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1 Introduction

Some entire functions are known to have the property that their values as well as their suc-
cessive derivatives at any distinct algebraic points other than their zeroes are algebraically
independent. Let f(z) = Y 4o, v*'2* and g4(2) = 352, 7%° 2%, where 7 is an algebraic
number with 0 < |y| < 1 and d is an integer greater than 1. Nishioka [6, 8] showed,
respectively, that the infinite set {f®(a) | 1 € Ny, oo € Q" } is algebraically independent
and so is the infinite set {gg)(a) |1 € Ny, o € Q"} for any fixed d, where N, denotes the
set of nonnegative integers and F'* denotes the multiplicative group of nonzero elements
of any field F, and thus @X indicates the set of nonzero algebraic numbers.
Let {F,},>0 be the sequence of Fibonacci numbers defined by

F() = O, Fl = ]., Fn+2 = Fn+1 + Fn (’I’L Z O) (1)

and define the function G4(z) by

Gd(z)=ﬁ(1—§&—§%) (d=2,3,4,...).

k=0

The authors [4] proved that the infinite set

oo

U{6P@ | 1Ny, 0 T\ {2 Faubiso}
d=2
is algebraically independent.
In contrast with the functions f(z) and gs(z) above, the function G(z) is interesting
in view of the following two points:
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e The algebraic independency of the values of the functions g4(z) above for varying d
is open, namely it has not been known whether the infinite set

oo

U{s#@ | 1eN, aeT}

d=2

is algebraically independent.

e No information on the zeros of f(z) and g4(z) above has been known so far and
hence we cannot express them as the infinite products explicitly.

Restricting the complex variable 2 to a real variable z, we can replace the sequence
{2"F,}n>0 appearing in the G4(z) by the usual Fibonacci and Lucas numbers defined,
respectively, by (1) and by

Li=2, Li=1, Lpja=Lnp+L, (n>0). (2)

In what follows, we consider a somewhat general sequence than those of the Fibonacci
and Lucas numbers. Let {R,}n>0 be a sequence of integers satisfying the binary linear
recurrence relation

R.i2=A1Roy1+ A2R, (n2>0), (3)

where A; and A, are integers with A; A, # 0, A = A2 + 44, > 0, and R? # RyR,. We
denote by L the set of nonzero real algebraic numbers.

The following main theorem of this paper is proved in Section 3 by using Lemma 2 in
Section 2.

Theorem 1. Let {R,}n>0 be the sequence of integers defined by (3) and S the set of odd
integers > 3. Suppose either A = 1, Ry # 0 or Ay = —1, AjRy # 2R,. Then the
numbers

ﬁ (1 - Ridk) (d1 €S, a € L\ {Rg}ro)

k=0
and

> 1
Zm (dz €S, leN, be L\{Rd’;}kzo)
k=0 2

are algebraically independent.
In what follows, z denotes a real variable. Theorem 1 implies the following:

Theorem 2. Let {R,}n>0 and S be as in Theorem 1. Define

fa(z) = ﬁ (1 ~ %) (deS).

k=0

Then the values
) des, 1eNy, ael\{Ralo)

are algebraically independent.
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Proof. Let Ty(x) = — Y 52y 1/(Rax — z)! (d € S, 1 € N). By Theorem 1, the infinite set
of the numbers

{fale) |de S, a€e L\ {Rp} x>0} U{Tu(a) |d€ S, l €N, a €L\ {Rap}iso}

is algebraically independent.
Since

fa(@) = fa(2)Ti(z)
and since Ty (z) = ITy41(z) (I > 1), we see inductively that, for any | > 2,
2 (@) = fal@)Pa (Tu(@),..., Tuaa () + (1 = D! fa(z)Tu(2),

where FPy(Y1,...,Yi_1) € Z[Y4,...,Y;_1]. Assume on the contrary that there exist a
D e N\ {1}, an L € Ny, and d1st1nct a(d) aPeL \ {Ra}rz0 (d € S, d < D) such
that the values

fP®) (des, d<D,0<I<L 1<i<ny)

are algebraically dependent. Since fd(a( ) = fala d))le( ()) and since f(l)( fd)) =
fa(o®)Pa (T (0f®), ., Tar1(6d®)) + (1 = Dfule®)Ta(0f®) (1 > 2), noting that for

each d and 7 the number Ty(o; (@ )) does not appear in the expression for the numbers
f(J)(a(d)) (0 <j <1—1), we see that the values

fd(a§d)),Td1(a§d)), e aTdL(OlEd)) (de S, d<D,1<i<ng)

are algebraically dependent, which is a contradiction and so the infinite set of the values
Ugest fd(l) (@) |1 € Ny, o € L\ {Rgx}i>0} is algebraically independent. O

