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1. INTRODUCTION AND THE STATEMENT OF MAIN RESULTS

The Riemann zeta-function is defined by

$\zeta(s)=\sum_{n=1}^{\infty}n^{-s} (s\in \mathbb{C};\Re s>1)$

which can be continued meromorphically to the whole complex plane with a simple
pole at $s=1$ , and has the following functional equation:

$\pi^{-s/2}\Gamma(\frac{S}{2})\zeta(s)=\pi^{-(1-s)/2}\Gamma(\frac{1-s}{2})\zeta(1-s)$ .

It is known that any non-trivial zero lies in the open strip $\{s\in \mathbb{C}|0<\Re s<1\}$

(the critical strip”), and the behaviour of $\zeta(s)$ in this strip is very important in
number theory. Moreover, in view of the functional equation, in some sense it
is enough to study the behaviour of $\zeta(s)$ in the right-half of this strip, that is
$\{s\in \mathbb{C}|1/2\leq\Re s<1\}$ . Numerous researches have been done on the behaviour of
$\zeta(s)$ in this region. Among them, one of the most famous theorems is ae follows:

The mean value theorem for $\zeta(s)$ For any $T\geq 2$ , we have

$\int_{2}^{T}|\zeta(\sigma+it)|^{2}dt=\zeta(2\sigma)T+(2\pi)_{2-2\sigma}^{2\sigma-1}T^{2-2\sigma}\zeta(2-2\sigma)+(Error$ term$)$ (1.1)

for $1/2<\sigma<1$ , and

$\int_{2}^{T}|\zeta(\frac{1}{2}+it)|^{2}dt=T\log T+(2\gamma-1-\log 2\pi)T+($Error term$)$ , (1.2)

where $\gamma$ is Euler’s constant.

Formula (1.2) with the error term $o(\tau^{3/4+\epsilon})$ is due to Littlewood. Theorem 7.4 of
Titchmarsh [12] gives a proof with the improved error term $o(\tau^{1/2+\epsilon})$ , and this error
estimate has further been improved by many people included Balasubramanian,
Huxley and so on. Formula (1.1) was first obtained by Ingham [3] and later improved
by the first author, Meurman, etc.
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These mean value formulas play a fundamental technical role in the analytic theory
of $\zeta(s)$ . Moreover, these formulas themselves suggest the following two important
observations.

(a) First, it is trivial that $\zeta(\sigma+it)$ is bounded with respect to $t$ in the region of
absolute convergence $\sigma>1$ , but (1.1) and (1.2) suggest that $\zeta(\sigma+it)$ seems not
so large in the strip $1/2\leq\sigma\leq 1$ , too. In fact, the well-known Lindel\"of hypothesis
predicts that

$\zeta(\sigma+it)=O(t^{\epsilon}) (\frac{1}{2}\leq\sigma<1)$ (1.3)

for any $\epsilon>0.$ $(For \sigma=1, even a$ stronger estimate $has$ already $been$ known. $)$

Formulas (1.1) and (1.2) support this hypothesis.
(b) The second observation is that the coefficient $\zeta(2\sigma)$ on the right-hand side of

(1.1) tends to infinity as $\sigmaarrow 1/2$ , hence the form of the formula should be changed
at $\sigma=1/2$ , which is in fact embodied by (1.2). This phenomenon suggests that the
line $\sigma=1/2$ is “critical” in the theory of $\zeta(s)$ . In fact, the special feature of this
“critical line” (especially in connection with the Riemann hypothesis) is well-known.

As a double series analogue of $\zeta(s)$ , the Euler double zeta-function is defined by

$\zeta_{2}(s_{1}, s_{2})=\sum_{m=1}^{\infty}\frac{1}{m^{s1}}\sum_{n=1}^{\infty}\frac{1}{(m+n)^{s_{2}}}=\sum_{k=2}^{\infty}(\sum_{m=1}^{k-1}\frac{1}{m^{s_{1}}})\frac{1}{k^{s}2}$ (1.4)

which is absolutely convergent for $s_{1},$ $s_{2}\in \mathbb{C}$ with $\Re s_{2}>1$ and $\Re(s_{1}+s_{2})>2$

(Theorem 3 in [8]), and can be continued meromorphically to $\mathbb{C}^{2}$ . The singularities
are $s_{2}=1$ and $s_{1}+s_{2}=2,1,0,$ $-2,$ $-4,$ $\ldots$ (Theorem 1 in [1]). Euler himself
considered the behaviour of this function when $s_{1},$ $s_{2}$ are positive integers. In fact,
its values at positive integers are often called the double zeta values or the Euler-
Zagier double sums. It was Atkinson [2] who first studied (1.4) from the analytic
viewpoint, and he proved the analytic continuation of it. As for the recent studies
on the analytic side of (1.4), for example, upper-bound estimates were discussed
in [4], [5], [6], and functional equations were discovered in [9], [7].

