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Galois Connections arising in Clone Theory
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Abstract

Galois connections appear in various areas in mathematics and computer science. In this
article a brief review is presented on Galois connections arising in clone theory.
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1 Basic Notions

For a set S let P(S) denote the power set of S. For non-empty sets A and B let ¢ and 9 be
mappings from P(A) to P(B) and P(B) to P(A), respectively:

¢ : P(A) — P(B), ¥ : P(B) — P(A)

A pair (p,9) of mappings is a Galois connection between A and B if  and ¢ satisfy the following
conditions for any X1, X5, X € P(A) and Y1,Y2,Y € P(B).

(1) XiCXys = ¢(X1)2e(Xz)
icYe = M) 24(Ys)
(2) X C (¥op)(X), Y C(pog)(Y)
() (povop)(X)=0(X), @Wopoy)(Y)=y()

Here, notice that these three conditions are not independent in a sense that Condition (3) follows
from Conditions (1) and (2). In fact, the first inclusion in Condition (2) and the first implication
in Condition (1), by letting X; = X and X2 = (¥ 0 p)(X), gives us p(X) 2 (potpop)(X) and the
second inclusion in Condition (2), applied to ¥ = ¢(X), yields ¢(X) 2 (¢ 0 9 0 ¢)(X), resulting
in the equality (poop)(X) = p(X). The second equality in Condition (3) is obtained analogously.

Note: For a non-empty set A let 1 be a mapping from P(A) into itself, i.e., n: P(4) — P(A).
The mapping 7 is a closure operator on A if it satisfies the following three conditions for any Xj,
Xz, Xe P(A)

(1) X1 cXa = n(X1)<n(Xa)
(2) X cn(X)
(3) n(n(X)) =n(X)
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It is well-known that a Galois connection induces closure operators. Namely, for a Galois connection
(p,%) between A and B, the compositions

pop : P(A) — P(A) and o9y : P(B) — P(B)

are closure operators on A and B, respectively.

For a Galois connection (¢, %) between A and B, a subset X € P(A), or Y € P(B), is a Galois
closed set if it satisfies X = (¢ 0 p)(X), or Y = (¢ 0 ¥)(Y), respectively.

For a non-empty set A and n > 0, the set of n-variable functions on 4, i.e., maps from A™ into
A, is denoted by OX’). The set of all functions on A is denoted by Og4, ie., O4 = U;’l":l O‘(An).
For 1 < i < n the projection el on A is a function in (’)X‘) which always takes the value of the
i~th variable. Denote by Ju the set of projections on A. A subset C of Oy is a clone on A if C
contains J4 and is closed under (functional) composition.

For a non-empty set A and m > 0, A™ (= A x --- x A) is the direct product of m copies of A.
A subset p of A™ is called an m-ary relation on A, i.e., p is a relation on A if p C A™ for some
m > 0. Let R‘(‘{") denote the set of all m-ary relations on A and R4 denote the set of all finitary

relations on 4, i.e., Rg = Us—; 'R’,E;").

2 Galois Connections

2.1 Clones and Relations

For a function f € 0‘(4") and a relation p € R‘(Am), we say that f preserves p, or p is an invariant
relation of f, if

flaw, a12, ..., G1n)
f(a21, az2, ..., azn)
f(aml)a'm%"-vamn)

belongs to p whenever *(ay1 a2 ... am1), (@12 @22 ... @m2), ..., *(a1n G2n ... Gmn) all belong
to p. For p € Ry, the set of functions in O4 which preserve p is called the polymorph of p and
denoted by Pol p.

Define mappings

Pol : P(R4) — P(O4) and Inv: P(O4) — P(Ra)
by

Pol(R) {f€0a|(Vp€ER) f preserves p }

and
Inv(F) = {p€Ra|(Vf€F)]fpreservesp}

for all R € P(R4) and F € P(O,4). To rephrase, Pol(R) = [ ,c5 Polp.
Clearly, the pair (Pol, Inv) is a Galois connection between R4 and O 4. This is the best known,
and most typical, Galois connection in clone theory.

We define the following operations on R 4. (Here, by operations we mean set-theoretical oper-
ations.) The operations ¢, 7 and pr are unary operations and the operations N and x are binary
operations.



(1) For pGRS) and p=0, (p=7p=p and prp=70.

