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1 Introduction
Let $b$ be an integer greater than 1. Borel [2] proved that almost all positive
real numbers are normal in base-b. However, it is generally difficult to show the
normality of a given positive real number $\xi$ . In particular, the base-b expan-
sions of algebraic irrational numbers are mysterious. In this paper, we study
the normality of algebraic irrational numbers. Borel [3] conjectured that all
algebraic irrational numbers are normal in each integral base-b. The conjecture
is still an open problem. There is no known example of base-b and positive
irrational $\xi$ such that the normality of $\xi$ in base-b was proven. There is also no
known counterexample of Borel’s conjecture. In particular, it is still not known
whether the digit 1 appears infinitely many times in the decimal expansion of
$\sqrt{2}.$

If Borel’s conjecture is true, then all algebraic irrational numbers are simply
normal in any integral base-b, namely, any letter from the alphabet $\{0,1,$

$\ldots,$
$b-$

$1\}$ appears with average frequency tending to $1/b$ . Hence, it is widely believed
that if a positive irrational number $\xi$ has a low density of nonzero digits in
base-b expansion, then $\xi$ is a transcendental number.

In Section 2 we investigate the digits of the base-b expansions of algebraic ir-
rational numbers. In particular, giving lower bounds for the numbers of nonzero
digits of algebraic irrational numbers, we introduce criteria for transcendence
of real numbers. In Section 3 we review $\beta$-expansions of real numbers, which
gives generalizations of base-b expansions of real numbers. In Section 4 we give
main results on the digits of $\beta$-expansions of algebraic numbers. Note that if
$\beta$ is a general real number, then the $\beta$-expansions of rational numbers are also
mysterious. Using the main results, we obtain criteria for transcendence whose
$\beta$-expansion has a low density of nonzero digits. In the last of Section 4 we also
introduce algebraic independence of real numbers with low density of nonzero
digits. In Section 5 we give a sketch of the proof of the main results. Let $x$ be
a real number. We write the integral and fractional parts of $x$ by $\lfloor x\rfloor$ and $\{x\},$

respectively. Moreover, We use the Landau symbols $0,$ $O$ and the Vinogradov
symbols $\gg,$ $\ll$ with their regular meanings.
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2 Base-b expansions of algebraic irrational num-
bers

Let $b$ be an integer greater than 1 and $\xi$ a positive real number. We write the
base-b expansion of $\xi$ by

$\xi=\lfloor\xi\rfloor+\sum_{n=1}^{\infty}t_{n}(b;\xi)b^{-n},$

where $t_{n}(b;\xi)\in\{0,1\ldots, b-1\}$ for any $n\in \mathbb{Z}^{+}$ and $t_{n}(b;\xi)\leq b-2$ for infinitely
many $n’ s$ . For simphcity, put $t_{0}(b;\xi)$ $:=\lfloor\xi\rfloor$ . In this section, we study the
number of nonzero digits $\nu b(\xi;R)$ and the number of digit changes $\gamma_{b}(\xi;R)$

defined by

$\nu b(\xi;R)$ $:=$ Card$\{n\in \mathbb{Z}^{+}|n\leq R, t_{n}(b;\xi)\neq 0\},$

$\gamma_{b}(\xi;R)$ $:=$ Card$\{n\in \mathbb{Z}^{+}|n\leq R, t_{n}(b;\xi)\neq t_{n+1}(b;\xi)\},$

respectively, where $R\geq 1$ is a real number and Card denotes the cardinality.
The function $\gamma_{b}(\xi;R)$ was introduced by Bugeaud [5]. Observe that

$\nu b(\xi;R)\geq\frac{1}{2}\gamma_{b}(\xi;R)+O(1)$ . (2.1)

Various mathematicians have studied the digits of algebraic irrational numbers,
using Diophantine approximation methods. We recall Ridout’s theorem [14].
For any prime number $l$ , we denote by $|\cdot|\iota$ the $l$-adic absolute value, normalized
such that $|l|\iota=l^{-1}$ . Let $S_{1}$ and $S_{2}$ be disjoint finite sets of prime numbers and
$\xi$ a real algebraic number. Then, for any positive real number $e$ , there are only
finitely many rational numbers $p/q$ with $q\geq 1$ such that