In this note we announce certain mean square formulas for (1.4), with a brief
sketch of the proof. For the details, see [10].

Let

$\zeta_{2}^{[2]}(s_{1}, s_{2})=\sum_{k=2}^{\infty}|\sum_{m=1}^{k-1}\frac{1}{m^{s1}}|^{2}\frac{1}{k^{s_{2}}}$ . (1.5)

Since the inner sum is $O(1)$ $(if \Re s_{1}>1),$ $O(\log k)$ $(if \Re s_{1}=1)$ , or $O(k^{1-\Re s_{1}})$ (if
$\Re s_{1}<1)$ , the series (1.5) is convergent when $\Re s_{1}\geq 1$ and $\Re s_{2}>1$ , or when $\Re s_{1}<1$

and $2\Re s_{1}+\Re s_{2}>3.$

Hereafter we write $s_{0}$ and $s$ instead of $s_{1}$ and $s_{2}$ , respectively, and consider the
mean square with respect to $s$ , while $s_{0}$ is to be fixed.

Theorem 1. For $s_{0}=\sigma_{0}+it_{0}\in \mathbb{C}$ with $\sigma_{0}>1$ and $s=\sigma+it\in \mathbb{C}$ with $\sigma>1,$

$t\geq 2$ , we have

$\int_{2}^{T}|\zeta_{2}(s_{0}, s)|^{2}dt=\zeta_{2}^{[2]}(s_{0},2\sigma)T+O(1) (Tarrow\infty)$ . (1.6)
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Theorem 2. For $s_{0}=\sigma_{0}+it_{0}\in \mathbb{C}$ with $\sigma_{0}>1$ and $s=\sigma+it\in \mathbb{C}$ with $\frac{1}{2}<\sigma\leq 1,$

$t\geq 2$ and $\sigma_{0}+\sigma>2$ , we have

$\int_{2}^{T}|\zeta_{2}(s_{0}, s)|^{2}dt=\zeta_{2}^{[2]}(s_{0},2\sigma)T+O(T^{2-2\sigma}\log T)+O(T^{1/2})$ . (1.7)

The most important, and technically the most difficult, result is the following
theorem which describes the situation under the condition $\frac{3}{2}<\sigma_{0}+\sigma\leq 2.$

Theorem 3. Let $s_{0}=\sigma_{0}+it_{0}\in \mathbb{C}$ with $\frac{1}{2}<\sigma_{0}<\frac{3}{2}$ and $s=\sigma+it\in \mathbb{C}$ with
$\frac{1}{2}<\sigma\leq 1,$ $t\geq 2$ and $\frac{3}{2}<\sigma_{0}+\sigma\leq 2$ . Assume that when $t$ moves from 2 to $T$ , the
point $(s_{0}, s)$ does not encounter the hyperplane $s_{0}+s=2$ (which is a singular locus
of $\zeta_{2})$ . Then

$\int_{2}^{T}|\zeta_{2}(s_{0}, s)|^{2}dt=\zeta_{2}^{[2]}(s_{0},2\sigma)T$

$+\{\begin{array}{ll}O(T^{4-2\sigma 0-2\sigma}\log T)+O(\tau^{1/2}) (\frac{1}{2}<\sigma_{0}<1, \frac{1}{2}<\sigma<1)O(T^{2-2\sigma 0}(\log T)^{2})+O(\tau^{1/2}) (\frac{1}{2}<\sigma_{0}<1, \sigma=1) (1.8)O(T^{2-2\sigma}(\log T)^{3})+O(\tau^{1/2}) (\sigma_{0}=1, \frac{1}{2}<\sigma<1)O(\tau^{1/2}) (\sigma_{0}=1, \sigma=1)O(T^{2-2\sigma}\log T)+O(\tau^{1/2}) (1<\sigma_{0}<\frac{3}{2}, \frac{1}{2}<\sigma<1) .\end{array}$

Remark 4. In Theorems 2 and 3, the error terms $o(\tau^{1/2})$ are coming from the simple
application of the Cauchy-Schwarz inequality. It is plausible to expect that we can
reduce these error terms by more elaborate analysis.

