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ON MULTIPLICATIVE INDUCTION
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DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE AND ENGINEERING
KINKI UNIVERSITY

ABSTRACT. Let G be a finite group and e be the proper trivial subgroup of G. We
compute the value Jnd$§ (¢[H/e]) for a subgroup H of @ in the Burnside ring £2(Q) for
an integer £. Their values induce integer valued polynomials.

1. NOTATION

Let G be a finite group and sg be the set of all subgroups of G. Denote by 9H the
conjugate subgroup gHg™! for H < G and g € G. Let [s¢] be a set of representatives
of G-conjugacy classes of sg. If X is a finite G-set, write [X] for the isomorphism class
of finite G-sets containing X. Denote by X the S-fixed points of the G-set X. If X is
a finite set, write | X| for the cardinality of X. Denote by e the identity element of G.
The proper trivial subgroup {e} of G is also denoted by e. For two subgroups S, H < G
denote by [S\G/H] a set of representatives of double cosets of G by S and H.

2. MULTIPLICATIVE INDUCTIONS FOR BURNSIDE RINGS

Let 2(G) be the Burnside ring of G. Then £2(Q) is a free Z-module with basis
{[G/H||H € [sc]}. The multiplication is defined by the Cartesian product. If S € s,
then there is a unique linear form ¢§ : 2(G) — Z such that ¢G([X]) = |X#| for any finite
G-set X. It is a ring homomorphism. The mark homomorphism is a ring homomorphism

¢ = H 9§ : 2(G) - (G), where 2(G) = H Z and it is called the ghost ring of
(8)€lsql (8)€lsal

Lemma 2.1. The ring homomorphism @€ is injective.

We recall some properties for tensor induction of Burnside rings. We refer to [Y090] for
more details. Let set® be the category of finite G-sets. If H < G, then there is a functor

Ind§ : set” — set®
which has the values on objects
Jnd§ : X s Mapy(G, X),

where Mapy; (G, X) is the set of H-maps a : G — X such that a(h - g) = h - a(g) for all
h € H, g € G, with the action of G defined by (k - @)(g) = a(gk) for k € G, for an H-set
X.
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Lemma 2.2. Let H be a subgroup of G and X be an H-set. If S is a subgroup of G, then
PGndz(X)) = I lines(X).
9€lS\G/H]
Lemma 2.3. Let H be a subgroup of G. If S is a subgroup of G and q € Z, then
5 (IndS (gle/e])) = ¢'*/%\.
Proof. By Lemma 2.2, we have
oS(IndS(gle/e)) = [I ¢wstale/e) = T aville/e) = II «
9€[S\G/e] g€lS\G] 9€(S\G]

0O

It has been shown by Gluck ([G181]) and independently by Yoshida ([Yo83]) that a
formula of primitive idempotent e$ of Q-algebra Q ®z £2(G) for H < G can be expressed

as

1
(2.1) ef = MI(ZQ,IKW(K’H)[G/K]’

where u(K, H) is the value of the Mébius function of sg.
Denote by NH (resp. WH) Ng(H) (resp. Hg(H)/H) for a subgroup H of G. Put
¢ = Ind$ (qle/e]) for q € Z.

Lemma 2.4. If G is a finite group and q is an integer, then
=Y WD wD,8)d“G/D]

(D)elsc] 5<G

Proof. By Lemma, 2.3 and idempotent formula (2.1), we have that

€ = > ¥§(¢°)es
SE[SG]
= 3 JSINS|TH Y |D|u(D, 8)IG/ D]
S€lsq] D<S
= > (G: NSNS > ID|u(D, S)[G/D]
S<G D<G
= |G| > |D| (Z u(D,S)q'G/S'> [G/D]
D<G S<G
= |GI™* ) (G:ND)ID| (Z u(D,S)q'G/S') [G/D]
De|sq] S<G
= Y |wD|™! (ZM(D,S)q'G/S'> [G/D].
DG[.?G] S5<G
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In particular, coefficients of [G/D] in ¢€ as above are integers.

Proposition 2.5. If G is a finite group and q is an integer, then

IWD|™ ) " u(D, 8)¢¢/!

5<G
is an integer for a subgroup D of G.
Substituting z for ¢ we obtain integer-valued polynomials fS(z) as follows.

Theorem 2.6. Let G be a finite group and put
1
C(r) = —— E D, S)zl¢/9|

for subgroup D of G. Then fS(z) is an integer-valued polynomial.

3. TAMBARA FUNCTORS

In this section, we recall some notes on Tambara functors. For a G-map f: X —Y
we consider a set

) = {0

with G-action defined by

yeY,o: f(y) — A: map,
o0 = idf~1(y)

9(y,0) = (9y,%), ‘o(z):= go(g7')

and denote by IIfa the projection (y,0) ~ y. For a G-map a : A — X the pullback
functor

f* o setf)Y — setG/X,
(B—Y) s (X xy B25X)

has a left adjoint functor

Yy set?/X — set€/Y,
(A-5X) — (A-SXx-Ly)

and a right adjoint functor

Oy : set/X - set%/Y,
(A-5X) — (I,(4)ZSY).