$| \xi-\frac{p}{q}|\cdot\prod_{l\in S_{1}}|p|\iota\cdot\prod_{1\in S_{2}}|q|\iota<\frac{1}{q^{2+\epsilon}}$. (2.2)

Let $\xi$ be an algebraic irrational number. Bugeaud [5] pointed out that the
Ridout’s theorem implies

$\lim_{Rarrow\infty}\frac{\nu b(\xi;R)}{\log R}=\infty, Rarrow\infty hm\frac{\gamma_{b}(\xi;R)}{\log R}=\infty$. (2.3)

Here, we only check the second inequality of (2.3) in order to introduce a typical
example of Diophantine approximation methods. Set

$S_{1}$ $:=\emptyset,$ $S_{2}$ $:=$ { $l|l$ is a prime dividing $b$},
$\{n\in \mathbb{N}|t_{n}(b;\xi)\neq 0\}=:\{w_{0}<w_{1}<\cdots\}.$

Since $\xi$ is irrational,$\underline{w}_{m}(m=0,1,$ $\ldots\underline{)}$is an infinite sequence. For simplicity,
we put $t_{w_{m}}(b;\xi)=:t_{m}$ . Then we have $t_{m}\in\{1,2, \ldots , b-1\}$ for any $m\geq 1$ and

$\xi=\sum_{m=0}^{\infty}\overline{t_{m}}b^{-w_{m}}.$
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We apply the Ridout’s theorem with

$p=b^{w_{M}} \sum_{m=0}^{M}\overline{t_{m}}b^{-w_{m}}, q=b^{w_{M}}$

for sufficiently large $M$ . Observe that

$\prod_{l\in S_{2}}|q|_{l}=q^{-1}=b^{-w_{M}}.$

Let $\epsilon$ be an arbitrary positive real number. Since (2.2) has only finitely many
solutions of rational numbers, we get, for any sufficiently large $M,$

$b^{-(1+\epsilon)w_{M}}$
$=$ $q^{-(1+\epsilon)} \leq|\xi-\frac{p}{q}|$

$= \sum_{m=M+1}^{\infty}\overline{t_{m}}b^{-w_{m}}\leq\sum_{h=0}^{\infty}(b-1)b^{-w_{M+1}-h}=b^{1-w_{M+1}}.$

Thus,

$w_{M+1}\leq 1+(1+\epsilon)w_{M}\leq(1+2\epsilon)w_{M}$

for any sufficiently large $M$ . Since $\epsilon$ is arbitrary, we deduce that

$\lim_{Marrow\infty}\frac{w_{M+1}}{w_{M}}=1,$

which imphes the second equality of (2.3).
Applying a quantitative Ridout’s theorem [11], Bugeaud [5] improved (2.3)

as follows:

$\gamma_{b}(\xi;R)\geq 3(\log R)^{1+1/(\omega(b)+4)}$ $($ log log $R)^{-1/4}$

for any sufficiently large $R$ , where $\omega(b)$ is the number of the distinct prime
factors of $b$ . In particular, (2.1) implies that

$\nu b(\xi;R)\geq(\log R)^{1+1/(\omega(b)+4)}(\log\log R)^{-1/4}$

for any sufficiently large $R$ . Improving the quantitative parametric subspace
theorem by Evertse and Schlickewei [8], Bugeaud and Evertse [7] proved the
following: there exists an effectively computable positive constant $C_{1}(\xi)$ , de-
pending only on $\xi$ , such that if $\xi$ is an algebraic irrational number of degree $D,$

then

$\gamma_{b}(\xi;R)\geq C_{1}(\xi)(\log R)^{3/2}(\log\log R)^{-1/2}$ (2.4)

for any sufficiently large $R$ . Bailey, Borwein, Crandall, and Pomerance [1] gave
a new method to estimate the lower bounds for $vb(\xi;N)$ . We mention the
method in Section 5. Let again $\xi$ be an algebraic irrational number of degree $D.$

They showed that if $b=2$ , then there exists an effectively computable positive
constant $C_{2}(\xi)$ , depending only on $\xi$ , satisfying

$\nu_{2}(\xi;R)\geq C_{2}(\xi)R^{1/D}$ (2.5)
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for any sufficiently large $R$ . Modifying their method, we can generalize (2.5) for
general integral base $b$ as follows: there exists an effectively computable positive
constant $C_{2}’(b;\xi)$ , depending only on $b$ and $\xi$ , such that