Our theorems in this note may be regarded as double analogues of (1.1). Since
the coefficient $\zeta_{2}^{[2]}(s_{0},2\sigma)$ tends to infinity as $\sigma_{0}+\sigmaarrow 3/2$ , it is natural to raise,
analogously to the above (a) and (b), the following two conjectures:

(i) (a double analogue of the Lindel\"of hypothesis) For any $\epsilon>0,$

$\zeta_{2}(s_{0}, s)=O(t^{\epsilon})$ (1.9)

when $(s_{0}, s)$ (which is not in the domain of absolute convergence) satisfies $\sigma_{0}>1/2,$

$\sigma>1/2,$ $t\geq 2,$ $\sigma_{0}+\sigma\geq 3/2$ and $s_{0}+s\neq 2$ ;
(ii) (the criticality of $\sigma_{0}+\sigma=3/2$ ) When $\sigma_{0}+\sigma=3/2$ , the form of the main term

of the mean square formula would not be $CT$ (with a constant $C$ ; most probably,
some $\log$-factor would appear).

Remark 5. It is not easy to find the “correct” double analogue of the Lindel\"of hy-
pothesis. Nakamura and Pa\’{n}kowski [11] raised the conjecture

$\zeta_{2}(1/2+it, 1/2+it)=O(t^{\epsilon})$ (1.10)

(actually they stated their conjecture for more general multiple case), and gave a
certain result (their Proposition 6.3) which supports the conjecture. However, the
value $\zeta_{2}(1/2+it_{1},1/2+it_{2})$ is, if $t_{1}\neq t_{2}$ , not always small. In fact, Corollary 1 of
Kiuchi, Tanigawa and Zhai [6] describes the situation when $\zeta_{2}(s_{1}, s_{2})$ is not small.
For example, if $t_{2}\ll t_{1}^{1/6-\epsilon}$ , then

$\zeta_{2}(1/2+it_{1},1/2+it_{2})=\Omega(t_{1}^{1/3+\epsilon})$ .
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Our theorems imply that our conjecture (1.9) is true in mean. That is, (1.9) is
reasonable in view of our theorems.

Remark 6. The above conjecture (ii) suggests that $\sigma_{0}+\sigma=3/2$ might be the double
analogue of the critical line of the Riemann zeta-function $\Re s=1/2$ . On the other
hand, in view of the result of Nakamura and Pa\’{n}kowski mentioned above, we see
that another candidate of the double analogue of the critical line is $\sigma_{0}+\sigma=1$ . At
present it is not clear which is more plausible.

Remark 7. We cannot expect the analogue of the Riemann hypothesis on the location
of zeros. In fact, Theorem 5.1 of Nakamura and Pa\’{n}kowski [11] asserts (in the double
zeta case) that for any $1/2<\sigma_{1}<\sigma_{2}<1,$ $\zeta_{2}(s, s)$ has $\wedge\vee T$ non-trivial zeros in the
rectangle $\sigma_{1}<\sigma<\sigma_{2},0<t<T.$

2. SKETCHES OF THE PROOFS OF THEOREMS 1 AND 2

In this section, we explain the proofs of Theorems 1 and 2. First we give a sketch
of the proof of Theorem 1.

Let $s_{0}=\sigma_{0}+it_{0}\in \mathbb{C}$ with $\sigma_{0}>1$ and $s=\sigma+it\in \mathbb{C}$ with $\sigma>1$ . Using the
definition (1.4), we can see that

$\int_{2}^{T}|\zeta_{2}(s_{0}, s)|^{2}dt=\zeta_{2}^{[2]}(s_{0},2\sigma)(T-2)$

$+$ $\sum$
$m^{1}m_{1}mnn \geq 1\dotplus_{1\neq 2}n^{2,1,2}m2+n\frac{1}{m_{1}^{s0}m_{2}^{\overline{s0}}(m_{1}+n_{1})^{\sigma}(m_{2}+n_{2})^{\sigma}}\int_{2}^{T}(\frac{m_{2}+n_{2}}{m_{1}+n_{1}})^{it}dt.$