Two natural transformations

e X
Zfé_fs_gff*nfs_f_,nf,
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give a commutative diagram

/ A — X 1A
X EXP il
f
o
Y ;A

where e : X xyII;A 3 (z, (y,0)) — o(z) € A and f' is projection. In order to discuss the
TNR-functors, this diagram is introduced by Tambara in [Ta93]. Brun called it Tambara
functor in [Br05]. There are some works concerning about Tambara functors ([Nal2a),
[Nal2b], [Nal3], [OY11]).
Denote by Set the category of sets and maps and by setC the category of finite G-sets
and G-maps. For any G-sets X and Y we denote by X +Y the disjoint union of them.
For any G-map f : X — Y we consider the triplet of functors

T = (T, T*,T,) : set® — Set,

consisting of a contravariant functor T" : set® — Set and two covariant functors
T\, T, : set® — Set which coincide on the objects, and so we write

T(X) := T\(X) = T*(X) = T«(X),
fi:i=T(f), f =Tu(f): T(X) — TY), f*: T(Y) — T(X).

for any G-sets X, Y and any G-map f: X — Y. A triplet T = (T, T*,T,) is called a
semi-Tambara functor if these functors satisfy the following axioms:

(T.1) (Additivity) If
X-HX+Y Y
is a coproduct diagram of finite G-sets, then
T(X) ¢~ T(X +Y)L5T(Y)
is a product diagram of sets; and T'(#) = 0(:= {0}).
(T.2) (Pullback formula)

a

T(X) —>T(Y) T(X)—=T()

X—Y
b PB lC = b*I ¢ Ic~ bcT O Tca
Z—W T(Z) > T(W), T(Z) 0 T(W).

(T.3) (Distributive law)
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X< A< X xy T A T(X) <2~ T(A) %> T(X xy I A)
f Bxp | = 5 o |
Y ;A T(Y) - T(I1; A).

The axioms (T.1) and (T.2) mean that both of pairs (I™,T) and (T™,T,) form semi-
Mackey functors (see 3.3 of [OY04]). If all T'(X) are commutative ring and fi, f*, f, are
homomorphisms of additive groups, rings, multiplicative monoids, respectively, then T is
called a Tambara functor.

For any finite G-set X, let £2,(X) be the set of isomorphism classes [A — X] of finite
G-sets over X. Then 2, (X) is a semiring by coproducts and products in the comma
category set®/X. A G-map f: X — Y induces three maps:

Ao (X)) > ) A-S X — A5 Xx Ly,
fr o 2.(Y) — 2.(X);[B—Y]— [X xy BES X],
fot 2u(X) — 2,(Y);[A -5 X] s [[(4) S Y],

Then the family 2, (X), fi, f*, f form a semi-Tambara functor 2,. By the Grothendieck
ring construction, we have the Burnside ring functor {2, which is a Tambara functor.

Lemma 3.1. Let f : G/H — G/G be the canonical surjection for a subgroup H < G. If
a:A— G/H is a G-map to transitive G-set G/H, then there ezists a G-isomorphism

I (A) & Mapg (G, o~ (eH)). |
Proof. Since G/G is a set of cardinality 1 and f is surjective, we may identify
f(A) ={0c:G/H - A|o: map, aoo =idg/n}
Then we see that the map ¢ : II;(A) —» Mapy (G, a"(eH)),
p:8>p(s):G— a Y eH): g gs(¢g7 H)
gives the isomorphism. O

Let f : G/H — G/G be the canonical surjection and {2 be the Burnside Tambara

functor. Then by Lemma 3.1, we see that the image (.(f)([A > G/H]) for the map
2,(f): 2(G/H) - 2(G/G) is

2.(f)([A = G/H]) = [Mapg(G, o' (eH)) - G/G].
By Lemma 2.4, we have the following result.

Proposition 3.2. If f : G/e = G/G is the canonical surjection, q is an integer, and 2
is the Burnside Tambara functor. Then we have

2.(H)@Gle S Gle)= Y WDy w(D,S)qd%/I[G/D - G/G].

(D)elsq] 5<G
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4. NECKLACE POLYNOMIALS

In this section, we show that the polynomial f§(z) is a generalization of necklace
polynomials. It is well known that the number M (a,n) of primitive necklaces of length
n that can be constructed using a set of beads with a-colors is computed by a formula

M(a,n) = %ZH(%) ot = %Eu(d)aﬁ,
din

din

where 4 is the classical Mobius function (see [MR83] for instance). It is called necklace
polynomial. In this section, we show that there is a relationship between the equation
of Theorem 2.6 and the necklace polynomials. Denote by C, the cyclic group of order
n. Denote by .#; the poset (sg, <) of the subgroups of G ordered by inclusion. Denote
by 2(n) the divisor poset of a positive integer n ordered by divisibility relation. If m
is a divisor of n, then there exists an isomorphism of posets from the closed interval
[Crm, Crl 7 to 2 (Z). The following lemma is well known.

Lemma 4.1. If C; is an element of [Cm, Cn).s;, then
d
p7s(Cm, Ca) = a2y | 1, —

In particular, s, (Cm,Ca) = 1 (2).

m

Theorem 4.2. If G is a cyclic group of order n, then fgm (x)=M (x, %) for any divisor
m of n.

Proof. By the definition of f§ (z) and Lemma 4.1,

fE.(@) = WCal™ Y #(Cm,8)a*!

S<Ch
n -1
T WO
m CdSCn
n |1 d n/m
e J— J— d/m
A ()
= M (x, 2).
m

Theorem 4.2 and Theorem 2.6 show the following.

Corollary 4.3. If G is a cyclic group of order n and { is a positive integer, then

©=3"M (e, %) [G/Cum.

min
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