$\nu_{b}(\xi;R)\geq C_{2}’(b;\xi)R^{1/D}$ (2.6)

for any sufficiently large $R$ . For instance, see Theorem 8.5 in [4]. Inspired
by the method in [1], the author [9, 10] improved (2.4) for certain classes of
algebraic irrational $\xi$ of degree $D$ . Namely, if $\xi$ satisfies certain assumptions
on its minimal polynomial, then there exists an effectively computable positive
constant $C_{3}(b;\xi)$ such that

$\gamma_{b}(\xi;R)\geq C_{3}(b;\xi)R^{1/D}$

for any sufficiently large $R.$

In the rest of this section we apply (2.6) to transcendence of real numbers
with low density of nonzero digits. Let $w=(w_{m})_{m=0}^{\infty}$ be a sequence of nonneg-
ative integers such that $w_{m+1}>w_{m}$ for any sufficiently large $m$ . Put

$f(w;z):= \sum_{m=0}^{\infty}z^{w_{m}}$ . (2.7)

If Borel’s conjecture for the normality of algebraic irrational numbers is true,
then we obtain the following criteria: If $w$ satisfies

$\lim_{marrow\infty}\frac{w_{m}}{m}=\infty,$

then $f(w;b^{-1})= \sum_{m=0}^{\infty}b^{-w_{m}}$ is transcendental. However, it is unknown whether
the criteria above hold. On the other band, using (2.6), we deduce partial re-
sults. Namely, assume that $w$ satisfies

$\lim_{marrow\infty}\frac{w_{m}}{m^{A}}=\infty$ (2.8)

for any positive real number $A$ . Then $f(w;b^{-1})$ is transcendental. For example,
put

$\varphi_{y}(m) := \lfloor m^{(\log m)^{y}}\rfloor=\lfloor\exp((\log m)^{1+y})\rfloor$ , (2.9)

$\mu_{y}(z) := \sum_{rn=1}^{\infty}z^{\varphi_{y}(m)}$ (2.10)

for a positive real number $y$ . Then, since $\varphi_{y}(m)(m=1,2, \ldots)$ satisfies (2.8),
we deduce that $\mu_{y}(b^{-1})$ is transcendental for any integer $b\geq 2.$

3 $\beta$-expansions of real numbers
Let $\beta$ be a real number greater than 1. The notion of the $\beta$-expansions of
real numbers was introduced by R\’enyi [13]. Let $T_{\beta}$ : $[0,1)arrow[0,1)$ be the $\beta-$

transformation defined by $T_{\beta}(x)$ $:=\{\beta x\}$ for $x\in[O, 1)$ . Let $\eta\in[0,1)$ . Then the
$\beta$-expansion of $\eta$ is denoted by

$\eta=\sum_{n=1}^{\infty}t_{n}(\beta;\xi)\beta^{-n}$ , (3.1)
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where $t_{n}(\beta;\eta)=\lfloor\beta T_{\beta}^{n-1}(\eta)\rfloor\in \mathbb{Z}\cap[0, \beta)$ for any $n\in \mathbb{Z}+$ . If $\beta=b$ is an integer
greater than 1, then (3.1) gives the base-b expansion of $\eta.$

Recall that the base-b expansion of each rational number is ultimately pe-
riodic. Schmidt [15] studied the periodicity of the $\beta$-expansions of rational
numbers. We call $\beta>1$ Pisot number if $\beta$ is an algebraic integer such that
the conjugates except itself have moduli less than 1, Moreover, we say that
$\beta>1$ is a Salem number if $\beta$ is an algebraic integer such that the conjugates
except itself have moduli at most 1 and that at least one conjugate has modulus
1. Schmidt [15] showed that if the $\beta$-expansion of each rational number is ulti-
mately periodic, then $\beta$ is a Pisot or Salem number. Moreover, he showed that if
$\beta$ is a Pisot number, then the $\beta$-expansion of any rational number is ultimately
periodic. However, if $\beta$ is a Salem number, then the $\beta$-expansions of rational
numbers are mysterious. Schmidt conjectured that if $\beta$ is a Salem number, then
the $\beta$-expansion of every rational number is ultimately periodic, which is still
an open problem. In the next section, we investigate the $\beta$-expansions of ratio-
nal numbers and more general algebraic numbers in connection with Schmidt’s
conjecture and Borel’s conjecture.

