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1 Schubert Eisenstein series
We try to explain the concept of Schubert Eisenstein series and possible arithemetic
implication. This is joint work with D. Bump and a survey talk at RIMS. The
original work can be found in [1]

1.1 Schubert Eisenstein series
Let us start with a general set up.

Let $G$ be a split reductive algebraic group over a global field $F$ . Let $\hat{T}$ be the
maximal torus of the group $\hat{G}$ with opposite root data, so that $\hat{G}(\mathbb{C})$ is the con-
nected Langlands $L$-group. Let $\nu\in\hat{T}(\mathbb{C})$ . Then $v$ parametrizes a character $\chi_{\nu}$ of
$T(A)/T(F)$ , where A is the adele ring of $F$ . Extending $\chi_{\nu}$ to the Borel subgroup
$B(A)$ , let $f_{\nu}$ be an element of the corresponding induced representation, so that

$f_{\nu}(bg)=(\delta^{1/2}\chi_{\nu})(b)f(g) , b\in B(A)$ . (1)

The flag variety $X=B\backslash G$ is a projective variety. We recall its decomposition
into Schubert cells. We have the Bruhat decomposition $G=\cup BwB$ , a disjoint
union over $w\in W$ , and let $Y_{w}$ be the image of $BwB$ in $X$ . The Schubert cell $X_{w}$ is
the Zariski closure of $Y_{w}$ . It equals

$u\in W\bigcup_{u\leq w}Y_{u},$

where $u\leq w$ is the Bruhat order. Let $G_{w}$ be the subset of $G$ that is the union of $BuB$

for $u\leq w$ . It is not a subgroup. Let $X_{w}(F)$ be the set of $\gamma\in B_{F}\backslash G_{F}$ belonging to
$X_{w}$ . Thus $X_{w}(F)=B_{F}\backslash G_{w}(F)$ . We may now define the Schubert Eisenstein series

$E_{w}(g, f, \chi)=\sum_{\gamma\in X_{w}(F)}f(\gamma g)$
.
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1.2 Bott-Samelsom varieties
Let us recall the Bott-Samelson varieties and their relationship with Schubert vari-
eties. We will denote by $\alpha_{i}$ and $s_{i}$ the simple roots and corresponding simple reflec-
tions. Let $w\in W$ and let $\mathfrak{w}=(s_{i_{1}}, s_{i_{2}}, \cdots, s_{i_{k}})$ be a reduced decomposition of $w$

into a product of simple reflections: $w=s_{i_{1}}\cdots s_{i_{k}}$ . Let $P_{j}$ be the minimal parabolic
subgroup generated by $B$ and $s_{j}$ . We define a left action of $B^{k}$ on $P_{i_{1}}\cross\cdots P_{i_{k}}$ by

$(b_{1}, \cdots, b_{k})\cdot(p_{i_{1}}, \cdots,p_{i_{k}})=(b_{1}p_{i_{1}}b_{2}^{-1}, b_{2}p_{i_{2}}b_{3}^{-1}, \cdots, b_{k}p_{i_{k}})$ . (2)

The quotient $B^{k}\backslash (P_{i_{1}}\cross\cdots\cross P_{i_{k}})$ is the Bott-Samelson variety $Z_{\mathfrak{w}}$ . There is a
morphism $BS\mathfrak{w}$ : $Z_{t\mathfrak{v}}arrow X_{w}$ induced by the multiplication map that sends

$(p_{i_{1}}, \cdots,p_{i_{k}})\mapsto p_{i_{1}}\cdots p_{i_{k}}.$

This map is a surjective birational morphism.
It is known that Bott-Samelson varieties are always nonsingular, so this gives a

resolution of the singularities of the Schubert variety $X_{w}$ . The map $BS\mathfrak{w}$ : $Z_{\mathfrak{w}}arrow X_{w}$

may not be an isomorphism. In special cases where it is an isomorphism, every
element of $X_{w}$ has a unique representation as a product $i_{\alpha 1}(\gamma_{1})\cdots\iota_{\alpha}k(\gamma_{k})$ , where if
$\alpha$ is a $ro$ot (in this case a simple root) $\iota_{\alpha}$ is the Chevalley embedding of $SL(2)$ into
$G$ corresponding to $\alpha$ , so the image of $\iota_{\alpha i}$ lies in the Levi subgroup of $P_{i}$ . Beyond
these special cases where $BS\mathfrak{w}$ is an isomorphism, in every case each element of $X_{w}$

has such a factorization, and if the element is in general position, it is unique, since
$BS_{t\mathfrak{v}}$ is birational. Let us call this a Bott-Samelson factorization. This means that
we may write

$E_{s1s_{k}}(g, v)= \sum_{k\gamma\in B_{SL_{2}}(F)\backslash SL_{2}(F)}E_{S1s_{k-1}}(\iota_{\alpha}k(\gamma_{k})g, v)$
, (3)

building up the Schubert Eisenstein series by repeated $SL_{2}$ summations. If $BS_{\mathfrak{w}}$ :
$Z_{\mathfrak{w}}arrow X_{w}$ is not an isomorphism, a modification of this method should be applica-
ble.

