and
$[X+Y]=[X]+[Y]$

where $X+Y$ denotes the disjoint union. The mul-
tiplication on $\Omega(G)$ is defined by $[X]\cdot[Y]=[X\cross Y].$

For each subgroups $S$ , the map

$\varphi_{S}:\Omega(G)arrow Z;[X]\mapsto|X^{S}|$

where $X^{S}$ $:=\{x\in X|Sx=x\}$ , defines a homo-
morphism called a Burnside homomorphism:

$\varphi=\prod_{(S)}\varphi_{S}:\Omega(G)arrow gh(G):=\prod_{(S)}Z$

where $(S)$ runs over all conjugacy classes of sub-
groups of $G$ . The Burnside homomorphism is
an injective ring homomorphism, and so $\Omega(G)$ is
viewed as a subring of the ghost ring Gh$(G)$ .

The complete Burnside ring $\hat{\Omega}(G)$ is the clo-
sure of $\Omega(G)$ in the product space gh$(G)$ , where

2.3 The complete Burnside ring $\hat{\Omega}(C)$

The complete Burnside ring $\hat{\Omega}(C)$ of an infinite
cyclic group $C=\langle\sigma\rangle$ is the Grothendieck ring of
almost finite $DS$ ’s. Thus its element is presented
by an infinite sum

$X(b):= \sum_{n=1}^{\infty}b_{n}[C(n)]$

for some integral vector $b=(b_{1}, b_{2}, \cdots)\in Z^{N}$ . The
map $b\mapsto X(b)$ induces a bijection

$X$ : $Z^{N}arrow^{\underline{}\simeq}\hat{\Omega}(C);b\mapsto X(b)$

Since $\hat{\Omega}(C)$ is a commutative ring, by pulling back
along $X$ , we have that $Z^{N}$ becomes a commutative

ring which is called a Necklace algebra and is
denoted by Nr(Z).

The multiplication is defined by

$[C(m)]\cdot[C(n)]=(m, n)[C([m, n])]$

where $(m, n)$ and $[m, n]$ denote the $gcd$ and lcm,

respectively. This formula gives the multiplication
formula in the Necklace algebra $Z^{N}$ as follows:

$a \cdot b=c, c_{l}=\sum_{[m,n]=l}(m, n)a_{m}b_{n}$

where the summation is taken over non-negative
integers $l$ such that $[m, n]=l.$

The k-th component of the (complete) Burnside
homomorphism $\hat{\varphi}:\hat{\Omega}(C)arrow$ gh$(G)$ is given by

$\hat{\varphi}_{k}:=\varphi_{C^{k}}:[C(n)]\mapsto\{\begin{array}{l}n if n|k0 if n\int k\end{array}$

Thus we have

$\hat{\varphi}_{k}(X(b))=d_{k}:=\sum_{i|k}ib_{i}$

This relation between $(d_{k})$ and $(b_{i})$ is equivalent

to the following cyclotomic identity.

$\prod_{n=1}^{\infty}(\frac{1}{1-t^{n}})^{b_{n}}=\exp\sum_{n=1}^{\infty}\frac{d_{n}}{n}t^{n}(=Z_{X(b)}^{AM}(t))$

Note that two almost finite $DS$ )$sX$ and $Y$ are
isomorphic if and only if $\hat{\varphi}(X)=\hat{\varphi}(Y)$ .

2.4 Dress-Siebeneicher’s theory

In their paper in [DS89], Dress and Siebeneicher
stated an important and surprising result which
connects the Burnside ring $\hat{\Omega}(C)$ of infinite cyclic
group $C,$ $A$-rings and Witt vectors Their result is
presented by the following diagram:

Nr(Z) $=Z^{N}$

$\cong\downarrow X$

$WZ–gh(C)\iota_{N}^{z)_{\underline{\simeq}}^{\tau}}\Phiarrow\hat{\Omega}r_{\hat{\varphi}})arrow\Lambda-tZ[[t]]\underline{\simeq\underline{s_{l}\simeq}}7_{L})$
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Here, we briefly explain the rings and maps ap-

peared in the diagram([DS89], [YalO], [Ha09]).

(1-a) Nr(Z) $:=Z^{N}$ : Necklace algebra. Its element

is an infinite vector $b=(b_{n})_{n=1}^{\infty}$ of integers.

(1-b) $W(Z)$ $:=Z^{N}$ : the ring of universal Witt vec-
tors. Its element is a sequence $q=(q_{n})_{n=1}^{\infty}$

of integers.