Separating the second term on the right-hand side into two parts according to the
cases $m_{1}+n_{1}<m_{2}+n_{2}\leq 2(m_{1}+n_{1})$ and $m_{2}+n_{2}>2(m_{1}+n_{1})$ , and argue similarly
to the proof of [12, Theorem 7.2], we can show that each part has the order $O(1)$

when $\sigma_{0}>1$ and $\sigma>1$ . This implies Theorem 1.
Next we proceed to the proof of Theorem 2. In order to give its proof, it is

necessary to prepare the double version of the following well-known result given by
Hardy and Littlewood (see [12, Theorem 4.11]): Let $\sigma_{1}>0,$ $x\geq 1$ and $C>1.$
Suppose $s=\sigma+it\in \mathbb{C}$ with $\sigma\geq\sigma_{1}$ and $|t|\leq 2\pi x/C$ . Then

$\zeta(s)=\sum_{1\leq n\leq x}\frac{1}{n^{s}}-\frac{x^{1-s}}{1-s}+O(x^{-\sigma}) (xarrow\infty)$ . (2.1)

The double series analogue of (2.1) is as follows.

Theorem 8. Let $s_{0}=\sigma_{0}+it_{0}\in \mathbb{C},$ $s=\sigma+it\in \mathbb{C}\backslash \{1\},$ $x\geq 1$ and $C>1$ . Suppose
$\sigma>\max(O, 2-\sigma_{0})$ and $|t|\leq 2\pi x/C$ . Then

$\zeta_{2}(s_{0}, s)=\sum_{m=1}^{\infty}\sum_{1\leq n\leq x}\frac{1}{m^{s0}(m+n)^{s}}-\frac{1}{1-s}\sum_{m=1}^{\infty}\frac{1}{m^{s0}(m+x)^{s-1}}$

$+\{\begin{array}{ll}O(x^{-\sigma}) (\sigma_{0}>1)O(x^{-\sigma}\log x) (\sigma_{0}=1)O(x^{1-\sigma-\sigma 0}) (\sigma_{0}<1)\end{array}$

(2.2)

$(xarrow\infty)$ .
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In order to prove this theorem, we need the following lemma.

Lemma 9 ([12] Lemma 4.10). Let $f(x)$ be a real function with a continuous and
steadily decreasing derivative $f’(x)$ in $(a, b)$ , and let $f’(b)=\alpha,$ $f’(a)=\beta$ . Let $g(x)$

be a real positive decreasing function with a continuous derivative $g’(x)$ , satisfying
that $|g’(x)|$ is steadily decreasing. Then

$a<n \leq b\nu\in \mathbb{Z}\sum g(n)e^{2\pi if(n)}=\sum_{\alpha-\eta<\nu<\beta+\eta}\int_{a}^{b}g(x)e^{2\pi i(f(x)-\nu x)}dx$

(2.3)

$+O(g(a)\log(\beta-\alpha+2))+O(|g’(a)|)$

for an arbitrary $\eta\in(0,1)$ .
Using this lemma, we can give a proof of Theorem 8,

A sketch of the proof of Theorem 8. First we assume that $\sigma_{0}>1$ and $\sigma>1$ . Then,
using the Euler-Maclaurin formula (see [12, Equation (2.1.2)]), we have

$\sum_{m=1}^{\infty}\frac{1}{m^{s0}}\sum_{n=1}^{\infty}\frac{1}{(m+n)^{s}}$

$= \sum_{m=1}^{\infty}\frac{1}{m^{s_{0}}}\sum_{n=1}^{N}\frac{1}{(m+n)^{s}}-\sum_{m=1}^{\infty}\frac{(m+N)^{1-s}}{m^{s_{0}}(1-s)}$

$-s \sum_{m=1}^{\infty}\frac{1}{m^{s_{0}}}\int_{m+N}^{\infty}\frac{y-[y]-1/2}{y^{s+1}}dy-\frac{1}{2}\sum_{m=1}^{\infty}\frac{1}{m^{s0}(m+N)^{s}}$

$=A_{1}-A_{2}-A_{3}-A_{4}$ (say), (2.4)
where we can check that the right-hand side can be continued to the desired region.
In fact, the terms $A_{1}$ and $A_{4}$ are absolutely convergent in the region $\sigma_{0}+\sigma>1$ , and
in this region