1.3 $GL_{3}$ Schubert Eisenstein series, Explicit Computation
Let us be more precise: let $G=GL_{3}$ and let

$\zeta^{*}(s)=|D_{F}|^{\frac{\epsilon}{2}}\prod\zeta_{v}(s)$ , $\zeta_{v}(s)=\{\begin{array}{ll}(1-T_{v}^{-s})^{-1} if v is nonarchimedean,\Gamma_{v}(s) if v is archimedean\end{array}$
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where we recall that $D_{F}$ is the discriminant of $F$ . For simplicity we will assume that
the character $\chi$ is unramified at every place. Find $v_{1},$ $v_{2}\in \mathbb{C}$ such that

$(\delta^{1/2}\chi)(y_{1} y_{2} y_{3})=|y_{1}|^{2_{1}\nu}\nu+2|y_{2}|^{\nu-\nu}21|y_{3}|^{-\nu_{1}-2\nu}2.$

We will denote this character $\chi_{\nu\nu}1,2^{\cdot}$ Also, take $f=f^{o}$ where

$f^{o}(g)=f_{\nu 1,\nu 2}^{o}(g)= \prod_{v}f_{v}^{o}(g_{v})$ .

Thus if $k\in K$

$f_{\nu,\nu}^{o}12((y_{l} y_{2}* **y_{3})k)=|y_{1}|^{2\nu+\nu}12|y_{2}|^{\nu-\nu}21|y_{3}|^{-\nu-2\nu}12.$

For each $w\in W$ normalize the Schubert Eisenstein series and denote

$E_{w}^{*}(g;v_{1}, v_{2})=\zeta^{*}(3v_{1})\zeta^{*}(3v_{2})\zeta^{*}(3\nu_{1}+3\nu_{2}-1)E_{w}(g;v_{1}, \nu_{2})$

and
$\hat{E}_{s}^{*}1^{S}2(\nu_{1}, v_{2})=E_{ss_{2}}^{*}1(\nu_{1}, v_{2})-E_{s_{2}}^{*}(v_{1}, v_{2})-E_{S2}^{*}(\nu_{2},1-\nu_{1}+v_{2})$ . (4)

Similarly

$\hat{E}_{s_{2}s1}^{*}(\nu_{1}, \nu_{2})=E_{s_{2}s1}^{*}(\nu_{1}, v_{2})-E_{S1}^{*}(\nu_{1}, v_{2})-E_{S1}^{*}(1-\nu_{1}+v_{2}, v_{1})$ . (5)

Theorem 1 [$1JE_{S1^{S}2}^{*}(g;\nu_{1}, v_{2})$ has meromorphic continuation to all $\nu_{1},$ $v_{2}$ . It has a
functional equation

$E_{1^{S}2}^{*}s(g; \nu_{1}, \nu_{2})=E_{S182}^{*}(g;\frac{2}{3}-\nu_{1}, v_{1}+\nu_{2}-\frac{1}{3})$

Moreover $\hat{E}_{s}^{**}1^{S}2(g;\nu_{1}, v_{2})$ is an entire function.

The similar result holds for $\hat{E}_{ss1}^{*}2(\nu_{1}, \nu_{2})$ .

96



1.4 Kronecker Limit Formula
Bump and Goldfeld proved the following result. If $K/\mathbb{Q}$ is a cubic field, and $\mathfrak{a}$ is an
ideal class of $K$ one may associate with $\mathfrak{a}$ a compact torus of $GL_{3}$ , and if $L_{\mathfrak{a}}$ is the
period of $\kappa(g)$ over this torus, then the Taylor expansion of the $L$-function $L(s, \mathfrak{a})$

has the form $\rho s^{-1}+L_{\mathfrak{a}}+\cdots$ . Therefore if $\theta$ is a character of the ideal class group
then $L(s, \theta)=\sum\theta(\mathfrak{a})L_{a}$ . The proof involves showing that the torus period of the
Eisenstein series equals a Rankin-Selberg integral of a Hilbert modular Eisenstein
series.

Considering Taylor expansions of $E_{w}$ for various $w$ at $\nu_{1}=v_{2}=0$ we get

Theorem 2 [lJ We have

$\kappa(g)=\frac{\rho}{3}\zeta^{*}(2)[\hat{E}_{s_{2^{S}1}}^{**}(g;0,0)+E_{s_{1}}^{**}(g;1,0)]+c_{0}.$

Furthermore
$\kappa(g)=\frac{\rho}{3}\zeta^{*}(2)[\hat{E}_{1}^{**}ss_{2}(g;1,0)+\phi_{S_{2}}(g)]+c_{0}’.$
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