Forpe qum) where m > 2,

Cp = {(alaa@a- .. 7a17'¢) €A™ I (am,al, o -’a'm—l) € P},
o = {(a1,02,a3,...,am) € A™| (az,a1,as,...,am) € p},
rp = {(az,...,am) € A™ | (Ja1 € A)(a1,az,...,am) € p}.

(2) For p1,p2 € qum) where m > 0,

mNpe = {(a,...,am) € A™ | (a1,...,am) € p1 and (a1,...,am) € p2}

(3) Forp; € Rf‘{") and p; € ’Rfim/) where m, m’ > 0,
p1Xp2 = {(a1,...,am,b1,...,bp) € Amtm’ | (a1,...,am) € pr and
(b1,...,b,) € p2}.
Moreover, we define the diagonal relation A 4 of arity 2 by
Ag = {(aya)|a€A}.

A subset R of R4 is a co-clone (or, relational clone) on A if R contains A4 and is closed under
all of the operations ¢, 7, pr, N and x.

It is easy to see that Pol(R) is a clone for any R in P(R4) and Inv(F) is a co-clone for any F
in P(O4). The following remarkable result was established independently by several authors (e.g.,

[1]).

Theorem 2.1 Let A be a finite set with |A] > 1.
(1) For any R € P(R4), if R is a co-clone then Inv(Pol(R)) = R.
(2) For any F € P(O,), if F is a clone then Pol(Inv(F)) = F.

In other words, clones and co-clones are Galois closed sets of the Galois connection (Pol, Inv).

2.2 Centralizers and Monoids

For functions f € qun) and g € Oﬁim) we say that f commutes with g, or f and g commute, if the
following holds for every m x n matrix M over A with rows ry,...,7,, and columns c;,...,c,.

fg(ter), .y 9(Pen)) = g(f(r1),..., f(rm))

We write f L g when f commutes with g. The relation L is a symmetric relation on ©4.

As a special case, let m =1 and n > 1. Then, for f € O,(cn) and g € O,(cl), f commutes with g if

f(g(ml)w .o ag(xn)) = g(f(iﬂl, cee amn))

holds for all (z1,...,2,) € A" Let A = (A; F) be an algebra. By definition, g € OS) is an
endomorphism of A if and only if f L g holds for every f € F. Denote by End (A) the set of
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endomorphisms of A, i.e., End (A4) = {g € oﬁ’ |fLg forVfeF}.

For F C O4 the centralizer F* of F is defined by
F* = {geO4 | gL f foral feF}.

For any subset F C @4 the centralizer F* is easily verified to be a clone. When F' = {f} we often
write f* instead of F*. We also write F** for (F*)*.

Two types of Galois connections can be defined with respect to the centralizers. First, let ¢ and
1 be the same mapping ¢ (= ¥) : P(O4) — P(O4) defined by

o(F) (= %(F)) = F"

for all F € P(O4). Then, clearly, the pair (p,v) is a Galois connection between O4 and itself.
Hence the map F — F** is a closure operator on O4.

The second type of a Galois connection relates the centralizers to the monoids. As is well-known,
a non-empty subset M of Oﬂ) is a (transformation) monoid on A if it is closed under composition

and contains the identity id. The whole set Og) is the largest monoid on A and the singleton {id}
is the smallest monoid on A. Denote by M, the set of monoids on A. For a clone C on A the
unary part C(V) of C, ie.,, CV =CnN 0511), is a monoid. In particular, for any centralizer F* the

unary part of F*, i.e., F*N qul), is a monoid.
Let us define the mappings ¢ and ¢

o : POP) — PO4) and % : P(O4) — POY)
by
o(M) = M* for all M e PO
and
$(F) = F'noY)  for all FeP(O).

511) and O4. Moreover, notice

Then the pair (p,%) of mappings is a Galois connection between O
that o(M) is always a clone on A and ¥(F) is always a monoid on A.
For M C 0541), M is a centralizing monoid if M satisfies the equation

M = M*noP.

In other words, a monoid M on A is a centralizing monoid if M satisfies (¢ o p)(M) = M, that is,
a centralizing monoid M is a Galois closed set of a Galois connection (¢, ).

Lemma 2.2 For M C (’)‘(41) the following conditions are equivalent.
(1) M is a centralizing monoid.
(2) For some subset F C 04, M = F* N OS)
(3) For some algebra A = (A; F), M = End(A)



Note that Lemma 2.2 (2) asserts that a centralizing monoid is the unary part of some centralizer.