Example 1. Let {F,}.>o be the sequence of Fibonacci numbers defined by (1) and S
the set of odd integers > 3. Define

9a(@) =1] (1 - —) d € S).
k=0 2
Then by Theorem 2 with A; = —1 the values
0P(@) (de S, 1€ Ny, a €L\ {Fau}iso)

are algebraically independent, since R, := F,, satisfies Ry =0, By = 1, Rn10 = 3Rny1 —
R, (n > 0). In particular, the numbers

oo 1 o0 o0
H<1+F2,3k)’ H( Fzsk) ZF23k+1 kZFwH

k=0 k=0

are algebraically independent.
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Example 2. Let {L,}»>o be the sequence of Lucas numbers defined by (2) and S the set
of odd integers > 3. Define

ha(z) = ﬁ (1 - Li) deS). (4)

k
k=0 d

Then by Theorem 2 with A; =1 the values
h(a) (d€S, leNy, a€L\{Lauhso)

are algebraically independent. In particular, the numbers

> 1 1
14— =3,57,...
H( +Ldk> k=0 Ldk+1 (d b 'y )

k=0

are algebraically independet.

Remark 1. If S is the set of even integers instead, some of the infinite products such
as (4) can be algebraically dependent. For example, the authors [2, 3] showed that the
transcendental numbers

d 5 s 5 = 23
= —_— = _ — 1—-—
p1 ,!;[1 (1 L2k> , P2 kI__Il (1 + sz) . Ps kl;[l( sz)

satisfy
4v/5p1ps + p3 = 0,

while trans.deggQ(p1, p2, p3) = 2; moreover, the transcendental numbers

B E) i) i) o)

k=1 k=1

satisfy

IR
0102030, —ga

while trans. degg Q(o1, 02, 03,04) = 3; furthermore, the transcendental numbers

1 1 > 2
= ( L—) =1l (”z;)’ Ts—kI}l (”'L‘.;)
> V3 - V3
T4_H(1+L6k ’ 7—5 [‘E 1_L6k
satisfy

7'17'2737117'5_1 =

while trans. degg Q(71, 72, T3, T4, T5) = 4.
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2 Lemmas

Lemma 1 (A special case of Theorem 1 in Nishioka [7]). Let dy,...,d; > 2 be integers
such that logd;/logd; ¢ Q for any 1,5 with i # j. Let K be an algebraic number field.
Suppose that fij(z) € K[[z]] (i=1,...,t j=1,..., M) satisfy the functional equations

fi(2) = a5(2) fis(2*)  (1<i<t, 1<j<N)
and
fi(2) = fii(2%) + b(2)  (1<i<t, N;+1<j< M),
where a;;(2), bij(2) € K (z) with a;;(0) = 1. Assume that for eachi (1 < i < t), fi;(z) (1 <
J < M;) are algebraically independent over C(2). If o is an algebraic number with 0 <
la] <1 such that all the fij(2) converge at o and a;;(e®) (1 <i<t, 1 <j < N;) are
defined and nonzero for all k > 0, then the values
fi@) (1<i<t, 1<j< M)
are algebraically independent.

Remark 2. It is not necessary in Lemma 1 to assume that b (%) (1 <i<t, N;+1<
j < M;) are defined for all k > 0, since b;(a®) = fi;(a®) — fi;(a%™) and f;;(a%)
(1<i<t, N;+1<j< M) are defined for all k > 0 by |a%| < |a/.