(1-c) $\hat{\Omega}(C)$ : the complete Burnside ring of an infi-

nite cyclic group $C$ . Its element is an inflnite

sum $\sum_{n=1}^{\infty}b_{n}[C(n)]=:X(b)$ .
(1-d) $\Lambda(Z)$ $:=1+tZ[[t]]$ : the universal $\lambda$-ring. The

addition is defined by the multiplication of

formal power series.

(2-a) $X$ : $b \mapsto X(b)=\sum_{n=1}^{\infty}b_{n}[C(n)]$

(2-b) $\tau$ : $q \mapsto\sum ind_{n}q_{n}^{(C)}$ , where $q^{(C)}$ is the peri-

odic part of the (virtual) symbolic $DS$ , and
$ind_{n}$ : $[C(m)]\mapsto[C(mnr)].$

(2-c) $s_{t}$ : $[X] \mapsto 1+\sum\varphi_{n}(S^{n}(X))t^{n}$ , where $S^{n}(X)$

is the n-th symmetric power.

(2-d) $\Phi:(q_{n})\mapsto(\sum_{k|n}kq_{k}^{n/k})_{n}$

(2-e) $\hat{\varphi}$ : the complete Burnside homomorphism.

(2-f) $L$ : $a(t) \mapsto t\frac{d}{dt}\log a(t)$

The maps $\Phi,\hat{\varphi},$ $L$ are injective ring homomor-

phisms. $\tau,$ $s_{t}$ are ring isomorphisms.

Assume that $b\in$ Nr(Z), $q=(q_{n})\in W(Z)$ ,

$a(t)=1+ \sum a_{n}t^{n}\in\Lambda(Z),$ $d=(d_{n})\in$ gh(Z)

are corresponding each other by these maps:

$\tau(q)=X(b),$ $s_{t}(X(b))=a(t),\hat{\varphi}(X(b))=d$

$(q_{n})rightarrow(b_{n})rightarrow(a_{n})rightarrow(d_{n})$

Then the above diagram implies the following

identities which remind us of dynamical zeta func-

tions:

$\prod_{n=1}^{\infty}\frac{1}{1-q_{n}t^{n}}=\prod_{n=1}^{\infty}(\frac{1}{1t^{n}})^{b_{n}}$

$=1+ \sum a_{n}t^{n}=e^{-}xp\sum_{n=1}^{\infty}\frac{d_{n}}{n}t^{n}$

3 The universal zeta functions

3.1 The UZF of categories and functors

Let $\mathscr{C}$ be a category. We assume that

(i) $\mathscr{C}$ is locally flnite, that is, $|Hom(X, Y)|<\infty.$

(ii) The isomorphism classes $\mathscr{C}/\cong$ of objects is a

small set.

The universal zeta function (UZF) or the ex-

ponential function $([YoO1])$ of a category $\mathscr{E}$ is

defined by

Here the summation is taken over a complete

representatives of isomorphism classes of objects.

Furthermore, $t^{N}$ is a variable associated to an ob-

ject $N$ such that $t^{N}=t^{N’}$ if $N\cong N’.$

Let $\mathscr{C}^{c}$ be the category of dynamical systems

whose underlying set is an object of $\mathscr{C}$ . Then

$\mathscr{C}^{c}(t)=\sum_{N\in \mathscr{C}/^{\underline{\simeq}}}t^{N}$

is the geometric series type UFZ of $\mathscr{C}.$

$( \mathscr{C}^{C})^{op}(t)=\sum_{N\in \mathscr{C}/\cong}N^{t}$

is the Dirichlet type UFZ of $\mathscr{C}.$

The UZF of a functor $F:\mathscr{C}arrow \mathscr{S}$ is defined by

$F(t);= \sum_{A\in \mathscr{C}/\simeq}\frac{1}{|Aut(A)|}t^{F(A)}$

Assume that $F$ is faithful and that for any
$N\in \mathscr{S}$ , there exists only finite number of iso-

morphism classes of $A\in \mathscr{C}$ such that $F(A)\cong N.$

For an $N\in \mathscr{S}$ , a $\mathscr{C}$-structure on $N$ is defined
to be a pair $(A, \alpha)$ of $A\in \mathscr{C}$ and an isomorphisms
$\alpha$ : $F(A)\cong N$ . Two $\mathscr{C}$-structure $(A, \alpha)$ and $(B, \beta)$

on $N$ is called to be isomorphic if there exists an
automorphism $f$ : $A\cong B$ such that $\beta oF(f)=\alpha.$
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Let denote by Str$(\mathscr{C}/N)/\cong$ the (finite) set of iso-
morphism classes of $\mathscr{C}$-stmctures on $N$ . Then $\sum_{n=0}^{\infty}\frac{|Hom(G,S_{n})|}{n!}t^{n}=\exp(\sum_{H\leq G}\frac{t^{(G..\cdot H)}}{(GH)})$