Concerning the images of monoids under ¢, we have the following theorem ([10]). Let A be a
finite set with |A| > 2. For a monoid M on A, define properties I and II in the following way:

I (Partial separation property)
For all a, b, ¢, d € A, if {a, b} # {c, d} and ¢ # d then M contains f (= f2%) which satisfies

fla) = f(b) and f(c) # f(d).

II (Fixed-point-free property)
For every i € A, M contains g; which satisfies g;(7) # s.

Then we obtain a sufficient condition for ¢(M) to be the least clone.

Theorem 2.3 ([10]) For a monoid M on A, if M satisfies Properties I and II then o(M) (= M*)
is Ja, t.e., the clone of projections.

2.3 Hyperclones and Relations

For a set A let P} denote the set of non-empty subsets of 4, i.e., P4 = P(A4) \ {#}. An n-ary
hyperoperation f on A is a mapping from A" to Pi. Forn > 1 let ’Hff) be the set of n-ary
hyperoperations on A, and H 4 be the set of all hyperoperations on A, ie., Hg = {J n>1 'Hff).
For 1 <4 < n, an i-th n-ary (hyper-) projection € on A is the n-ary hyperoperation defined by
eM®1y .oy @iy vy ) = {x;} for all (z1,...,2,) € A™. For fe ’Hf:) and g1,...,9n € Hf‘,m) where
m, n > 0, the composition f(g1, ..., g») of f and g1, ..., gy is defined in a natural way by

f(gli"',gn)(wl"")wm) = U{f(y17""yn)|yi€g’i(xl7""mm) for ]-sz'sn}-

A hyperclone on A is a set of hyperoperations on A which is closed under composition and contains
all (hyper-) projections.

Galois connections between %4 and R4 have been studied in three different ways. Here we
denote them by (dPol, dInv), (mPol, mInv) and (hPol,hInv). The first one, (dPol, dInv), is
independently due to F. Bérner ([3]) and B. A. Romov ([16]), the second one, (mPol, mInv), due
to T. Drescher and R. Péschel ([8]) and the third one, (hPol, hInv), due to I. G. Rosenberg ([17])
and H. Machida and J. Pantovié ([9]).

Let m > 0 be an integer. Recall that qum) denotes the set of all m-ary relations on A. Let us
denote by P*(RS™) the set of non-empty subsets of R ie., P* R = Pr.cm in the above
notation. 4

Let p € 'R&m) be an m (> 0)-ary relation on A. We define pg, prm, and pj, in P* (Rgm)) as follows:

Pd = {(Al;’Am)IAIXXAmQP}
pm = {(A1,...,An) | YLe{l,...,m} Va € 4,
(A1 x -+ x Apy x{a} x A1 X X Ap)Np#£0}
on = {(AiAm) | (A1 x o x An)Np £ 0}
Let = be either of d, m or h. For a hyperoperation f € H/&n) and a relation p € R&m), f is said
to z-preserve p if
fla1, a12, ..., a1n)

f(a'217 a2y .. a‘2n)

f(amlaam27 e ',amn)
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belongs to p; whenever *(aj; a2; ... Gm1), 2(@12 @22 .. Gm2), +.. , *(@1n G2n ... Gmy) all belong
to p. Let zPol p denote the set of all hyperoperations on A that z-preserve p.
Define mappings

zPol : P(R4) — P(Ha) and  zlnv : P(Ha) — P(Ra)
by
zPol(R) = {f€Hal(Yp€R) fz—preservesp}
and
zInv(F) = {p€eRa|(Vf€F)fa—preservesp}

for all R € P(R4) and F € P(H4). Equivalently, zPol(R) = [ ,cp zPolp.

It is easy to see that, for each z in {d, m, h}, the pair (zPol, zInv) is a Galois connection
between R4 and H4. However, it should be remarked that for any x in {d, m, h}, the invariant
set zInv F is, in general, not a co-clone on A ([6]).

Concerning the inclusion relations among dPol p, mPol p and hPol p we have the following
results ([6]). The first part is an immediate consequence of the inclusion pg C pm C ph.

Theorem 2.4 (a) For any relation p € R4, it holds that dPolp € mPolp C hPolp.

(b) There ezists p1, p2 € Ra which satisfy dPolpy C mPol py and mPol pz C hPolp,.
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