Lemma 2. Let dy,...,d; > 2 be integers such that logd;/logd; ¢ Q for any 4,5 with
i # j. Let K be an algebraic number field. Suppose that fi;z(z) € K|[[2]] i =1,...,t; j =

L,...,m; A=1,...,s) satisfy the functional equations
fan@) = apn(2)fin(z%)  (1<i<t, 1<5<m, 1<A<7) (5)
with fi;x(0) # 0 and
fin(@) = fin(e™) +ba(2)  (1<i<t, 1<j<m, r+1<A<s),  (6)

where a5 (2), bija(2) € K(z) with a;;5(0) = 1. Assume that for each i (1 < i < t),
fipn(2) (1 <5 <m, 1 < X < r) are multiplicatively independent modulo C(2)* and
fin(2) 1 <j<m, 7+1 < X< s) are linearly independent over C modulo C(z). If
a is an algebraic number with 0 < |a| < 1 such that all the fi;x(z) converge at o and
aij,\(adfk) (1<i<t, 1<j<m, 1<\<r) are defined and nonzero for all k > 0, then
the values
fin(@) (1<i<t 1<j<m, 1<A<s)

are algebraically independent.

Lemma 2 is proved by using Lemma 1 above and Lemma 3 below. In what follows, C
denotes a field of characteristic 0. We define an endomorphism 7 : C((z)) — C((z)) by

i)=Y (f(2) € C(2)),
where d is an integer greater than 1, and a subgroup H of C(z)* by
H={gg"" | g€ C(2)*}.
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Lemma 3 (A special case of Theorem 2 in Kubota [1], see also Nishioka [7, Theorem 3]).
Let f; € C((2))* (i=1,...,h) satisfy

fi=aiff,
where a; € C(2)* (1 <i<h), and let f; € C((2)) (i =h+1,...,m) satisfy
fi= 1+ b

where b; € C(2) (h+1 < i < m). Suppose that a; and b; have the following properties:
(i) ay,...,an are multiplicatively independent modulo H.

(i) Ifc; € C (h+1 < i< m) are not all zero, there is no element g of C(z) such that

m

g —g=> cb.

i=h+1
Then the functions f; (1 <i < m) are algebraically independent over C(z).

Proof of Lemma 2. Letting M = m! and iterating (5), we see that fi;(z) with 1 <A <r
satisfies

fir(2) = a2 fin(z*), (7)

where
M/j—1

zJA Hatjf\ (lgzstals‘7_<_m;lg)\£7‘)a

and iterating (6), we see that fiin(z) with r +1 < X < s satisfies

Fin(2) = fin(2%7) + b3, (2), (8)

where
M/j-1 l
NE Zb,,,\zf (1<i<t, 1<j<m, r+1<A<s).

Hence for each fixed 14 (1 < i <t), we can show that fi;»(z) (1 <j<m, 1<A<s)are
algebraically independent over C(z) by applying Lemma 3 with d = dM, whose notation
will be used in the following: If the assumption (i) of Lemma 3 is not satisfied, namely if
ajy (1<j<m, 1<A< r) are multiplicatively dependent modulo H, then there is an
element g of C(z)* such that

m T
[TT1@5)5 =g7/g
j=1 =1

with e € Z (1 < j <m, 1 <X <) not all zero, and hence F = g [[}L, [T5-; fi;3 sat-

isfies F = F7, which holds only if F € C (cf. Loxton and van der Poorten [5, Lemma 1}),

and so
I111 £ € e

j=1 =1
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namely fi;» (1 <j <m, 1 <X <r) are multiplicatively dependent modulo C(z)*. If the
assumption (ii) of Lemma 3 is not satisfied, namely if there is an element g of C(z) such

that
m 8
g =9+ > cipbd
j=1 A=r+1

with ¢ € C (1 <j <m, r+1< X < s) not all zero, then G =g+ Y7, Y5 . cijnfija
satisfies G = G”, which holds only if G € C (cf. Loxton and van der Poorten [5,

Lemma 1)), and so
Z Z ciinfijx € C(2),
J

=1 A=r+1
namely fi;y (1 <j <m, r+1 < X < s) are linearly dependent over C modulo C(z).
Therefore the assumptions (i) and (ii) of Lemma 3 are fulfilled, thereby fi;x(2) (1 < j <
m, 1 < X < s) are algebraically independent over C(z) for each fixed i (1 <i < t).
Since fijx(2) (1 <j<m, 1 <A< r)satisfy (7) and fijn(2) (1 <j<m, r+1 < A < s)
satisfy (8) for each fixed 7 (1 < ¢ < t), the lemma is proved by applying Lemma 1. O

Lemma 4. Let d > 3 be an integer and let £ € C*. Define

dk !
Z k z — -
f)\l § (1+a)\zdk+bz2dk> (A——la-.-,r) l—].,-..,L),

k=0

where a1, ..., ar € R are distinct and b€ R\ {0, 1}. Then fy(z) 1 <A <r 1<I< L)
are linearly independent over C modulo C(z).