$A_{4}=O( \sum_{m=1}^{\infty}\frac{1}{m^{\sigma 0}(m+N)^{\sigma}})$ (2.5)

The integral in $A_{3}$ is absolutely convergent if $\sigma>0$ , and is $O(\sigma^{-1}(m+N)^{-\sigma})$ .
Therefore $A_{3}$ can be continued to the region $\sigma>0,$ $\sigma_{0}+\sigma>1$ and

$A_{3}=O( \sum_{m=1}^{\infty}\frac{|s|/\sigma}{m^{\sigma 0}(m+N)^{\sigma}})$ (2.6)

there. The term $A_{2}$ is absolutely convergent for $\sigma_{0}+\sigma>2,$ $s\neq 1.$

Hereafter we assume $N>x$ and fix $m\in \mathbb{N}$ . For $\sigma>0$ and a small $\eta$ , we obtain
by Lemma 9 that

$\sum_{x<n\leq N}\frac{1}{(m+n)^{s}}=\sum_{x<n\leq N}\frac{e^{-it\log(m+n)}}{(m+n)^{\sigma}}=\int_{x}^{N}\frac{1}{(m+u)^{s}}du+O((m+x)^{-\sigma})$

$= \frac{(m+N)^{1-s}-(m+x)^{1-s}}{1-s}+O((m+x)^{-\sigma})$ . (2.7)
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In other words, denoting the above error term by $E(s;x,m, N)$ , we find that this
function is entire in $s$ (the point $s=1$ is a removable singularity) and satisfies

$E(s;x, m, N)=O((m+x)^{-\sigma})$ (2.8)

uniformly in $N$ in the region $\sigma>0$ . Therefore we have

$\zeta_{2}(s_{0}, s)=\sum_{m=1}^{\infty}\sum_{n\leq x}\frac{1}{m^{so}(m+n)^{s}}-\frac{1}{1-s}\sum_{m=1}^{\infty}\frac{1}{m^{s0}(m+x)^{s-1}}$

$+ \sum_{m=1}^{\infty}\frac{E(s;x,m,N)}{m^{so}}-A_{3}-A_{4}$ (2.9)

in the region $\sigma>\max(0,2-\sigma_{0}),$ $s\neq 1$ . Letting $Narrow\infty$ , we obtain Theorem 8. $\square$

Now we start the proof of Theorem 2.

A sketch of the proof of Theorem 2. Let $s_{0}=\sigma_{0}+it_{0}\in \mathbb{C}$ with $\sigma_{0}>1$ and $s=$
$\sigma+it\in \mathbb{C}\backslash \{1\}$ with $1/2<\sigma\leq 1,$ $\sigma_{0}+\sigma>2$ . Setting $C=2\pi$ and $x=t$ in (2.2),
we have

$\zeta_{2}(s_{0}, s)=\sum_{m=1}^{\infty}\sum_{1\leq n\leq t}\frac{1}{m^{s_{0}}(m+n)^{s}}+O(t^{-\sigma}) (tarrow\infty)$. (2.10)

We denote the first term on the right-hand side by $\Sigma_{1}(s_{0}, s)$ . Let $M(n_{1}, n_{2})=$

$\max\{n_{1}, n_{2},2\}$ . Then

$\int_{2}^{T}|\Sigma_{1}(s_{0}, s)|^{2}dt$

$= \sum_{m_{1}\geq 1}\sum_{m_{2}\geq 1}\frac{1}{m_{1}^{s0}m_{2}^{\overline{s0}}}\sum_{n_{1}\leq Tn} \sum_{2\leq T,m+n=m+n}\frac{1}{(m_{1}+n_{1})^{2\sigma}}(T-M(n_{1}, n_{2}))$

$+ \sum_{1}\sum\frac{1}{m_{1}^{s0}m_{2}^{\overline{s_{0}}}}\sum_{1m_{1}\geq m_{2}\geq 1n\leq Tn_{2\leq\tau_{2+n_{2}}} ,m}\sum_{1+n_{1}\neq m}\frac{1}{(m_{1}+n_{1})^{\sigma}(m_{2}+n_{2})^{\sigma}}$