In the rest of this section, we recall the expansion of 1. The expansion of 1
is defined by

$1= \sum_{n=1}^{\infty}t_{n}(\beta;1-)\beta^{-n},$

where

$t_{n}( \beta;1-) :=\lim_{xarrow 1-}t_{n}(\beta;x)\in \mathbb{Z}\cap[O, \beta)$ .

The expansion of 1 has a crucial role for studying the $\beta$-expansions of real
numbers. Moreover, the periodicity of the expansion of 1 is important for in-
vestigating the $\beta$-shifts. Parry [12] showed that if $\beta$ is a Pisot number, then the
expansion of 1 is ultimately periodic. We call that $\beta$ a Parry number if the ex-
pansion of 1 is ultimately periodic. However, it is unknown whether there exists
a non-Parry Salem number. We investigate the periodicity of the expansion of
1 in Section 4.

4 Main results
We now introduce main results which gives arithmetical properties of the values
of power series at certain algebraic points. Let $s=(s_{n})_{n=0}^{\infty}$ be a bounded
sequence of nonnegative integers. Put

$g(s;z):= \sum_{n=0}^{\infty}s_{n}z^{n}$

and, for a nonnegative real number $R,$

$\lambda(s;R) :=Card\{n\in \mathbb{N}|n\leq R, s_{n}\neq 0\}.$

Moreover, let $K$ and $L$ be algebraic number fields with $K\subset$ L. Then we denote
by $[L : K]$ the degree of field extension.
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THEOREM 4.1. Let $\beta$ be a Pisot or Salem number and $\xi$ an algebraic number
with $[\mathbb{Q}(\beta, \xi) : \mathbb{Q}(\beta)]=D.$ Let $s=(s_{n})_{n=0}^{\infty}$ be a sequence of integers with
$0\leq s_{n}\leq B$ for any $n\in \mathbb{N}$ , where $B$ is a positive integer independent of
$n$ . Suppose that $s_{n}\neq 0$ for infinitely many $ns$ . Then there exist effectively
computable positive constants $C_{4}(\beta, \xi, B)$ and $C_{5}(\beta, \xi, B)$ , depending only on

$\beta,$ $\xi$ , and $B$ , such that

$\lambda(s;R)\geq C_{4}(\beta, \xi, B)R^{1/(-1+2D)}(\log R)^{-1/(-1+2D)}$

for any real number $R$ with $R\geq C_{5}(\beta,\xi, B)$ .

We apply Theorem 4.1 to the transcendence of $f(w;\beta^{-1})$ , where $f(w;z)$ is
defined by (2.7) and $\beta$ is a Pisot or Salem number.

COROLLARY 4.2. Let $w=(w_{m})_{m=0}^{\infty}$ be a sequence of nonnegative integers
such that $v_{m+1}>v_{m}$ for any sufficiently large $m$ . Suppose for any positive real
number $A$ that

$\lim_{marrow\infty}\frac{w_{m}}{m^{A}}=\infty.$

Then $f(w;\beta^{-1})$ is transcendental for any Pisot or Salem number $\beta.$

Let $y$ be a positive real number. Recall that $\varphi_{y}(m)$ and $\mu_{y}(z)$ are defined by
(2.9) and (2.10), respectively. Corollary 4.2 implies that $\mu_{y}(\beta^{-i})$ is transcen-
dental for any Pisot or Salem number $\beta.$

We apply Theorem 4.1 to the $\beta$-expansions of algebraic numbers $\eta\in[0,1)$ .
In the rest of this section, the imphed constants in the symbol $\gg$ are effectively
computable ones depending only on $\beta$ and $\eta$ . We generalize the notation in
Section 2. Namely, put

$\nu_{\beta}(\eta;R) := Card\{n\in \mathbb{Z}^{+}|n\leq R, t_{n}(\beta;\eta)\neq0\}$

$\gamma_{\beta}(\eta;R)$ $:=$ Card $\{n\in \mathbb{Z}^{+}|n\leq R, t_{n}(\beta;\eta)\neq t_{n+1}(\beta;\eta)\}.$

Then we have

$\nu_{\beta}(\eta;R)\geq\frac{1}{2}\gamma_{\beta}(\eta;R)+O(1)$ . (4.1)