Proof. Suppose on the contrary there exist complex numbers c; (1 <A <7, 1 <1< L),
not all zero, such that

r L
=YY cufulz) € C().
A=l I=1
Then g(z) satisfies the functional equation

T L
C)‘IZ

(14 arz + b22)

9(2) = €9(2%) + Q(2), ©)

A=1 I=1
Let py and g (|pa| < |ga|) be the roots of 1+ayz+bz2 andlet S = {A € {1,...,r} |en (1 <
! < L) are not all zero}. Since ay,...,a, are distinct, py, gy (A € S) are the poles of Q(z).
Changing the indices ) if necessary, we may assume that 1 € S and that p; and qy for
some p € S are the poles of Q(z) with the smallest and the largest absolute values among
its poles, respectively. ’

First we assume that |p;| < 1 < |g,|. Noting that, for any 0 < r < R, the poles of g(z)
lie on the domain {2z € C | r < |z| < R} if and only if those of g(z%) lie on the domain
{z € C | r'/? < |z] < RV}, we see by (9) that p; and g, are poles of g(z). Let p}/* and
qu 4 denote the d-th roots of p1 and g, respectively, with the smallest positive argument
among the d-th roots of p; and ¢,. Then pi/ % and qll/ 4 are poles of g(z%).
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/d®

Here we assert that there exist positive integers s and ¢ such that { = p1 and

7= q,/ are poles of Q(z). Assume on the contrary that pl/
any k > 1 or that qf/ # is not a pole of Q(z) for any k > 1. In the first case pl/ /% must be
a pole of g(z) by (9). Then pl/ is a pole of g(z%) but not of Q(z). Hence pl/ is a pole
of g(z) by (9). Repeating this process, we see that pl/ a* (k > 1) are poles of g(z), which
is a contradiction since g(z) € C(z). In the second case the same argument for q‘/ 24 leads
to a contradiction. Hence the assertion is proved.

Since d > 3 and so ¢,7 ¢ R, noting that ¢ and 7 are roots of quadratic polynomials
with real coefficients, we have b(¢ = by7j(= 1). This implies Ip1| 7% = |qu¥ 4 which
contradicts |p;| < 1 < |g,|. Hence |p;| > 1 or |g,| < 1.

Next assume that 1 < |p;| < |gu|. By the same argument as above, there exists a
positive integer t such that n = q}/ o ¢ Ris a pole of Q(z) and by = 1. If 2z =g, is a
simple root of 1+ ayz + bz? for some X, then by the definition of p; and g, we see that
z = py is also a root of 14+-a,z+bz2. Thus we get by7] = bp1g, (= 1) and so |p1| = |gu |74,
which contradicts 1 < |p;| < |g,|- Hence z = g, must be a double root of 1+ a,z+bz? for
some ). Then we see g, = £b~Y/2 and thus |by7| = |b|'~/¢" = 1. This implies [b| = 1 and
50 |g,| = 1, which again contradicts 1 < |p1| < |g,|. Also in the case of |p| < |g.| <1 we
get a contradiction by the same argument.

Therefore |p;| = |gu| = |g1| = 1 and so b= —1 since bpyg1 =1 and b € R\ {1}. Hence
the poles of Q(z) are real and so only %1 can be the poles of Q(z). Then +1 can be poles
of g(z) or g(z%) by (9) and hence at least one of +1 is & pole of g(2). If 1 is a pole of
g(z2), then (5 = €2™V=1/4 ¢ R is a pole of g(z?) but not of Q(z). Hence ¢, is a pole of g(2)
by (9). Then (p ¢ R is a pole of g(2?) but not of Q(z). Hence {z is a pole g(2) by (9).
Repeating this process, we see that (s (k > 1) are poles of g(z), which is a contradiction
since g(z) € C(z). If —1 is a pole of g(z), then a contradiction is deduced by & similar
argument. O

is not a pole of Q(z) for

Lemma 5. Let d > 3 be an integer and let £ € C*. Define

00 dk zdk
e aa2% +2bz
z)= A=1,...,71),
g/\( ) ;6 1+a>‘zd'° +bz2dk ( ’ ’f‘)

where ay,...,a, € R are distinct and b € R\ {0, 1}. Then g1(2),...,9-(2) are linearly
independent over C modulo C(2).

