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0. Introduction
0.1 Zeta functions of finite groups

There are some series associated to finite (or in-
finite) groups which remind us of zeta functions.
We start with an example from elementary group
theory ([Y092]).

Let G be a finite group. Define two series {an}
and {b,} by

an = #{g € G| g" = 1} = [Hom(C, G)|.
bn:=H#{g € G |lgl =n},

where |g| denote the order of g € G. We call
an Frobenius numbers after Frobenius’s theorem
(1903):

a, =0 mod ged(n,|G])

Note that ¢, := bn/p(n), where ¢(n) is the Eu-
ler function, is equal to the number of cyclic sub-
groups of order n. By the trivial formula a, =

> djn ba, we have

> am 1 bn
:L:,lﬁ ZC(Z);ET?:‘(Z),;F ¢y,

where ((z) = Z ;12 is the Riemann zeta func-

n=1
tion. This equation can be presented by the fol-

lowing product formula:

oo oo bn/n
Zo(t) = exp (Z %’-‘-t"‘) =11 (1 _ltn) )

m=1 n=1

In particular, when G = Cy, a cyclic group of
order N, we have
N
tn = (N,n), by = o(n) nl
0 else

Thus

1
1 p(n)/n
- ) 3)

0.2 Absolute zeta function

” Absolute mathematics” means mathematics
over the field F; with one element (see [KOWO03],
[KK10]).
(1956). He stated that a Weyl group is a simple

algebraic group with corresponding Dynkin dia-

This curious idea goes back to Tits

gram, for example, GL(n,F;) = Sp_1.

During the last twenty years, this imaginary
field has been studied mainly in algebra, especially
in algebraic number theory and algebraic geom-
etry. At present time, Kurokawa and Koyama’s
book [KK10] is a unique and nice literature on ab-

solute mathematics.



In this book, we find many interesting state-

ments.

(Tits 1956) The N-dimensional projective space
PN=1(F;) over F; is an N-point set. Note that

PV (F)| = 1+g+¢*+--4+¢" T > N (g—1)

(Manin 1993) The zeta function of PN=1(F)
should be

(s, PN (F1) = s(s = 1)(s = 2)-+- (s — N)

(Soulé 1999) An extension field of Fy of degree N
is defined to be

FlN = {0} U UN

where uy is the group of N-th roots of unity. Thus

Fi~ is a multiplicative monoid with zero element.

In absolute mathematics, an F;-algebra is de-
fined to be a multiplicative monoid with zero
element([KK10]).

0.3 Absolute Weil zeta function

The Weil zeta function of an F,-algebra A is de-
fined by

; H A, F m
ZXVexl(t) = exp <' Oqufn g )Itm)

Thus the absolute Weil zeta function of an Fy-
algebra should be defined by formally replacing
F, by F;.

In particular, the absolute zeta function of 4 =

F,~ is given by

ngvﬂ(t) = exp <i (ii—;lllt”)

n=1
because an F;-algebra homomorphism from F;~ =
{0} U pn to Fim = {0} U s, is uniquely given by

a group homomorphism from p,, to uy, that is,
Z]F“Yiil(t) = ZC’N (t)

As a consequence, the absolute Weil zeta func-
tion of the F1-algebra F;~ is nothing but the ”zeta
function” of a cyclic group defined by (3).

0.4 Dynamical zeta functions

Let X is a dynamical system, that is, X is a fi-
nite set with permutation o : X — X. Then the
Artin-Mazur zeta function of X is defined by

ZM(t) :=exp <i ———IFiXX(Gm)It’")

m=1 m
Let R x X — X;(t,z) — fi(z) be a flow (or
R-dynamical system), and so f0 = idx, f**t =
f% o f*. Then the Ruelle zeta function is defined
by

Cx(s) = H (1 _ e—sT(’Y))_l
"

where  runs over periodic orbits and where T'(v9
is the period of y. The Artin-Mazur zeta functions

is a special case of the Ruelle zeta functions.

