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1. Introduction
A $hom$-functor on a category $C$ is the functor $Hom(-, X)$ for an object $X$ of $C.$

We consider the quotient functor $Hom(-, X)/G$ by a subgroup $G$ of Aut $X$ . We
are interested in replacing $hom$-functors in the definitions of limit and adjoint by
quotients of $hom$-functors.

2. limit
We recall the definition of hmit in terms of $hom$-functor. Set denotes the cate-

gory of sets. For a small category $C,$ [ $C^{op}$ , Set] denotes the category of contravariant
functors $Carrow$ Set. [ $C^{op}$ , Set] has limits. For instance, the product $F\cross G$ of $F$ and
$G$ in [$C^{op}$ , Set] is given by

$(F\cross G)(A)=F(A)\cross G(A)$ for $A\in C.$

And the final object 1 of [$C^{op}$ , Set] is given by

1 $(A)=\{1\}$ for $A\in C.$

For $X\in C$ , the $hom$-functor $h_{X}$ is defined by

$h_{X}(A)=Hom(A, X)$ .

A functor $F:C^{op}arrow$ Set is said to be representable if $F\cong h_{X}$ for some $X.$

For $X_{1},$ $X_{2},$ $Z\in C$ we have

$Z$ is a product of $X_{1}$ and $X_{2}\Leftrightarrow h_{Z}\cong h_{X_{1}}\cross h_{X_{2}}.$

Therefore

product of two objects exists in $C$

$\Leftrightarrow$ product of two representable functors is representable.

And similarly

a final object exists in $C\Leftrightarrow 1$ is representable.

The existence of alimit in $C$ is thus expressed as the representability of alimit of
$hom$-functors. We first aim to replace representability by familial representability.
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3. Sum of $hom$-functors
A functor $F:C^{op}arrow$ Set is said to be familially representable if

$F\cong\coprod h_{X_{i}}$

for some family $X_{i}$ of objects in $C$ ([Carboni and Johnstone]).

Theorem 1. Let $C$ be a finite category. The following conditions are equivalent
to each other.

(i) $h_{X}\cross h_{Y}$ and 1 are familially representable $(\forall X, Y\in C)$ .
(ii) Finite limits of $hom$-functors are familially representable.
(iii) Pushouts and coequalizers exist in $C.$

(iv) Finite connected limits exist in $C.$

Moreover these conditions imply that all morphisms of $C$ are epimorphisms.

Remark. “(iii) $\Rightarrow$ (iv)” is generally true.

For the proof of the theorem we may follow the proof of the general repre-
sentability theorem in [$\mathbb{R}eyd$ and Scedrov]. It simplffies owing to our finiteness
assumption. We may also use the characterization of familially representable func-
tors ([Leinster]).

An interest with such categories comes from an attempt to define general Burn-
side rings. Suppose that $C$ satisfies (i) of Theorem 1. For any $X,$ $Y\in C$ we take
isomorphisms

$h_{X}\cross h_{Y}\cong\coprod h_{Z_{i}}$

and
$1\cong\coprod h_{W_{j}}.$

Then the free abelian group based on the isomorphism classes of objects of $C$

becomes a ring by setting

[$X$] $[Y]= \sum[Z_{i}],$

$1= \sum[W_{j}].$

Here [X] stands for the isomorphism class of an object $X$ . This ring may be called
the Burnside ring of $C.$

4. The Burnside ring of a finite category
Let $C$ be a finite category. Assume that $C$ satisfies the following conditions.
(Bl) For every $X,$ $Y\in C$ there exists a unique family of integers $c_{Z}^{XY}$ such that

$| Hom(A, X)||Hom(A, Y)|=\sum_{Z}c_{Z}^{XY}|Hom(A, Z)| (\forall A\in C)$ .

(Here $|S|$ stands for the cardinality of a set $S.$ )
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(B2) There exists a unique family of integers $d_{Z}$ such that

$1= \sum_{Z}d_{Z}|Hom(A, Z)| (\forall A\in C)$ .

Then the free abehan group based on the isomorphism classes of objects of $C$

becomes a ring:

[$X$] $[Y]= \sum_{Z}c_{Z}^{XY}[Z],$

$1= \sum_{Z}d_{Z}[Z].$

Theorem. ([Yoshida]) Assume that a finite category $C$ satisfies the following
conditions.

(Yl) $C$ has the unique epi-mono factorization property.
(Y2) $C$ has the coequalizer

Coeq$(X=^{1}\alpha X)$

for any $\alpha\in$ Aut $X.$

Then $C$ satisfies (Bl) and (B2).