$e^{iT\log((n)/(n))}m2+2m_{1+1}-e^{iM(n_{1},n_{2})\log((m_{2+n)/(m_{1}+n1))}}2$

$\cross\overline{i\log((m_{2}+n_{2})/(m_{1}+n_{1}))}$
. (2.11)

We denote the first and the second term on the right-hand side by $S_{1}T-S_{2}$ and $S_{3},$

respectively. Then we can see that
$S_{1}T=\zeta_{2}^{[2]}(s_{0},2\sigma)T+O(T^{2-2\sigma})$ , (2.12)

and

$S_{2}\ll\{\begin{array}{ll}T^{2-2\sigma} (1/2<\sigma<1)\log T (\sigma=1) ,\end{array}$

because $\sigma_{0}>1$ . Also

$S_{3} \ll\sum\frac{1}{(m_{1}m_{2})^{\sigma 0}}\sum_{1m_{1}+n<m+n1}\frac{1}{(m_{1}+n_{1})^{\sigma}(m_{2}+n_{2})^{\sigma}}\frac{1}{\log\frac{m_{2}+n_{2}}{m1+n1}}m_{1},m_{2}\geq 11,2\leq\tau_{2(m+n)}$
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$+ \sum_{2}\frac{1}{(m_{1}m_{2})^{\sigma 0}}\sum_{1m2+n_{2>}^{1,2\leq\tau}+n_{1})}\frac{1}{(m_{1}+n_{1})^{\sigma}(m_{2}+n_{2})^{\sigma}}\frac{1}{\log\frac{m_{2}+n2}{m1+n_{1}}}m_{1},m\geq 1nn_{2(m}.$

We denote the first and the second term by $W_{1}$ and $W_{2}$ , respectively. Then we have

$W_{1}\ll\{\begin{array}{ll}T^{2-2\sigma}\log T (1/2<\sigma<1)(\log T)^{2} (\sigma=1) ,\end{array}$

$W_{2}\ll\{\begin{array}{ll}T^{2-2\sigma} (1/2<\sigma<1)(\log T)^{2} (\sigma=1) .\end{array}$

Combining these results, we obtain

$\int_{2}^{T}|\zeta_{2}(s_{0}, s)|^{2}dt$

$= \int_{2}^{T}|\Sigma_{1}(s_{0}, s)+O(t^{-\sigma})|^{2}dt$

$= \int_{2}^{T}|\Sigma_{1}(s_{0}, s)|^{2}dt+O(\int_{2}^{T}|\Sigma_{1}(s_{0}, s)|t^{-\sigma}dt)+O(\int_{2}^{T}t^{-2\sigma}dt)$ . (2.13)

By the Cauchy-Schwarz inequality, we can obtain Theorem 2. 口

3. A SKETCH OF THE PROOF OF THEOREM 3
In the previous section, we gave the proof of Theorem 2 by use of (2.10) which

comes from Theorem 8. However Theorem 8 holds under the conditions $\sigma_{0}>0$ and
$\sigma_{0}+\sigma>2$ . Hence we cannot use it for $3/2<\sigma_{0}+\sigma\leq 2$ . In order to prove a mean
value result in the latter case, we have to prepare another approximate formula for
$\zeta_{2}(s_{0}, s)$ .

Theorem 10. Let $s_{0}=\sigma_{0}+it_{0}\in \mathbb{C}$ with $0<\sigma_{0}<3/2$ and $s=\sigma+it\in \mathbb{C}$ with
$\sigma>1/2,$ $\sigma_{0}+\sigma>1,$ $s\neq 1$ , and $s_{0}+s\neq 2$ . Then

$\zeta_{2}(s_{0}, s)=\sum_{m=1}^{\infty}\sum_{n\leq t}\frac{1}{m^{s_{0}}(m+n)^{s}}+\{\begin{array}{ll}O(t^{1-\sigma 0-\sigma}) (\sigma_{0}<1)O(t^{-\sigma}\log t) (\sigma_{0}=1)O(t^{-\sigma}) (\sigma_{0}>1) .\end{array}$ (3.1)

In order to prove this theorem, we begin with (2.9) with $x=t$ . As was discussed
in the proof of Theorem 8, all but the second term on the right-hand side of (2.9)
are convergent in $\sigma>0,$ $\sigma_{0}+\sigma>1$ , so the remaining task is to study the second
term.