0.5 The universal zeta function

The universal zeta function (UZF) of a cat-
egory ¥ is defined by

Zg(t) =€) := Y

Ne¥€ /=

—;—tN
|Aut(N)|

Here the formal summation on the right hand side
is taken over all isomorphism classes of objects of
€. The symbols ¢V denotes a variable associated
to the object N € €. Of course, every automor-
phism group Aut(N) must be a finite group. The
author called such a series as an ezponential func-
tion of € in the paper [Yo01]

Assume that € has any finite coproduct. In this
case, we usually assume that the symbols t"V’s sat-
isfy the relations

tMAN = M N 40 — 1, ¢V =V if N N
Thus Z«(t) belongs to a complete semigroup alge-

bra Q[[#°P/ =]]. Furthermore, the Krull-Schmidt

property for & induces the exponential formula

& = exp(H(t))
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where .# is the subcategory of connected objects.

0.6 Zeta properties

As is well-known, the Riemann zeta function
¢(z) has has some remarkable properties called the
zeta properties (of course, Riemann hypothesis is

still open).

(M) ¢(2) is a meromorphic function on C with sim-
ple pole z = 1.
(FE) ¢(1 — z) = 2! *n~* cos(mz/2)['(2)((2)-

(EP) Euler product: {(z) = H (1- P'z)_l
3

(SV) C(-m) = 22 ¢(~2m) =0, 2 1.
(RH) Non-trivial zeros of ((z) lie on R(z) = 1/2.

—m2/2 z
(PF) ¢(2) = m 1;1 (1 — ;) {(p runs

over nontrivial zeros).

0.7 Zeta properties for UZF

We are interested in a ”category” whose univer-
sal zeta function (UZF) satisfy ”zeta properties”.
However, a UZF is not a series with single vari-
able despite its appearance , but it is a series with
infinitely many variables in general. Zeta proper-
ties for UZF might be written by the language of
category theory. Perhaps, such a categorical zeta
property for UZF gives , for example, Riemann hy-
pothesis for a classical zeta function by applying a

suitable functor.

Example. A UZF give some classical zeta func-
tions by specializations. Let DS be the cate-
gory of finite DS’s. Then the specialization t" :=
|Hom(N, X)|uN! gives the Artin-Mazur zeta func-
tion:

Zps(t) = ZxM (u)

The main purpose of this study is to find cate-
gorical zeta properties for categorical Artin-Mazur
zeta function Zpg(t)
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1 Dynamical systems and their zeta
1.1 Almost finite dynamical systems (DS)

A dynamical system (DS) (X, o) or simply X
is a set equipped with a permutation o € Sym(X).
Thus a DS is algebraically nothing but a C-set,
where C = (o) is a infinite cyclic group. Such a
set is often called a cyclic set([DS89]).

Any DS is a disjoint union of orbits. An orbit
is transitive (or often connected) as a C-set.

Let C* = (o™) < C. Then C(n) := C/C" is
a dynamical system of size n. Let C*®° := 1, the
trivial subgroup of C. Then C(o0) := C/C* is
an infinite and transitive C-set and is called to be
free. Conversely, any transitive DS of size n < 00
is isomorphic to C(n).

Now, a DS X is called to be almost finite
([DS89))if

(a) X has only a finite number of orbits of given
length n for any n < oo.
(b) X has no free orbits.

The condition (a) is equivalent to
(8’) Ny, == Fixx(oc™)| < oo for any m =1,2,---.
A DS satisfying (a) or (a’) is called to be essen-
tially finite.

Furthermore, the condition (b) is equivalent to

(b’) Any element of X is periodic, that is, it is con-
tained in an orbit of finite length, or equivalently,

for any z, their exists m > 1 such that oM =1x.
For any infinite series of non-negative integers
b= (b,ba,- ),
X() :=b:C(1) +b0(2) + -+

is almost finite. Here bnC(n) is a disjoint union of
n copies of DS isomorphic to C(n).
Conversely, any almost finite DS X is isomor-

phic to X (b) for a uniquely determined b.



Let XPe (resp. X2P°' ) be the set of periodic
(resp. aperiodic) of a DS X. Then any DS X is
the disjoint union of its periodic part XP*" and
its aperiodic part X2P°". Thus for any essentially
finite DS X, we have

X = X (b) + booC(00), Q)

for some integral vector b and cardinal number b.

1.2 The Artin-Mazur zeta functions
Let (X,0) be an essentially finite DS. Since

Ny = [Fixx (6™)] = H{z € X | o™z = 7} < o0,

the Artin-Mazur zeta function (AMZ)
— N,
ZAM — m,m
% (u) :==exp (,,?:1 —u
is well-defined.