Let $\beta$ be a Pisot or Salem number and $\eta\in[0,1)$ an algebraic number with
$[\mathbb{Q}(\beta, \eta) : \mathbb{Q}(\beta)]=D$. Bugeaud [6] showed that if $t_{n}(\beta;\eta)\neq t_{n+1}(\beta;\eta)$ for
infinitely many $n’ s$ , then

$\gamma_{\beta}(\eta;R)\gg(\log R)^{3/2}($ log log $R)^{-1/2}$

for any sufficiently large $R$ . Moreover, (4.1) imphes that

$\nu_{\beta}(\eta;R)\gg(\log R)^{3/2}($log log $R)^{-1/2}$ (4.2)

for any sufficiently large $R$ . On the other hand, using Theorem 4.1, we obtain

$\nu_{\beta}(\eta;R)\gg R^{1/(-1+2D)}(\log R)^{-1/(-1+2D)}$ (4.3)

for every sufficiently large $R$ , which gives improvement of (4.2).
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We now consider the Schmidt conjecture on the periodicity of rational num-
bers. Suppose that $\beta$ is a Salem number and that $\eta\in[0,1)$ is a rational number.
If $t_{n}(\beta;\eta)\neq 0$ for infinitely many $n$ ’s and if the sequence $t_{n}(\beta;\eta)(n=1,2, \ldots)$

is ultimately periodic, then we have $\nu_{\beta}(\eta;R)\gg R$ . Now, (4.3) means that

$\nu_{\beta}(\eta;R)\gg R(\log R)^{-1}$

for each sufficiently large $R$ , which gives partial results on the Schmidt’s con-
jecture.

Theorem 4.1 is applicable to the study of the expansion of 1. It is well-known
for any real number $\beta>1$ that $t_{n}(\beta;1-)\neq 0$ for infinitely many $n’ s$ . Let again
$\beta$ be a Salem number. Put

$\nu_{\beta}(1-;R) :=Card\{n\in \mathbb{Z}^{+}|t_{n}(\beta;1-)\neq 0\}.$

If the expansion of 1 is ultimately periodic, then we have $\nu_{\beta}(1-;R)\gg R.$

Bugeaud [6] showed that

$\nu_{\beta}(1-;R)\gg(\log R)^{3/2}(\log\log R)^{-1/2}$

for any sufficiently large $R$ . On the other hand, using Theorem 4.1, we deduce
that

$\nu_{\beta}(1-;R)\gg R(\log R)^{-1}$

for each sufficiently large $R.$

5 Sketch of the proof of main results
In this section we introduce ideas for the proof of the main results. For simplicity,
we give a sketch of the proof of Corollary 4.2. We define $s=(s_{n})_{n=0}^{\infty}$ and $\xi$ by

$f(w;z)= \sum_{m=0}^{\infty}z^{w_{m}}=:\sum_{n=0}^{\infty}s_{n}z^{n}, \xi:=f(w;\beta^{-1})$,

respectively. Then $s$ is bounded and $s_{n}\in \mathbb{N}$ for any $n\in \mathbb{N}$ . We use the same
notation as in Section 4. Then we have, for any positive real number $\epsilon,$

$\lambda(s;R)=o(R^{\epsilon})$

as $R$ tends to infinity. We show that $P(\xi)\neq 0$ , where $P(X)=A_{D}X^{D}+$

$A_{D-1}X^{D-1}+\cdots+A_{0}\in \mathbb{Z}[X]$ is any non-constant polynomial with $A_{D}\neq 0$ . In
what follows, $C_{6},$ $C_{7}\ldots$ and the the imphed constants in the symbols $\ll,$ $\gg$ are
positive constants depending only on $w$ and $P(X)$ . For instance, $0\leq s_{n}\leq C_{6}$

for any $n\in \mathbb{N}$ . Put $\Gamma$ $:=\{n\in \mathbb{N}|\mathcal{S}_{n}\neq 0\}$ . Without loss of generality, we may
assume that $0\in\Gamma$ . We now calculate $\xi^{k}$ for any $k$ with $1\leq k\leq D$ . Then we

77



get

$\xi^{k} = (\sum_{m\in\Gamma}s_{m}\beta^{-m})^{k}$

$= \sum_{m_{1},\ldots,mk\in\Gamma}s_{m_{1}}\cdots s_{m_{k}}\beta^{-m_{1}-\cdots-m_{k}}$