First we assume $\sigma_{0}+\sigma>2,$ $s\neq 1$ . Then by the Euler-Maclaurin formula we have

$\frac{1}{1-s}\sum_{m=1}^{\infty}\frac{1}{m^{s0}(m+t)^{s-1}}$

$= \frac{1}{1-s}\int_{1}^{\infty}\frac{dy}{y^{s0}t^{s-1}(1+tu)^{s-1}}$
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$+ \frac{1}{1-s}\int_{1}^{\infty}(y-[y]-\frac{1}{2})(-\frac{S_{0}}{y^{so+1}(y+t)^{s-1}}+\frac{1-s}{y^{s_{0}}(y+t)^{s}})dy$

$+ \frac{1}{2(1-s)}(1+t)^{1-s}$

$=g(s_{0}, s)+Y_{2}+Y_{3}$ (say). (3.2)

We can find that $Y_{2}+Y_{3}$ can be continued to the region $\sigma_{0}>0,$ $\sigma_{0}+\sigma>1$ and
$s\neq 1$ , and in this region satisfies

$Y_{2}+Y_{3}=\{\begin{array}{ll}O(t^{1-\sigma 0-\sigma}) (0<\sigma_{0}<1;\sigma_{0}+\sigma>1)O(t^{-\sigma}\log t) (\sigma_{0}=1;\sigma_{0}+\sigma>1)O(t^{-\sigma}) (\sigma_{0}>1;\sigma_{0}+\sigma>1) .\end{array}$ (3.3)

As for $g(s_{0}, s)$ , we use the classical Mellin-Barnes integral formula

$(1+ \lambda)^{-s}=\frac{1}{2\pi i}\int_{(c)}\frac{\Gamma(s+z)\Gamma(-z)}{\Gamma(s)}\lambda^{z}dz$ , (3.4)

where $s,$
$\lambda$ are complex numbers with $\sigma=\Re s>0,$ $|\arg\lambda|<\pi,$ $\lambda\neq 0,$ $c$ is real with

$-\sigma<c<0$ , and the path $(c)$ of integration is the vertical line $\Re z=c$ . We apply
(3.4) with $\lambda=y/t$ to $g(s_{0}, s)$ and shift the path of integration suitably to obtain
that $g(s_{0}, s)$ can be continued meromorphically to the region $\sigma_{0}<3/2$ and $\sigma>1/2,$

and satisfies

$g(s_{0}, s)=\{\begin{array}{ll}O(t^{-\sigma}) (s_{0}\neq 1)O(t^{-\sigma}\log t) (\mathcal{S}_{0}=1)\end{array}$

in this region, except for the singularities
$s=1, s_{0}+s=2,1,0, -1, -2, -3, -4, \ldots$ . (3.5)

From these results, we find that the right-hand side of (3.2) can be continued to the
region $\sigma_{0}<3/2,$ $\sigma>1/2,$ $\sigma_{0}+\sigma>1$ , and satisfies the estimates proved above. On
the other hand, the last three terms on the right-hand side of (2.9) (with $x=t$) are
estimated by (2.5), (2.6), and (2.8), respectively. Thus we obtain Theorem 10.

Based on these results, we finally give the proof of Theorem 3.

A sketch of the proof of Theorem 3. We let $s_{0}\in \mathbb{C}$ with $1/2<\sigma_{0}<3/2$ and $s\in \mathbb{C}$

with $1/2<\sigma\leq 1$ with $3/2<\sigma_{0}+\sigma\leq 2$ . We further assume that $s_{0}+s\neq 2.$

Formula (2.11) holds also in this region, whose right-hand side is $S_{1}T-S_{2}+S_{3}.$

Estimating $S_{1}$ and $S_{2}$ , we can obtain

$S_{1}=\zeta_{2}^{[2]}(s_{0},2\sigma)+\{\begin{array}{ll}O(T^{3-2\sigma-2\sigma 0}) (\frac{1}{2}<\sigma_{0}<1)O(T^{1-2\sigma}(\log T)^{2}) (\sigma_{0}=1)O(T^{1-2\sigma}) (1<\sigma_{0}<\frac{3}{2}) ,\end{array}$ (3.6)