Lemma. For AMZ’s of essentially finite DS’s, the
Jollowing hold:

(1) ZE¥(w) = Zger (w), Z§%er (w) = 1.
(i) ZpM(w) =1, ZxYy (u) = ZxM(w) - Zp™ (u).

(i) ZG{n)(u) =

1—un’

i 280 =11 ()

n=1

PROOF. (i) and (ii) are trivial. (iii) For C(n) =

(0)/(e™),

n if n|m
Np = |Fixgny(6™)] =
m = [Fixe( )(U ) {O else
Thus
n m 1 n
Zé?fb)(u)=exp Z o :expz Euk
m=0(n) k>1
1
T 1—wn

(iv) follows from (4).

1.3 Zeta properties of AMZ of finite DS

AMZ of a finite DS satisfies some zeta properties

and they are proved easily.

Theorem. Let (X,0) be a finite DS. Then the
following hold:

) 280 =TT (7= )

where P runs over periodic orbits.
AMYZ is a rational function.

In particular,

(DE) Z4M(u) = det(Ix — Ayu)7?,
where Ay = (0g,0y)z,ycx 15 the permutation ma-
triz associated to o.

(FE) Z£"(1/u) = (—u)X! det() Zx ™ (w).

(RH) Z4M(u) has no zero on C. Its poles lie on
|u| = 1. Furthermore, u = e™*® is a pole if and
only if R(s) = 0.

The theory of AMZ of almost finite but not fi-
nite DS’s becomes extremely difficult. The zeta
properties except for (EP) do not hold in general.
There are some examples of well-known DS which
show the difficulty.

1.4 lhara zeta functions

Let (V, E) be a finite simple graph and X'(V, E)
the set of walks with no backtrak:

XYV,E) := {(:ci) € V2| (@i, %it1) € E, Tiy2 # .’L‘i}

makes an essentially finite DS together with right

shift operator:
o (@i)i = (Ti1)i
Then the Ihara zeta function: is defined by

Z%v,E) (u) = Z)‘??/(IV,E)(“) = H(1 —ulPh=t
P

where P runs over prime walks with no backtrack.
See [GILO08]
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If G = (V, E) is (q + 1)-regular, then
ZL(uw) = (1 - u?)X©@ det( — uA + qu?) ™!,

where x(G) := |E|—|V|+1 and A is the incidence

matrix.

1.5 Symbolic dynamical systems

A symbolic DS on alphabet @ with |Q| =g is
defined by

Q% = {(zi)icz | z: € Q}

with shift operator o : (z;) — (z;—1). It is essen-

tially finite because
z = (z;) € Fix(o™) <= Titm = z:i(Vi € Z)
2Ny = |Fix(e™)| = ¢™ < 0
Thus AMZ has the following form:

1
T 1-gqu

e o) qm
ZAM — m
oz (u) = exp E P

m=1

Q?Z is essentially finite and furthermore we have

Q%P = [[ M(g,n)C(n)
n=1
1 o0 1 M(q,n)
-2 i ()

where M(q,n) is the Necklace polynomial:

M(g,n) := % donu (%) q* (5)

k|n

1.6 Weil zeta functions as AMZ

The Weil zeta function (or congruence zeta
function) of a variety X over a finite field F, is
defined by

¢(X,u) =exp Z lﬁ(—%ﬁlum
m=1

where X (Fpm) is the (finite) set of Fym-rational

points.
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Let F : X — X be the Frobenius automorphism
(induced by = +— zP). Then (X, F) is essentially
finite DS. Since Fixx(F™) = X (Fpm), the Weil
zeta function is equal to the AMZ of this DS:

C(Xa u) = Z(I-}(N,IF)(U)

Zeta properties for Weil zeta functions
called Weil conjectures were proved mainly by
Grothendieck and Deligne.

The Weil zeta function is essentially same as

ZWeil(t) of Fp-algebra A appeared in section 0.3.

2 The Burnside ring Q(C)

2.1 The category of dynamical systems

Let C = {0) be an infinite cyclic group. Since a
finite DS is nothing but a finite C-set, we denote
by set® the category of finite DS’s. Furthermore,
we denote by afsetC the category of almost finite
dDS’s. These categories are like to set®, the cat-
egory of finite G-sets, where G is a finite group.

X xY, X +Y denote a direct product and a
disjoint union of two DS’, respectively. In partic-
ular, X™ (resp. nX) denotes the direct product
(resp. disjoint union) of n-copies of X.