$= m=0m_{1,.\cdot.\cdot.\cdot k} \sum^{\infty}\beta^{-m}\sum_{m_{k}m_{1+\dotplus^{m\in\Gamma}}=n}s_{m_{1}}\cdots s_{m}k$

$=$ : $\sum_{m=0}^{\infty}\beta^{-m}\rho(k;m)$ ,

where

$\rho(k;m)=\sum_{1m,.\cdot.\cdot.\cdot mk\in\Gamma m1+\dotplus_{m_{k}=m}}s_{m_{1}}\cdots s_{m_{k}}.$

Let $m\in \mathbb{N}$ . Then $\rho(k;m)$ is a nonnegative integer because $s_{n}$ is a nonnegative
integer for any $n\in \mathbb{N}$ . Set

$k\Gamma:=\{+\cdots+m|m_{1}, \ldots, m_{k}\in\Gamma\}.$

Since $0\in\Gamma$ , we have

$\Gamma\subset 2\Gamma\subset\cdots\subset(D-1)\Gamma\subset D\Gamma.$

Observe that $\rho(k;m)$ is positive if and only if $m\in kS$ . Now we introduce BBP
tails. Let $R\in \mathbb{N}$ . Using

$P( \xi) = A_{0}+\sum_{k=1}^{D}A_{k}\xi^{k}$

$= A_{0}+ \sum_{k=1}^{D}A_{k}\sum_{m=0}^{\infty}\beta^{-m}\rho(k;m)$ ,

we obtain

$\beta^{R}P(\xi) = A_{0}\beta^{R}+\sum_{k=1}^{D}A_{k}\sum_{m=0}^{\infty}\beta^{-(m-R)}\rho(k;m)$

$= A_{0} \beta^{R}+\sum_{k=1}^{D}A_{k}\sum_{m=-R}^{\infty}\beta^{-m}\rho(k;m+R)$.

Put

$Y_{R} ;= \sum_{k=1}^{D}A_{k}\sum_{m=1}^{\infty}\beta^{-m}\rho(k;m+R)$,

$Z_{R} := A_{0} \beta^{R}+\sum_{k=1}^{D}A_{k}\sum_{m=-R}^{0}\beta^{-m}\rho(k;m+R)$.
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Then we have

$\beta^{R}P(\xi)=Y_{R}+Z_{R}$ . (5.1)

Note that $Z_{R}$ is an algebraic integer. In the paper [1], $Y_{R}$ is called BBP tails
in the case of $\beta=2$ . For the proof of $P(\xi)\neq 0$ , we consider BBP tails in the
case where $\beta$ is a Pisot or Salem number. In what follows, we estimate $Y_{R}$ and
$Z_{R}$ , respectively. If $\beta=2$ , then one of the key ideas for the proof of (2.5) is the
following:

If $Z_{R}\neq 0$ , then $|Z_{R}|\geq 1$ . (5.2)

In the case where $\beta$ is a general Pisot or Salem number, we get the following:

If $Z_{R}\neq 0$ , then $|Z_{R}|\geq C_{7}R^{-C_{8}}$ . (5.3)

Put

$y_{N}:=$ Card$\{R\in \mathbb{N}|R\leq N, Y_{R}\neq 0\}$

for positive integer $N$ . Bailey, Borwein, Crandall, and Pomerance [1] estimated
$y_{N}$ , using the relation (5.2). However, (5.3) does not seem enough for the
estimation of $y_{N}$ . Hence, we calculate $Y_{R}$ . Division of the interval of $[0, N)$ into
subintervals is also one of the key ideas for the proof of (2.5).

In the rest of this section, we give an outhne. We write the length of an
interval $[x, y)\in \mathbb{R}$ by $|[x, y)|=y-x$ . First, using a combinatorial method, we
construct an subinterval $J\subset[O, N)$ satisfying

$|J| \gg\frac{N}{\lambda(s;N)^{D-1}}$

and $Y_{R}>0$ for any $R\in J$ . Next, we divide $J$ into subintervals. Consequently,
we construct $I\subset J$ fulfilling

$|I| \gg\frac{N}{\lambda(s;N)^{-1+2D}}$

and

$0<Y_{R}< \frac{1}{2}C_{7}R^{-C_{8}}$ (5.4)

for any $R$ with $R\in I$ . Hence, if $R\in I$ , then combining (5.1), (5.3), and (5.4),
we deduce that $P(\xi)\neq 0.$
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