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On quotients of Hom-functors
D.Tambara
Department of Mathematical Sciences, Hirosaki University

1. Introduction

A hom-functor on a category C is the functor Hom(—, X) for an object X of C.
We consider the quotient functor Hom(—, X)/G by a subgroup G of Aut X. We
are interested in replacing hom-functors in the definitions of limit and adjoint by
quotients of hom-functors.

2. limit

We recall the definition of limit in terms of hom-functor. Set denotes the cate-
gory of sets. For a small category C, [C°P, Set] denotes the category of contravariant
functors C — Set. [C°P, Set] has limits. For instance, the product F' x G of F' and

G in [C°P, Set] is given by
(F x G)(A) = F(A) x G(A) for AeC.
And the final object 1 of [C°P, Set] is given by
1(A)={1} for AeC.
For X € C, the hom-functor hx is defined by
hx(A) = Hom(A, X).

A functor F': C°P — Set is said to be representable if F' = hx for some X.
For X,,X,,Z € C we have

Z is a product of X; and X; <= hz = hx, x hx,.
Therefore

product of two objects exists in C

<= product of two representable functors is representable.
And similarly
a final object exists in C <= 1 is representable.

The existence of a limit in C is thus expressed as the representability of a limit of
hom-functors. We first aim to replace representability by familial representability.



3. Sum of hom-functors
A functor F': C°? — Set is said to be familially representable if

Fgﬂhxi

for some family X; of objects in C ([Carboni and Johnstone]).

Theorem 1. Let C be a finite category. The following conditions are equivalent
to each other.

(i) hx x hy and 1 are familially representable (VX,Y € C).

(ii) Finite limits of hom-functors are familially representable.

(iii) Pushouts and coequalizers exist in C.

(iv) Finite connected limits exist in C.

Moreover these conditions imply that all morphisms of C' are epimorphisms.

Remark. “(iii) = (iv)” is generally true.

For the proof of the theorem we may follow the proof of the general repre-
sentability theorem in [Freyd and Scedrov]. It simplifies owing to our finiteness
assumption. We may also use the characterization of familially representable func-
tors ([Leinster]).

An interest with such categories comes from an attempt to define general Burn-
side rings. Suppose that C satisfies (i) of Theorem 1. For any X,Y € C we take
isomorphisms

hx X hy thzz

1= ][] hw,.

Then the free abelian group based on the isomorphism classes of objects of C
becomes a ring by setting

and

(X]tv) = (7],
1= [W;].

Here [X] stands for the isomorphism class of an object X. This ring may be called
the Burnside ring of C.

4. The Burnside ring of a finite category

Let C be a finite category. Assume that C satisfies the following conditions.
(B1) For every X,Y € C there exists a unique family of integers cX¥ such that

| Hom(4, X)||Hom(A,Y)| = " c5¥|Hom(A4,2)| (VA€ C).
Z

(Here |S| stands for the cardinality of a set S.)
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(B2) There exists a unique family of integers dz such that

1= dz|Hom(A,2)| (VA€ Q).
Z

Then the free abelian group based on the isomorphism classes of objects of C'
becomes a ring;:

(X)Y] =)%Yz,
zZ
1= dz[Z].

Theorem. ([Yoshida]) Assume that a finite category C satisfies the following
conditions.

(Y1) C has the unique epi-mono factorization property.

(Y2) C has the coequalizer

1
Coeq(X =3 X)

for any a € Aut X.
Then C satisfies (B1) and (B2).

The following diagram shows the relationship between Theorem 1 and Yoshida’s

theorem:
[X][Y] =Y _cx"(2],

pushout, coequalizer exist =—> 1 = Zdz [Z],

C)Z(Y,dz eN
Y 4
(XY= cz"12],

epi-mono factorization,

Coeq(X =3 X) exist 1= Zdz[Z],
c"Z(Y,dz €L

A problem will be to characterize categories satisfying (B1) and (B2).

Here are examples of generalized Burnside rings. Let G be a finite group.

(1) Let C be the category whose objects are G-sets G/H for all subgroups H,
and whose morphisms are G-maps. Then C satisfies the condition of Theorem 1.
The resulting ring is the ordinary Burnside ring of G.

(2) Let F be a family of subgroups of G which is closed under conjugation and
intersection. Let C be the category whose objects are G-sets G/H for H € F.
Then C satisfies the condition of Theorem 1.



(3) Let F be the set of all p-centric subgroups of G. Let C be the category whose
objects are G-sets G/H for H € F. Then C satisfies the condition that hx x hy
are familially representable ([Diaz and Libman], [Oda]). Further examples of F are
found in [Oda and Sawabe].

(4) For a fusion system F a certain category O(F¢) is defined. Then C = O(F¢)
satisfies the condition that hx x hy are familially representable ([Puig], [Diaz and
Libman]).