Mapo(X,Y) denotes the set of C-maps between
two DS’s X,Y. Note that for m =1,2,---,

Map.(C(m), X) = Fixx (6™); f — f(C™)
Mapg(C(00), X) = X; f — f(C™)
Mapg(C(m), C(c0)) =0

Let YX be the set of maps between from X to Y,
so that YX is a DS with C-action defined by

f:X =Yz of(cz)

If X is finite and Y is almost finite, then YX is
almost finite. If Y is finite and if X is essentially
finite, then Y X is essentially finite iff X has only
finite number of aperiodic orbits. In particular, Y
is a finite set with trivial C-action, then Y¢(*) is

a symbolic DS.



2.2 The Burnside ring

The Burnside ring Q(G) of a pro-finite group
G is the Grothendieck ring of set®, the category of
finite G-sets, that is, the abelian group generated
by the symbols [X], where X is any finite G-set,
with relation

X]=[X'] fX=X and
X +Y] = [X] +[Y]

where X +Y denotes the disjoint union . The mul-
tiplication on Q(G) is defined by [X]-[Y] = [X xY].
For each subgroups S, the map
ps 1 G) — Z; [X] — | X5

where X5 := {z € X | Sz = z}, defines a homo-
morphism called a Burnside homomorphism:
o=]]vs:G) - eh(G) =]z
s) (8)

where (S) runs over all conjugacy classes of sub-
groups of G. The Burnside homomorphism is
an injective ring homomorphism, and so Q(G) is
viewed as a subring of the ghost ring Gh(G).

The complete Burnside ring ﬁ(G) is the clo-
sure of (}(G) in the product space gh(G), where

2.3 The complete Burnside ring ﬁ(C’)

The complete Burnside ring {(C) of an infinite
cyclic group C = (o) is the Grothendieck ring of
almost finite DS’s. Thus its element is presented

by an infinite sum
X(b) =) ba[C(n)]
n=1

for some integral vector b = (b1, bg,---) € ZN. The
map b +— X (b) induces a bijection
X :zZN = Q(C);b— X(b)

Since ﬁ(C) is a commutative ring, by pulling back

along X, we have that ZN becomes a commutative

ring which is called a Necklace algebra and is
denoted by Nr(Z).
The multiplication is defined by
[C(m)] - [C(n)] = (m,n)[C(Im,n])]

where (m,n) and [m, n] denote the ged and lem,
respectively. This formula gives the multiplication
formula in the Necklace algebra ZN as follows:
a-b=c, = Z (m, n)ambn
[m,n]=l
where the summation is taken over non-negative
integers [ such that [m,n] = 1.
The k-th component of the (complete) Burnside
homomorphism & : ﬁ(C) — gh(@) is given by
n if njk

@k =g : [C(n)] {0 itn f

Thus we have
@k (X(b)) = dk = Zibi
ilk
This relation between (di) and (b;) is equivalent
to the following cyclotomic identity.

[eS) by el
I1(25) =ewd 2 (= 22%0)
n=1

n=1
Note that two almost finite DS’s X and Y are
isomorphic if and only if §(X) = §(Y).

2.4 Dress-Siebeneicher's theory

In their paper in [DS89], Dress and Siebeneicher
stated an important and surprising result which
connects the Burnside ring Q(C) of infinite cyclic
group C, A-rings and Witt vectors Their result is
presented by the following diagram:

Nr(Z) = ZN

glx

Q) —=—A@
[ 7} L

ZN ==—=—==gh(C) tZ{[t]]

W(Z)

R~
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Here, we briefly explain the rings and maps ap-
peared in the diagram([DS89), [Ya10], [Ha09}).

(1-a) Nr(Z) := ZN : Necklace algebra. Its element
is an infinite vector b = (b,)7%; of integers.

(1-b) W(Z) := ZN : the ring of universal Witt vec-
tors. Its element is a sequence ¢ = (gn)oe,
of integers.

(1-¢) Q(C) : the complete Burnside ring of an infi-
nite cyclic group C. Its element is an infinite
sum Y oo, by [C(n)] =: X(b).

(1-d) A(Z) := 1+¢Z[[t]]: the universal A-ring. The
addition is defined by the multiplication of

formal power series.