$S_{2}=\{\begin{array}{ll}O(T^{4-2\sigma 0-2\sigma}) (\frac{1}{2}<\sigma_{0}<1, \frac{1}{2}<\sigma\leq 1)O(T^{2-2\sigma}(\log T)^{2}) (\sigma_{0}=1, \frac{1}{2}<\sigma<1)O((\log T)^{3}) (\sigma_{0}=1, \sigma=1)O(T^{2-2\sigma}) (1<\sigma_{0}<\frac{3}{2}, \frac{1}{2}<\sigma<1) ,\end{array}$ (3.7)
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where we have to note that $3/2<\sigma_{0}+\sigma<2$ in the first case, and $\sigma\neq 1$ (because
if $\sigma=1$ then $\sigma_{0}+\sigma>2$ ) in the fourth case.

As for $S_{3}$ , it is necessary to estimate it more carefully. Similarly to the argument
in the previous section, we have

$S_{3} \ll\sum_{11,2}\frac{1}{(m_{1}m_{2})^{\sigma 0}}\sum_{1}mm\geq n_{1},n_{2\leq\tau_{2(m+n_{1})}}m_{1}+n<m+n\frac{1}{(m_{1}+n_{1})^{\sigma}(m_{2}+n_{2})^{\sigma}}\frac{1}{\log\frac{m2+n_{2}}{m1+n_{1}}}$

$+ \sum_{2}\frac{1}{(m_{1}m_{2})^{\sigma 0}}\sum_{1m2+n>2(m+n_{1})}\frac{11}{(m_{1}+n_{1})^{\sigma}(m_{2}+n_{2})^{\sigma}\log\frac{m2+n_{2}}{m_{1}+n_{1}}}mm\geq1n_{2}n,$

which we denote by $W_{1}+W_{2}$ . We can estimate

$W_{2} \ll\sum_{1,2}\frac{1}{(m_{1}m_{2})^{\sigma_{0}}}\sum_{1mm\geq 1n,n2\leq T,m+n>2(m+n)}\frac{1}{(m_{1}+n_{1})^{\sigma}(m_{2}+n_{2})^{\sigma}}$

$=mn_{1\leq m}^{1\geq 1} \sum_{\tau}\frac{1}{m_{1}^{\sigma 0}(m_{1}+n_{1})^{\sigma}}\sum_{1}\frac{1}{k^{\sigma}}\sum_{2k>2(m_{1}+n)m\geq 1’ n_{2\leq\tau} ,2+n_{2}=k}\frac{1}{m_{2}^{\sigma 0}}$

$= \sum_{T}+\sum_{m_{1\leq T}m\leq T ,n_{1}\leq n}=W_{21}+W_{22},$

say, and we can estimate

$W_{22}\ll T^{4-2\sigma 0-2\sigma}$ , (3.8)

$W_{21}\ll\{\begin{array}{ll}T^{4-2\sigma 0-2\sigma} (\frac{1}{2}<\sigma_{0}<1, \frac{1}{2}<\sigma<1)T^{2-2\sigma 0}\log T (\frac{1}{2}<\sigma_{0}<1, \sigma=1)T^{2-2\sigma}(\log T)^{2} (\sigma_{0}=1, \frac{1}{2}<\sigma<1)(\log T)^{4} (\sigma_{0}=1, \sigma=1)T^{2-2\sigma} (1<\sigma_{0}<\frac{3}{2}, \frac{1}{2}<\sigma<1) .\end{array}$ (3.9)

Similarly we divide $W_{1}$ into two parts and estimate each part separately. Conse-
quently we obtain

$S_{3}=W_{1}+W_{2}$

$\ll\{\begin{array}{ll}T^{4-2\sigma 0-2\sigma}\log T (\frac{1}{2}<\sigma_{0}<1, \frac{1}{2}<\sigma<1)T^{2-2\sigma 0}(\log T)^{2} (\frac{1}{2}<\sigma_{0}<1, \sigma=1)T^{2-2\sigma}(\log T)^{3} (\sigma_{0}=1, \frac{1}{2}<\sigma<1)(\log T)^{4} (\sigma_{0}=1, \sigma=1)T^{2-2\sigma}\log T (1<\sigma_{0}<\frac{3}{2}, \frac{1}{2}<\sigma<1) .\end{array}$ (3.10)

Thus, combining (3.6), (3.7), (3.10) with Theorem 10, and using the Cauchy-Schwarz
inequality, we obtain Theorem 3. 口
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