5. Finiteness of connected components of powers of a functor

FinSet denotes the category of finite sets. Let K be a finite category. We say
G € [K,FinSet] is connected if G is nonempty and never expressed as a sum of
nonempty objects. Every F' € [K,FinSet] is a sum of connected objects, each of
which we call a connected component of F. For F € [K,FinSet] and n > 0 we
have

F'"=Fx--.xF
in [K, FinSet].

Theorem 2. For F € [K, FinSet], the following are equivalent.

(i) Connected components of F™ for all n have only finitely many isomorphism
classes.

(ii) F(a) is injective for every morphism « of K.

This theorem relates to Theorem 1 as follows: Let F: K — FinSet satisfy
(ii) of Theorem 2. Let C be a representative system of isomorphism classes of
connected components of F™ for all n. Then C is finite. View C as a category (a
full subcategory of [K, FinSet]). For X,Y € C, X x Y is a sum of objects of C
and 1 is a sum of objects of C. So C satisfies condition (i) of Theorem 1.

Conversely every finite category satisfying condition (i) of Theorem 1 arises this
way.

6. Quotient of hom-functor
Let C be a category. Let X be an object of C and G a subgroup of Aut X. We
define the functor hx /G: C°P — Set by

(hx/G)(A) = Hom(4, X)/G.

Here Hom(A, X)/G is the quotient set relative to the natural action of G on
Hom(A4, X).

Theorem 3. Let C be a finite category. The following conditions are equivalent
to each other.

(i) hx X hy and 1 are isomorphic to sums of quotients of hom-functors (VX Y).

(ii) Finite limits of hom-functors are isomorphic to sums of quotients of hom-
functors.

(iii) Pushouts exist in C.

(iv) Finite simply connected limits exist in C.
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These conditions imply that all morphisms of C' are epimorphisms.
Remark. “(iii) == (iv)” is true for a general C ([Paré]).
7. Category with pushouts

We here give an example of a category with pushouts.
Let P be a partially ordered set. Suppose that a group G acts on P:

ce€eG,re€P~z° €P.

The category PG is defined as follows.
(object) Objects of PG are elements of P.
(morphism) For z,y € P

Hompg(z,y) ={o |0 € G,z <y’}.

(composition) Composition is given by multiplication in G.
Proposition. If P has pushouts, then so does PG.
That P has pushouts means that if z < z,z < y, then there exists sup(z, y).

Suppose that for each z € P a subgroup K, of G is given. Assume the following
conditions hold.

(i)oeK, = 2°=1x

i)z <y = K; <K,

(iii) K5° = Kgo

We then define the category D as follows.

(object) Objects of D are elements of P.

(morphism) For z,y € P we set

Homp(z,y) = Hompg(z,y)/K,.

Here K, acts on Hompg(z,y) by multiplication in G.
(composition) The composition of D is induced by that of PG.

Proposition. If P has pushouts, then so does D.

8. Adjoint
We recall the definition of adjoint in terms of hom-functor. Let F': B — C and
G: C — B be functors. “G is a right adjoint of F” means

Hom¢g(F(X),Y) = Homp(X,G(Y))
(naturally in X, Y).

This isomorphism, X viewed a variable, is written as

Homc(F(—), Y) = hG(Y)
(naturally in Y').
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Homc(F(~),Y) = hy o F denoted by F*(hy), this is written as
F*(hy) = hg(y).
Thus

F has a right adjoint
<= F*(hy) are representable for all Y € C.

We next aim to replace representability in the right-hand side by familial repre-
sentability.

9. Discrete fibration
Recall that a functor F: B — C is called a discrete fibration if the following
condition holds.

Vg: F(X)—Y’' morphism of C,
3 f: X - X’ morphism of B,
F(f)=g.
If F: B — C is a discrete fibration, then
Frhy)= [ hx
XeF-1(Y)
for every Y € C.

Proposition. Let F': B — C be a functor. The following are equivalent.
(i) F*(hy) are familially representable for all Y € C.
(ii) There exists a factorization

Cl
F' lﬂ
B — C

F

such that F” has a right adjoint and 7 is a discrete fibration.

10. Condition (G)

Here we aim to replace representability in the definition of adjoint by being
isomorphic to a sum of quotients of hom-functors.

Let F': B — C be a functor. We introduce the condition (G) for F. It consists

of the following:
(i)
g: F(X)->Y
= 3f: X > X', F(f)=g.
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(ii)
f1: X_—)X{’ f2: X—’Xéa F(fl):F(f2)
= Ju: X] = X5, F(u) =1, fo=uf1.

If condition (G) holds, then F*(hy) is isomorphic to a sum of quotients of hom-
functors for every Y € C.

Theorem 4. Let F: B — C be a functor. Assume that C is finite. The following
are equivalent.
(i) F*(hy) are isomorphic to sums of quotients of hom-functors for all Y € C.
(i1) There exists a commutative diagram

B £,

ul lﬂ
B — C
F

such that F” has a right adjoint, v is full and dense, and 7 satisfies condition (G).
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