The following diagram shows the relationship between Theorem 1 and Yoshida’s
theorem:

[X] $[Y]= \sum c_{Z}^{XY}[Z],$

pushout, coequalizer exist $\Rightarrow 1=\sum d_{Z}[Z],$

$c_{Z}^{XY}, d_{Z}\in \mathbb{N}$

$\Downarrow$ $\Downarrow$

[X] $[Y]= \sum c_{Z}^{XY}[Z],$

epi-mono factorization,

Coeq$(X=X)$ exist
$\Rightarrow 1=\sum d_{Z}[Z],$

$c_{Z}^{XY}, d_{Z}\in \mathbb{Z}$

A problem will be to characterize categories satisfying (Bl) and (B2).
Here are examples of generalized Burnside rings. Let $G$ be a finite group.
(1) Let $C$ be the category whose objects are $G$-sets $G/H$ for all subgroups $H,$

and whose morphisms are $G$-maps. Then $C$ satisfies the condition of Theorem 1.
The resulting ring is the ordinary Burnside ring of $G.$

(2) Let $\mathcal{F}$ be a family of subgroups of $G$ which is closed under conjugation and
intersection. Let $C$ be the category whose objects are $G$-sets $G/H$ for $H\in \mathcal{F}.$

Then $C$ satisfies the condition of Theorem 1.
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(3) Let $\mathcal{F}$ be the set of all $p-$-centric subgroups of $G$ . Let $C$ be the category whose
objects are $G$-sets $G/H$ for $H\in \mathcal{F}$ . Then $C$ satisfies the condition that $h_{X}\cross h_{Y}$

are familially representable ([Diaz and Libman], [Oda]). Further examples of $\mathcal{F}$ are
found in [Oda and Sawabe].

(4) For a fusion system $\mathcal{F}$ a certain category $\mathcal{O}(\mathcal{F}^{c})$ is defined. Then $C=\mathcal{O}(\mathcal{F}^{c})$

satisfies the condition that $h_{X}\cross h_{Y}$ are familially representable ([Puig], [Diaz and
Libman] $)$ .

5. Finiteness of connected components of powers of a functor
FinSet denotes the category of finite sets. Let $K$ be a finite category. We say

$G\in$ [$K$, FinSet] is connected if $G$ is nonempty and never expressed as a sum of
nonempty objects. Every $F\in$ [$K$, FinSet] is a sum of connected objects, each of
which we call a connected component of $F$ . For $F\in$ [$K$, FinSet] and $n\geq 0$ we
have

$F^{n}=F\cross\cdots\cross F$

in [$K$, FinSet].

Theorem 2. For $F\in$ [$K$, FinSet], the following are equivalent.
(i) Connected components of $F^{n}$ for all $n$ have only finitely many isomorphism

classes.
(ii) $F(\alpha)$ is injective for every morphism $\alpha$ of $K.$

This theorem relates to Theorem 1 as follows: Let $F:Karrow$ FinSet satisfy
(ii) of Theorem 2. Let $C$ be a representative system of isomorphism classes of
connected components of $F^{n}$ for all $n$ . Then $C$ is finite. View $C$ as a category (a
full subcategory of [$K$, FinSet] $)$ . For $X,$ $Y\in C,$ $X\cross Y$ is a sum of objects of $C$

and 1 is a sum of objects of $C$ . So $C$ satisfies condition (i) of Theorem 1.
Conversely every finite category satisfying condition (i) of Theorem 1 arises this

way.

6. Quotient of $hom$-functor
Let $C$ be a category. Let $X$ be an object of $C$ and $G$ a subgroup of Aut $X$ . We

define the functor $h_{X}/G:C^{op}arrow$ Set by

$(h_{X}/G)(A)=Hom(A, X)/G.$

Here $Hom(A, X)/G$ is the quotient set relative to the natural action of $G$ on
$Hom(A, X)$ .

Theorem 3. Let $C$ be a finite category. The following conditions are equivalent
to each other.

(i) $hx\cross h_{Y}$ and 1 are isomorphic to sums of quotients of $hom$-functors $(\forall X, Y)$ .
(ii) Finite limits of $hom$-functors are isomorphic to sums of quotients of hom-

functors.
(iii) Pushouts exist in $C.$

(iv) Finite simply connected limits exist in $C.$
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These conditions imply that all morphisms of $C$ are epimorphisms.

Remark. “(iii) $\Rightarrow$ (iv)” is true for a general $C$ ([Par\’e]).