3.2 The exponential formula

Assume that a locally finite category $\mathscr{E}$ has any
finite coproducts. In this case, we can think that
the UZF $\mathscr{E}(t)=Z_{\mathscr{E}}(t)$ belongs to the complete
semigroup algebra $\mathbb{Q}[[\mathscr{E}^{op}/\cong]]$ , and so we intro-
duce the following $mle$ :

$t^{M+N}=t^{M}\cdot t^{N},t^{\emptyset}=1$

Assume further that $\mathscr{E}$ satisfies the strict Krull-
Schmidt property, that is, that any object has
a unique decomposition into a coproduct of con-
nected objects. Then the exponential formula
holds:

where $J=$ Con $(\mathscr{E})$ is the subcategory of con-
nected objects. Under some technical conditions,
the exponential formula implies the $KS$-property,
that is, $KS$-property is a categorification of ex-
ponential formulas.

3.3 Wohlfahrt formula

Let $G$ be a finitely generated group. Then the
exponential formula has the form:

$\sum_{X\in set^{G}/\cong}\frac{t^{X}}{|Aut(X)|}=\exp(\sum_{H\leq G}\frac{t^{G/H}}{(G\cdot H)})$

(Here we used that $Aut(G/H)\cong N_{G}(H)/H$ and
that the number of subgroups conjugate to $H$ is
equal to $(G:N_{G}(H)))$ .

Applying this formula to the forgetful functor,
we have the Wohlfahrt formula:

3.4 The UZF of finite dynamical systems

Since the category of finite dynamical systems
satisfies the strict Krull-Schmidt property, its UZF
satisfies the exponential formula. The automor-
phism group of $C(n)$ is a cyclic group of order $n.$

Furthermore, by the $KS$-property,

Aut
$( X(b))\cong\prod_{n\geq 1}$

Aut
$(b_{n}C(n)) \cong\prod_{n\geq 1}C_{n}tS_{b_{n}}$

Thus the universal zeta function of finite $DS$ ’s is
given by

Let $X$ be an essentially finite $DS$ . Then by the
specialization $t^{N}arrow|Hom(N, X)|u^{|N|}$ , we have the
Artin-Mazur zeta function

$Z_{X}^{AM}(u)= \exp(\sum_{m^{1}}^{\infty}\frac{|Fix_{X}(\sigma^{m})|}{m}u^{m})$

Here, note that $Hom(C(m), X)$ $=$ $Fix_{X}(\sigma^{m})$ .
Thus we have a group homomorphism

$Z^{AM}:\hat{\Omega}(C)arrow \mathbb{Q}(u)^{\cross};[X]\mapsto Z_{X}^{AM}(u)$

4 Problems

4.1 Zeta properties for UZF

Let $Z_{DS}(t)$ be the universal zeta function of fi-
nite dynamical systems. It is mapped by the Burn-
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side homomorphism $\varphi_{k}$ to the following series:

$\varphi_{k}(Z_{DS}(t))=\exp(\sum_{n=1}^{\infty}\frac{1}{n}\varphi_{k}(t^{C(n)})$

$= \exp(\sum_{n=1}^{\infty}\frac{\langle C(k)\cross C(n),t\rangle}{n})$

$= \exp(\sum_{n=1}^{\infty}\frac{\langle C([k,n]),t\rangle^{(k,n)}}{n})$

$= \exp(\sum_{n=1}^{\infty}\frac{1}{n}(t_{[k,n]})^{(k,n)})$

Thus $Z_{DS}(t)$ can be viewed as a series with infinite

number of variables.
Note that two almost finite $DS$ ’s $X$ and $Y$ are

isomorphic if and only if they have the same AMZ.

The theory of almost flnite $DS$ is extremely diffi-

cult. whereas it is rather strange that almost finite

$DS$ ’s are controlled by only finite $DS$ ’s.

