0oooo0O0oooo
018740 20140 98-111 98

Poly-Cauchy numbers and poly-Bernoulli numbers
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1 Introduction

The Cauchy numbers of the first kind, denoted by ¢, ([5]), are defined by the
integral of the falling factorial:

cn=/0 z(z—1)...(z—n+1)dz.

The generating function of the Cauchy numbers of the first kind ¢, is given
by
x — z"
In(1+x) ; ol

([23)).
Cauchy numbers are not so famous, though they seem to have similar
properties to those of the Bernoulli numbers. The classical Bernoulli numbers

B,, are defined by the generating function

x = " 1
er —1 =ZBnE!- (Bl=—§) '

n=0

Before the terminology of Cauchy numbers appeared in Comtet’s book
([5]), the concept of the Cauchy numbers was first introduced by Nérlund
([24, pp.146-147]) in 1924. Here, the higher order Bernoulli numbers BY

are defined by
z \ N5 g0
(Z25) =2 B0% (el <20

n=0
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or

(11’1(1 +z))r _, 0o Br(Lr+n) "

— <1).
z r+n nl (Il )
n=0

See also [8, p.257,p.259]. Then

B®™ =/01(x—-1)(x—2)~--(x—n)dx

or

1
B,(ﬁ'_)1=—n/ z(z—1)---(z —n)dr.

0

Hence, ¢, = —B"Y /(n —1). Ch. Jordan studied the Bernoulli numbers of
the second kind b, ([13, p.131]), defined by

be = tis (1) = a0 = [ (%)

n

Hence, b, = ¢, /n!. In 1961 Carlitz ([4]) introduced the numbers 83,, defined
by

T > "
mita) ;5’%

Namely, 5, = c,

Cauchy numbers and Bernoulli numbers are much related to the Stirling
numbers of the first kind and of the second kind. The (unsigned) Stirling
numbers of the first kind [:J arise as coefficients of the rising factorial

n

x(:c—{-l)...(:c—{-—n—l):Z[n}xm.

m=0
The Stirling numbers of the second kind {:L} are determined by
n 1 « (m n
M- —ngzo<—1>ﬂ(j)(m—y) .
J:

There are many identities about the Bernoulli numbers. They are much
related to the (unsigned) Stirling numbers of the first kind [»] and the

n
m



Stirling numbers of the second kind { ::1} Some of them are
m|ln+1 1
n'z( D [m-l—l] ™ n+1’

m=0
-y (VSR

The corresponding identities of the classical Cauchy numbers are

Z{ }Gm—T

m=0

M=

m—O

2 Polylogarithms

The k-th polylogarithm function is defined by

Lik(fL‘) = Z ;mn_k .

m=

[y

The k-th polylogarithm factorial function is defined by

Lify(2) = Y EJ(mLJrT)'? .

m=0

For k > 2

SO

on the other hand, 4
-C-l—:z(a:Lifk(x)) = Lifx_1(z),

SO

Lify (z) =é / Lify_1(£)dt
0
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In special, for £ = 0,1 we have

Lig(z) = ] f , Lij(z) = —In(1 — x)
and
Lifo(z) = €, Lifi(z) = (e —1)/x.
For k = —r we have
1 " /r ;
Li_(2) = ———— N2 (r=01,2,. ..
(I) (1 _ x)’r+l ];0 <] > z (T )
([3]), where

()-8 1 )o-rew

are the Eulerian numbers.
On the other hand, for k = —r we have

Lif_r(x)=emi{r+1}xj (r=0,1,2,...).

—j+1

We have the record for the first some values 7.

Lifo(z) = €°,
Lif ;(z) = (1 + z)€°,
Lif 5(z) = (1 + 3z + 2°)e?,
Lif_3(z) = (1 + 7z + 622 + 23)¢?,
Lif_4(z) = (1 + 152 + 252 + 102® + z2*)e?,

Lif_5(z) = (1 + 31z + 9022 + 65z° + 152* + 25)e”.