(28) X : b X(6) = T, balC()]

(2-b) T: g Eindnqﬁc), where ¢(©) is the peri-
odic part of the (virtual) symbolic DS, and
ind,, : [C(m)] — [C(mnr)].

(2-¢) 81 : [X] = 1+ on(S™(X))t™, where S™(X)
is the n-th symmetric power.

(2d) @: (g) ~ (Sm ke

(2-e) @ : the complete Burnside homomorphism.

(2f) L:a(t)— t3loga(t)

The maps é,p, L are injective ring homomor-
phisms. 7,s; are ring isomorphisms.

Assume that b € Nr(Z), ¢ = (¢.) € W(Z),
a(t) = 1+ X ant™ € AZ), d = (dn) € gh(Z)
are corresponding each other by these maps:

7(g) = X(b), s¢(X (b)) = a(t), p(X (b)) = d
(gn) < (bn) © (an) < (dn)

Then the above diagram implies the following
identities which remind us of dynamical zeta func-

tions:

[e o]

1 [ 1 bp
O -1 (%)

o= dn
= 1+Zant" =epo ;—t"
n=1
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3 The universal zeta functions
3.1 The UZF of categories and functors

Let & be a category. We assume that

(i) € is locally finite, that is, |Hom(X,Y)| < oo.
(ii) The isomorphism classes € /= of objects is a

small set.

The universal zeta function (UZF) or the ex-
ponential function ([YoO01]) of a category & is
defined by

[ch(t) =)= Y, mt’j
Ne€/

Here the summation is taken over a complete

representatives of isomorphism classes of objects.
Furthermore, ¢tV is a variable associated to an ob-
ject N such that ¢V =V if N = N,
Let €€ be the category of dynamical systems
whose underlying set is an object of €. Then
“City= > tV
Ne€/
is the geometric series type UFZ of ¥.
#)T@e= )Y N
Ne¢€ />
is the Dirichlet type UFZ of €.
The UZF of a functor F : € — % is defined by

,_ 1 ra
FO = > mmm)
Ae€ /[

Assume that F is faithful and that for any
N € &, there exists only finite number of iso-
morphism classes of A € € such that F(A) = N.
For an N € .¢, a ¥-structure on N is defined
to be a pair (A, a) of A € € and an isomorphisms
a: F(A) 2 N. Two ¥-structure (4, o) and (B, B)
on N is called to be isomorphic if there exists an
automorphism f : A 2 B such that So F(f) =a.



Let denote by Str(€¢/N)/ =

morphism classes of ¥-structures on N. Then

Fiy= Y

Nes /=

the (finite) set of iso-

St(E/N)/= ]
[Aut(N)]

3.2 The exponential formula

Assume that a locally finite category & has any
finite coproducts. In this case, we can think that
the UZF &(t) = Zg(t) belongs to the complete
semigroup algebra Q[[£°P/ 2], and so we intro-

duce the following rule:

MAN — M 4N 40 g

Assume further that & satisfies the strict Krull-
Schmidt property, that is, that any object has
a unique decomposition into a coproduct of con-
nected objects. Then the exponential formula
holds:

where ¥ =

nected objects. Under some technical conditions,

Con(&) is the subcategory of con-

the exponential formula implies the KS-property,
that is, KS-property is a categorification of ex-

ponential formulas.

3.3 Wohlfahrt formula

Let G be a finitely generated group. Then the

exponential formula has the form:

Z 1G/H
= exp -
<6 (G : H)

(Here we used that Aut(G/H) = Ng(H)/H and
that the number of subgroups conjugate to H is
equal to (G : Ng(H))).

Applying this formula to the forgetful functor,
we have the Wohlfahrt formula:

X

2 TR

X €setC /¢

t(G:H)

P Z (G: H)

H<G

Z |H0m G STL)I

n=0

3.4 The UZF of finite dynamical systems

Since the category of finite dynamical systerns
satisfies the strict Krull-Schmidt property, its UZF
satisfies the exponential formula. The automor-
phism group of C(n) is a cyclic group of order n.
Furthermore, by the KS-property,

Aut(X (b)) = [T Aut(.C(n)) = [] Cnt S,

n>1 n>1

Thus the universal zeta function of finite DS’s is

given by

% 4C(m)

Z Au t(N)| - P Z

Let X be an essentially finite DS. Then by the
|[Hom(N, X)|u!N!, we have the

Artin-Mazur zeta function

Zps(t

specialization tV «

Z;\(M (u) = exp (i E‘}w um)

Here, note that Hom(C(m),X) =

Thus we have a group homomorphism

FiXX (O'm).