Proof. Suppose there exist complex numbers ¢y (1 < A <), not all zero, such that
T
6(z) = Y enr(z) € Cla).
A=1
Then G(z) satisfies the functional equation

2bz?
c =0 Q. 2w =N EE

The lemma is proved in the same way as in the proof of Lemma 4. O
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Lemma 6. Let { € C* and ¢1(z),...,qs(z) € C(z) with ¢,(0) =0. Letd > 2 and m > 1
be integers. Define

oo

oin(2) =Y ¥ (™) (=1,...,m A=1,...,5)
k=0
and -
(@) =Y (GO E") (A =1,...,5 p=1,...,m),
k=0

where (1, ...,Cm are distinct ml-th roots of unity. If, for each fized p (1 < p < ml),
Hw(z) (L < X< s) are linearly independent over C modulo C(z), then so are p;)\(z) (1 <
Jj<m, 1<A<s).

Proof. Suppose on the contrary there exist ¢;, € C (1 <j <m, 1 < ) < s), not all zero,
such that

m

9(2) = ZZCJA‘PJ/\(Z) € C(z).

j=1 =1

We define sequences {b,(cj)}kzo (1<j<m)by

{50 = {1,1,1,...,
{8710 = {1,0,1,0,1,0,..},
{87hs0 = {1,0,0,1,0,0,1,0,0,...},

{60 = {1,0,0,0,1,0,0,0,1,0,0,0,...},

Since -
oin(2) = b (z")  (1<j<m, 1<A<s),
k=0
we have

i Zb(J)gkq (zdk) _ ZZ (Z CJ,\b(J)> §k d’“).

A=1 k=0 A=1 k=0 \j=1

Since {} 72, ¢ A0 k0 (1 < A < s) are periodic sequences whose periods divide m!, there

exist distinct m!-th roots of unity (3,...,{m such that
m ) m!
ch)\b,(f) = Za,\ugﬁ (1<A<s),
j=1 p=1

where ay, € C (1 <X <5, 1 < p < ml)arenot all zero, since ¢jy (1< j<m, 1 <A <s)
are not all zero and the sequences {b% }x5o (1 < j < m) are linearly independent over C.
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Hence

A=1 p=1

which means that fy,(z) (1 <X <s, 1 < p < m!) are algebraically dependent over C(2).
Since fi,(z) satisfies

f/\u(z) = Cu{fz\y(zd) + QA(Z)

and (i€, . .., Gmé are distinct, by Loxton and van der Poorten’s theorem [5, Theorem 2] or
by Kubota’s result {1, Corollary 9], the functions fy,(z) (1 < A < s) are linearly dependent
over C modulo C(z) for some pu, which contradicts the assumption of the lemma. a

By Lemma 6 with £ = 1 and Lemma 4 with { = {,, we immediately have the following:

Lemma 7. Let d > 3 be an integer and let

00 Zdjk l
goj,\l(z)=2< 4 ) G=1,....om; A=1,...,m; l=1,...,L),

= \1+ axz¥* + bz24*
where ay,...,a, € R are distinct and b € R\ {0, 1}. Then p;ju(2) (1<j<m, 1 <A<
r, 1 <1 < L) are linearly independent over C modulo C(z).
Lemma 8. Let d > 3 be an integer and let
i ayz?* .
P, (2) =£](; (1+1—+b—zu7,;> G=1,....m; X=1,...,71),

where ay,...,a, € R* are distinct and b € R\ {0, 1}. Then ®;,(2) 1 <j<m, 1 <A<
1) are multiplicatively independent modulo C(2)*.