In 1997 M. Kaneko ([18]) introduced the poly-Bernoulli numbers

Lig(1-e™) _ v O

1—e= "ol
€ n=0

When k = 1, B{" is the classical Bernoulli number with Bfl) =1/2.
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Recently, we [19] introduced the poly-Cauchy numbers cgk) by
Lify(In(1 + z)) = z <’°>"’
n=0

When k£ =1, cn) = ¢, is the classical Cauch number.
Poly- Cauchy numbers of the first kind L may be defined by

cg“)=/.../ (T122 ... zk)(T12Z2 . . . 2f — 1)
0 k 0

c(z129. .. 2K — N+ 1)dz1dzs . . . d2) -

In addition, poly-Cauchy numbers of the second kind &%) are defined by

1 1
és“) =/ / (—z122 . .. 28)(—2122 . .. T, — 1)
0 0

k

. '(—1131232. LT — N+ l)dl‘ld.’L'z .dxk.

The generating function of the poly-Bernoulli numbers are written in
terms of iterated integrals:

Y - Tl eds...dg=3 BOT
et —1 0 et — 1 0 et —1 .’Eu—z n m

k-1 n=0

e

k-1

An explicit formula for B® is given by

Bﬁk)=(_1)n2{;}% (n>0k>1). (1)

The generating function of the poly-Cauchy numbers can be also written
in the form of iterated integrals:

1 i !
dr...d
mi+a) )y (7 2)mITa) ) Folhte) "

g

k-1

—Zc(k)x _

n=0
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(k)

An explicit formula for ¢~ is given by
®) = (—1)”}3 ["] = (2)
" = lml (m+1)F

There are some relations between poly-Cauchy numbers and poly-Bernoulli
numbers.

Theorem 1. For n > 1 we have

k>_zzm;{ }{ 11} ®

llm—

-

=1 m=1

3 Duality theorem

It is known that the duality theorem holds for poly-Bernoulli numbers ([18]).

Namely,
B = BEY () k> 0).

It is due to the symmetric formula:
erty

ZZB k?k_ze”—f—ey—emﬂ/'

n=0 k=0

It follows that

-

B k)—Z( 1m+”m'{ }(m-l-l)’c

m=0
k
+1) (k+1
n ;(J ) j+1f+1

However, the duality theorem does not hold for poly-Cauchy numbers. In
fact, we have
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Proposition 1.

IS k);,jj;, =e'(1+2),

n=0 k=0

o0 [o o] y
D) P

n=0 k=0

By using Proposition 1 we have explicit expressions of the poly-Cauchy
numbers with negative indices.

Theorem 2 ([16]).

P = ﬁ;(—n“ﬂﬂ ( [;’ —n lng_'l]) {f o } ’

J_

k -
A(——k): —1)"4! n-l-l {k+1
=2 )J[j+L i+1)"

j=0

Moreover, using Theorem 2 with (2) we have the following congruence
results.

Theorem 3. For any positive integer k, R (mod 10) and &P =
&Y (mod 10). In special, when n = 1, for k > 1, cg_k_‘l) = cg_k)
(mod 30) and & A4 = ‘( % (mod 30).

Theorem 4. For k > 1 we have
% _ )0 (mod2) ifn=1orn=>4
|11 (mod2) ifn=23,

0 (mod2) ifn=1o0rn2>4
1 (mod2) ifn=23.



4 Sums of products
Sums of products of Bernoulli numbers

n!
Z WBil“'Bz‘m (m>1, n>0)
l1'4' +lm—n ’ m:

have been considered by many authors (see, e.g. [1, 2, 6]). When m = 2, one
has the famous Euler’s identity:

n

> (”) BiBy_i=—nB,_1—(n—1)B, (n>1). (3)
2
i=0
Kamano ([14]) considered the sums of products of Bernoulli numbers, includ-
ing poly-Bernoulli numbers

|
S®my= Y —B,---B, BY (m>1,n>0).

21 -
11+ Fim=n 1

21 00y im >0

Then, S& (n) satisfies the following relation:

Proposition 2.
“ met |+ 1
>y |1 0w

= [+1
nl ¢ ®)
— (n—m)‘zo[r]Bn —m—r (nzm)7
0<n<m-1).