ZAM () — Q)5 [X] = Z4M(w)

4 Problems
4.1 Zeta properties for UZF

Let Zpg(t) be the universal zeta function of fi-

nite dynamical systems. It is mapped by the Burn-
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side homomorphism ¢y, to the following series:

wr(Zps(t)) = exp (Z %‘Pk(tc("))
n=1
= exp (7; (_Cgixn_cﬁ_:t_))
~e (3 (Ol
n=1 n
= exp (Z %(t[k,ﬂ])(k,n)>
n=1

Thus Zps(t) can be viewed as a series with infinite
number of variables.

Note that two almost finite DS’s X and Y are
isomorphic if and only if they have the same AMZ.
The theory of almost finite DS is extremely diffi-
cult. whereas it is rather strange that almost finite

DS’s are controlled by only finite DS’s.

Question. Are there any zeta properties for UZF
of finite DS’s which induce those for usual zeta
properties? For example, is there a universal func-

tional equation
Zps(1/t) = v(t)Zps(t) 77

where the gamma, factor +(t) is a group homomor-

phism
7(t) : Q(C) - Q1)

If such a formula holds, then applying functors
we have a usual function equation. However, there

is no possibility in this form, because

p1(Zps(t)) = exp (Z %tn)

does not satisfy any functional equation.

Remark. There is a categorical exponential for-
mula for UZF

Zos(t) = 3 T =P 2,

m=1
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It induces many formula, e.g. the Wohlfahrt for-
mula for one-variable series. Unfortunately, expo-
nential formulas are not called one of zeta proper-

ties.

4.2 AMZ of non-invertible DS’s

A rooted forest F can be viewed as a non-
invertible dynamical system (F, o), where o maps
any vertex to its unique child, such that any pe-
riodic point is a fixed point of 6. Let RF be the
category of rooted forests. Let setNo be the cat-
egory of non-invertible dynamical systems, whose
object is a pair (X, o), where X is a set with self-
mapo: X — X.

Then the category RF of rooted forests is equiv-
alent to the indexed category of the category RT
of rooted trees. RF 2 set(RT), that is, RF is
a strict Krull-Schmidt category whose connected

objects are rooted trees.

forest
setNo — RF

iPer PB l root

forget
setZ — set

The pullback diagram in
the 2-category CAT, the

category of categories, For

a non-invertible finite

dynamical system (X, o),
Per(X):={z € X |o™z =z foram > 1},
Root(F): the set of roots.

Then we have

tF(X,a)

o\
2 R(X,) (1 > |Aut(T)|) |

(X,0)

where T runs over rooted trees, (X,o0) non-
invertible finite DS’s.

Specialization: tT - t!V(T) gives

-1
X .n © n-1
n n __ n n
Z n!t - (1 - Z o ¢ )
n=0 n=1

Problem. Build the theory of non-invertible fi-
nite dynamical systems (NIFDS).



Let D = (o) = {1,0,02,---} be a semigroup
generating only one element ¢. Then a NIFDS
is nothing but finite D-set. A NIFDS X is ir-
reducible if X = AU B implies 4 = X or
B = X. Any irreducible NIFDS has the form
D(h,n) = D/(oh = o"*7),

Let Go(C) be a abelian group generated by [X],

where X is satisfying the relation:

(i) [X] = [Y] iff [Hom(D[h,n) for any A > Oand
n > 1.
(i) X[eupY] + [X NY] = [X] + [Y], (8] = 0

We call Go(C) the Burnside ring of a semigroup
D. The Burnside homomorphism is defined by
¢:Go(D) - gh(z) = [] z
(hyn)
; [X] > Hom(D(h,n), X]

By this way, we have the theory of Burnside rings.

4.3 Rational DS's ?

Remember the equation (2). In this case, b =
(bn/b) is not corresponding to any dynamical sys-
tem. Since b, is the number of elements of G of
order n, b,/n is not an integer in general. But

there exists a ”rational DS”:

x@p)=Y" éC(n)

geG

In particular, we can not treat absolute Weil
zeta function as AMZ of DS. Is there any idea
by which we involve it in the theory of dynamical

zeta functions.
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