Proof. Suppose there exist integers e;» (1 < j <m, 1 < X <) such that
G(2) = [ T] 2ir(2) € C(2)*.
j=1x=1
Taking the logarithmic derivative of G(z), we obtain
2G'(2) _ d o ax2® + 2b22¢" 2b224*
l G d’ - ’
Glz) 08 G(z) = ;;eﬂz (1+a 2% 4 b2 1 4 b2t

€ C(z).




On the other hand, by Lemma 6 with { = d and Lemma 5 with £ = (,d, we see that

i & axz®" + 20274

1+a)\zdjk+b22djk (]‘SJSm,]-SAST)

k=0

and

are linearly independent over C modulo C(z), and thus so are

b ( ayz®* + 2b2* 2b224*

> d* . _ .
14 ay2@* 4 pz28* 1 4 pr2d*

) (1<j<m, 1<A<T).
k=0

Henceejy =0(1<j<m, 1<A<7). O

3 Proof of Theorem 1
Proof of Theorem 1. Let
D ={deN|d#a" for any a,n € N with n > 1}.

Then
N\ {1} = U{d, d?,...} (disjoint union).
deD
We note that if d,d’ € D are distinct, then logd/logd ¢ Q. It is enough to prove the
algebraic independency of the numbers

H(l“ a ) (deDnS, jeN, aeL\{Ry}rzo)
Pl Rk

and

o0 1 '
Z(Rdjlc—b)l (deDnNS, jeN, beL\{Ryr}ro, I €N).
k=0

Hence it suffices to prove that, for any distinct di,...,d; € DN S, for any m € N, for any
distinct ay,...,a, € L\ {R}k>0, and for any L € N, the numbers

II(1--2 (1<i<t, 1<j<m, 1<A<7)
1 R

and
> 1

——— 1<i<t, 1<5<L 1<AL 1<I<L
(Rdjk—-a)‘)l ( 151, sJsm, _.)‘_T: — & = )

k=0
are algebraically independent.

91



92

Let o, B (Ja| > |B|) be the roots of X — A; X — Ay = 0. We can express {Rn}, >, s
follows:
R, = gia™ + 928",

where g; = (R; — BRy)/(a — B),92 = (aRy — Ry) /(e — B) € Q(vVA) with A = A? + 4A4,.
Since A > 0, A;A; # 0, and R? # RyR,, we see that |a| > |8, |a| > 1, and g1g2 # 0.
Since Ay = —a8 = +1 and since d; is odd, we see that

Rd:.‘ = gladf - ngza_d? (k 2 0)

Let K be an algebraic number field including ay,...,a, and vA. Define Piin(2) €
Klz]] 1<i<t, 1<j<m, 1<A<7)by

ad a g}‘lzz“l{’c
Dija(2) = 1- . ~
’ g 1— 9710 Ar 2%

and Uyn(2) € K[[2]] (1<i<t, 1<j<m, 1<A<r 1<I<L)by

oo zdfk l
ijn(z) = Z < ) :

—1_di* -1 7k
¥=0 \1—axg; 2% — 01 g2 Ap 2%

Then each of ®;;,(2), U;;n(2) converges in |2| < 1 and

oo
q)”A(a_l):H 1—;'\*) (1<i<t, 1<j<m, 1<A< ),
k=0 d}
Uiala™) =gt 1 (1<i<t, 1<j<m, 1< <, 1<I<L)
igAl 91 (R — )l ) J H )
k=0 \taf* T O

Since Ry = 0 if g7'go = —1 and since A;Ry = 2R; if g7 g, = 1, the assumption of
the theorem implies —g7 g Az # 1 and thus we can apply Lemmas 7 and 8. Since each
®,;(2) satisfies the functional equation

a “lz j
Bon(2) = (1 ————3——) B (2)

1 - g7 934,22

and since each ¥;;)(2) satisfies the functional equation

‘ !
\I’i' = \IJ," df + z ]
() () (1 —axg 'z - 91_19214222)
by Lemmas 2, 7, and 8, the values ®;;3(a7!) 1 < i<t 1<j<m, 1 <A<Lr)
and \I’,;j)‘l(a_l) (1 < 1 S t, 1 < .7 < m, 1 < A < T, 1 S l S L) are a‘lgebra‘icauy
independent. O
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