Kamano also showed the explicit formulae S&) (n) for m = 2,3. For
example, when m = 2 we have
Proposition 3. Fork>1 andn > 0,

S(O)( ) = B(1)
S(k) ”Z B(a)
k—1

S5 (n)=BY +ny_ B,
=0
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It seemed to be difficult to give an explicit formula for S&(n) for m > 4,

but recently a general formula for all m > 1 is given.
Theorem 5 ([20]). Form >1,n >0 and k > 1, we have

S (n) = S (n),

8,00 =30 (M) 3 (1) G n )

r=0 =0
rer(R) X S [Te
m 22 ... mfm v n—-m+v»
.71+ “+im<k-1 v=1
J1reeedm 20
k
fn+2< )
(r
0
=S 3 (1) 0+ DOt
r=0 i=0
() T e [T]m,
.71+ +im<k v=1
J1seees im=2>1
Sums of products of Cauchy numbers
|
Z '—n‘TCnsz (mzl,nZO)
R TRERE 2
15000y im >0

were studied by Zhao ([25]). Consider the sums of products of Cauchy num-
bers, including poly-Cauchy numbers

n!
TEM = Y, oyl CGnale (21, 020).
!1+ +im=n 1200 tms
1500y im >0

Then, T (n) satisfies the following relation:
Proposition 4 ([22]).

9 m— m—+1
> (=)t [l+1 ] D (n)
1=0
5o Z (k)
= oy
- IZO: pardls (n—m—z‘) { l }cl-l-z (n > m);

0 0<n<m-1).
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When m = 2, we have the following explicit formulae.

Proposition 5 ([22]). Forn >0 and k > 1 we have
T3 (n) = cn + 11,

T2(k)(n) T(O) nz (])+ n—1) (J))

J=1
k-1

TSR m) = TOM) +n Z(Cffj) +(n-1)c?).

=0
Putting k£ = 1 in the second identity, we have
Corollary 1 ([25]).
"\ /n
5 (3)ecns=-nln - Bens ~ (= Dew (n20).
i=0

This is an analogue of Euler’s identity (3).
In general, we can obtain the following explicit expression of T® (n) for any
general m > 2.

Theorem 6. Forn >0 and k > 0 we have

TO(n) = T (n) + nT (0 — 1),

rm =5 (7) 3 (1) (533),;;:&( 1)

r=0 =0
1
(=1)""nl —iae—j - S
T T = = TGRS ol o RS
(n —m+ 1)! J1tdettim—1=k+m—2 j=1 x=0

153250 dm—121

r9m = 5 (%) (1) 0 1

r=0 i=0
i DRI IRNCREEES 3) SIS,
+ —_— o.m - m- m,K n)c .
(n—m+1)! J1tig+tim_1=k-m+1 7=0 x=0

J1:325001 Jm—120
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Prns(n) = Z {m":i 1} (Z:i: 11) o _(7;_—”;1?4’- 1!
(k=0,1,...,m—2)

and

m—2

5 Hypergeometric Bernoulli numbers and hy-
pergeometric Cauchy numbers

Hypergeometric Bernoulli numbers By, (N > 1, n > 0) ([7, 9, 10, 11, 12])
are defined by

1 YN Z
1P(LN+Lz) e =N 1an/n) Nn n!’

where 1 Fi(a;b; 2) is the confluent hypergeometric function defined by

Che o) — - (a)n 2"
1F1(a;b;2) = ; O]
with the Pochhammer symbol (z), = z(z +1)...(z +n—1) (n > 1) and
(z)o = 1. When N =1, By, = B, are classical Bernoulli numbers.
Hypergeometric Cauchy numbers cnn, (N > 1, n > 0) ([21]) are defined
by

1 _ (_l)N -1 N/N B i ) :_Iji
2Fl(]-, N’ N+ 1, _I) ]_n(]_ + .’L') _ En—]_ ( 1)n 1$n/n o N,n nl’
where o F}(a, b; c; z) is the hypergeometric function defined by

oFi(a,b;c;2) = Z (a)n b)n 2"

() n!’



When N =1, ¢;, = ¢, are classical Cauchy numbers.
We record of the first few values of ¢y p:

cno = 1,

N
N+1’
B 2N
T TN IRV ¥ 2)

6N(N?+ N +2)
N +1)3(N +2)(N +3)

AIN(N® + 5N* + 14N® + 24N? + 20N +12)
B (N +1)*(N +2)2(N +3)(N +4) ’
5IN(N7 + 8N+ 35N° + 96 N* + 160N3 + 184N2 + 116N + 48)

(N 4+1)5(N +2)%(N +3)(N +4)(N +5) '

CN,1 =

CN3 = (

CNg4 =

CNS5 =

The sums of products of hypergeometric Bernoulli numbers were studied
by Kamano ([15]) and those of hypergeometric Cauchy numbers are also
studied in [21].
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