Question. Are there any zeta properties for UZF

of finite $DS$ ’s which induce those for usual zeta

properties? For example, is there a universal func-

tional equation

$Z_{DS}(1/t)=\gamma(t)Z_{DS}(t)$ $?$?

where the gamma factor $\gamma(t)$ is a group homomor-

phism

$\gamma(t):\hat{\Omega}(C)\mapsto \mathbb{Q}(t)^{\cross}$

If such a formula holds, then applying functors

we have a usual function equation. However, there

is no possibility in this form, because

It induces many formula, e.g. the Wohlfahrt for-

mula for one-variable series. Unfortunately, expo-

nential formulas are not called one of zeta proper-

ties.

4.2 AMZ of non-invertible $DS’s$

A rooted forest $F$ can be viewed as a non-

invertible dynamical system $(F_{)}\sigma)$ , where $\sigma$ maps

any vertex to its unique child, such that any pe-

riodic point is a fixed point of $\sigma$ . Let $RF$ be the

category of rooted forests. Let $set^{N_{0}}$ be the cat-

egory of non-invertible dynamical systems, whose

object is a pair $(X, \sigma)$ , where $X$ is a set with self-

map $\sigma:Xarrow X.$

Then the category $RF$ of rooted forests is equiv-

alent to the indexed category of the category $RT$

of rooted trees. $RF$ $\cong$ set($RT$), that is, $RF$ is

a strict Krull-Schmidt category whose connected

objects are rooted trees.

$set^{N_{0}}arrow^{forest}RF$ The pullback diagram in

$\downarrow$ PerPB $\downarrow root$
the 2-category CAT, the

se$t^{}$

$\underline{forget}$ set
category of categories, For

a non-invertible finite
dynamical system $(X, \sigma)$ ,

Per(X) $:=\{x\in X|\sigma^{m}x=x$ for a $m\geq 1\},$

Root $(F)$ : the set of roots.

Then we have

$\sum_{(X,\sigma)}\frac{t^{F(X,\sigma)}}{|Aut(X,\sigma)|}=(1-\sum_{T}\frac{t^{T}}{|Aut(T)|})^{-1}$

$\varphi_{1}(Z_{DS}(t))=\exp(\sum_{m}\frac{1}{n}t_{n})$

does not satisfy any functional equation.

Remark. There is a categorical exponential for-

mula for UZF

$Z_{DS}(t)= \sum_{N}\frac{t^{N}}{|Aut(N)|}=\exp\sum_{m=1}^{\infty}\frac{t^{C(m)}}{m}$

where $T$ runs over rooted trees, $(X,\sigma)$ non-
invertible finite $DS$ ’s.

Specialization: $t^{T}\mapsto t^{|V(T)|}$ gives

$\sum_{n=0}^{\infty}\frac{n^{n}}{n!}t^{n}=(1-\sum_{n=1}^{\infty}\frac{n^{n-1}}{n!}t^{n})^{-1}$

Problem. Build the theory of non-invertible fl-

nite dynamical systems (NIFDS).
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Let $D=\langle\sigma\rangle=\{1, \sigma, \sigma^{2}, \cdots\}$ be a semigroup
generating only one element $\sigma$ . Then a NIFDS
is nothing but finite $D$-set. A NFDS $X$ is ir-
reducible if $X=A\cup B$ implies $A=X$ or
$B=X$. Any irreducible NIFDS has the form
$D(h, n)=D/(\sigma^{h}=\sigma^{h+n})$ .

Let $G_{0}(C)$ be a abelian group generated by [X],
where $X$ is satisfying the relation:

(i) $[X]=[Y]$ ffi $|Hom(D[h, n)$ for any $h\geq$ Oand
$n\geq 1.$

(ii) $X[cupY]+[X\cap Y]=[X]+[Y],$ $[\emptyset]=0$

We call $G_{0}(C)$ the Burnside ring of a semigroup
$D$ . The Burnside homomorphism is defined by

$\varphi:G_{0}(D)arrow gh(Z)=\prod_{(h,n)}Z$

; $[X]\mapsto Hom(D(h, n),$ $X]$

By this way, we have the theory of Burnside rings.

4.3 Rational $DS^{l}s$ ?

Remember the equation (2). In this case, $b=$

$(b_{n}/b)$ is not corresponding to any dynamical sys-
tem. Since $b_{n}$ is the number of elements of $G$ of
order $n,$ $b_{n}/n$ is not an integer in general. But
there exists a”rational $DS$”:

$X(b)= \sum_{g\in G}\frac{1}{|g|}C(n)$

In particular, we can not treat absolute Weil
zeta function as AMZ of $DS$ . Is there any idea
by which we involve it in the theory of dynamical
zeta functions.
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