7. Category with pushouts
We here give an example of a category with pushouts.
Let $P$ be a partially ordered set. Suppose that a group $G$ acts on $P$ :

$\sigma\in G, x\in P\infty x^{\sigma}\in P.$

The category $PG$ is defined as follows.
(object) Objects of $PG$ are elements of $P.$

(morphism) For $x,$ $y\in P$

$Hom_{PG}(x, y)=\{\sigma|\sigma\in G, x\leq y^{\sigma}\}.$

(composition) Composition is given by multiplication in $G.$

Proposition. If $P$ has pushouts, then so does $PG.$

That $P$ has pushouts means that if $z\leq x,$ $z\leq y$ , then there exists $\sup(x, y)$ .

Suppose that for each $x\in P$ a subgroup $K_{x}$ of $G$ is given. Assume the following
conditions hold.

(i) $\sigma\in K_{x}\Rightarrow x^{\sigma}=x$

(ii) $x\leq y\Rightarrow K_{x}\leq K_{y}$

(iii) $K_{x}^{\sigma}=K_{x^{\sigma}}$

We then define the category $D$ as follows.
(object) Objects of $D$ are elements of $P.$

(morphism) For $x,$ $y\in P$ we set

$Hom_{D}(x, y)=Hom_{PG}(x, y)/K_{y}.$

Here $K_{y}$ acts on $Hom_{PG}(x, y)$ by multiplication in $G.$

(composition) The composition of $D$ is induced by that of $PG.$

Proposition. If $P$ has pushouts, then so does $D.$

8. Adjoint
We recall the definition of adjoint in terms of $hom$-functor. Let $F:Barrow C$ and

$G:Carrow B$ be functors. $G$ is a right adjoint of $F$” means

$Hom_{C}(F(X), Y)\cong Hom_{B}(X, G(Y))$

$($naturally $in X, Y)$ .

This isomorphism, $X$ viewed a variable, is written as

$Hom_{C}(F(-), Y)\cong h_{G(Y)}$

(naturally in $Y$).
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$Hom_{C}(F(-), Y)=h_{Y}oF$ denoted by $F^{*}(h_{Y})$ , this is written as

$F^{*}(h_{Y})\cong h_{G(Y)}.$

Thus

$F$ has a right adjoint
$\Leftrightarrow F^{*}(h_{Y})$ are representable for all $Y\in C.$

We next aim to replace representability in the right-hand side by familial repre-
sentability.

9. Discrete fibration
Recall that a functor $F:Barrow C$ is called a discrete fibration if the following

condition holds.

$\forall g:F(X)arrow Y’$ morphism of $C,$

$\exists!f:Xarrow X’$ morphism of $B,$

$F(f)=g.$

If $F:Barrow C$ is a discrete fibration, then

$F^{*}(h_{Y})\cong \coprod h_{X}$

$X\in p-1(Y)$

for every $Y\in C.$

Proposition. Let $F:Barrow C$ be a functor. The following are equivalent.
(i) $F^{*}(h_{Y})$ are familially representable for all $Y\in C.$

(ii) There exists a factorization

$C’$

$F’\nearrow \downarrow\pi$

$B arrow^{F} C$

such that $F’$ has a right adjoint and $\pi$ is a discrete fibration.

10. Condition (G)
Here we aim to replace representability in the definition of adjoint by being

isomorphic to a sum of quotients of $hom$-functors.
Let $F:Barrow C$ be a functor. We introduce the condition (G) for $F$ . It consists

of the following:
(i)

$g:F(X)arrow Y’$

$\Rightarrow\exists f:Xarrow X’, F(f)=g.$
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(ii)

$f_{1}:Xarrow X_{1}’, f_{2}:Xarrow X_{2}’, F(f_{1})=F(f_{2})$

$\Rightarrow\exists u:X_{1}’arrow X_{2}’, F(u)=1, f_{2}=uf_{1}.$

If condition (G) holds, then $F^{*}(h_{Y})$ is isomorphic to a sum of quotients of hom-
functors for every $Y\in C.$

Theorem 4. Let $F:Barrow C$ be a functor. Assume that $C$ is finite. The following
are equivalent.

(i) $F^{*}(h_{Y})$ are isomorphic to sums of quotients of $hom$-functors for all $Y\in C.$

(ii) There exists a commutative diagram

$B’arrow^{F’}C’$

$\nu\downarrow \downarrow\pi$

$Barrow^{F}C$

such that $F’$ has a right adjoint, $v$ is full and dense, and $\pi$ satisfies condition (G).
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