goooboooobgon 161
0 18740 20140 161-173

Hypergeometric type generating functions of several variables associated
with the Lerch zeta-function (summarized version) *

Masanori KATSURADA
Department of Mathematics, Hiyoshi Campus, Keio Univeristy

(BIERZRIARY - B - BOPHE - HH Ef)

Abstract
This is a summarized version of the forthcoming paper [10].
Let s, 2 and (20,2) = (20,21,...,2,) be complex variables, and ¢(s, z,)) denote the

Lerch zeta-function defined by (1.1) below. We introduce in the present article a class
of generating functions and their confluent analogues, denoted by Zéf‘,\)(",’,ﬂ;zo,z) and

257,\) ("’ﬁ:;"1 ; 20, 2) respectively (see (2.1) and (2.3)), in the forms of the fourth Laurci-
cella hypergeometric type (of several variables) associated with ((s,z, A). It is shown that
complete asymptotic expansions of Zgl,\)("":yﬁ ; 20, 2) exit when 2o — 0 (Theorem 1) as well
as when zo — 0o (Theorem 2) through the sectorial region |argz — 6| < /2 with any
fixed angle 6y € [~7/2,7/2], while other 2;’s move through the same sector satisfying the

conditions z; < 20 (j = 1,...,n). Similar asymptotic results also hold for Z (",2 (%P; 29, 2)

a,
(Theorems 3 and 4) through the confluence operation in (2.3). Our main formulae (3.1)
and (3.4) (resp. (3.7) and (3.10)) first assert that Zéﬁ\)(sf;zo,z) (resp. 2&‘3(3’%—1 ; 20, 2))
can be continued to a meromorphic function of s over the whole s-plane, to the whole poly-
sector |argz;| < 7 (j = 0,1,...,n), and for all (B,7) € C* x (C\ {0,—1,...}) (resp. for
all (Br-1,7) € C* 1 x (C\ {0,—1,...})). We can further apply (3.1) and (3.4) to deduce
complete asymptotic expansions of (0/83)"‘2&1(’;?;20&) (m = 1,2,...) at any integer

arguments s = | € Z when (zg, z) becomes small (Corollary 6) and large (Corollary 8)
under the same settings as in Theoerms 1 and 2. Furthermore, several applications of
Theorems 1-4 in the cases of n = 1 and 2 are finally presented.

Introduction

Throughout this article, s = o + /=1¢, 2 and (20,2) = (20,21,...,2,) are complex
variables with |arg 2| < 7 and |argz;| <7 (j =0,1,...,n), and a-and ) real parameters
with a > 0. We hereafter set e(\) = €™V~ use the vectorial notation & = (T1,...,Zm)

with the abbreviation
(m):x1+...+xm

for any m > 1 and any complex z; (i = 1,... ,m), and further write ,,—; = (zy,... s Tm—1)
and z (11 xm)
y \z' 7y
for any y # 0. The Lerch zeta-function ((s, , A) is defined by the Dirichlet series
(1.1) (2,0 =D e(\)(I+2)° (0 =Res>1),
1=0

and its meromorphic continuation over the whole s-plane; this is an entire function when
A € R\ Z, while if A\ € Z it reduces to the Hurwitz zeta-function ¢(s,a), and so {(s) =
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((s, 1) is the Riemann zeta-function. We remark here that the notation (1.1) differs from
the original ¢(z,),s) due to Lerch [13], in order to retain notational consistency with
other terminology.

It is the principal aim of the present article to introduce a clasE of generating functions
and their confluent analogues, denoted by Zé’f\)("f ; 29, 2) and Zg?;)("ﬁz,‘"l ; 29, Z) Tespec-
tively (see (2.1) and (2.4) below), in the forms of the (fourth) Lauricella hypergeometric
type (of several variables) associated with ((s, z, A). We shall first show that complete

asymptotic expansions of Zg‘,\)( *P: 2,2) and Zé",\)("f’ : 20, z) exist when (zo, 2) becomes
small (Theorems 1 and 3) and large (Theorems 2 and 4) under certain settings on the
movement of (2o, z). Several applications of Theorems 1-4 will further be presented. Be-
fore stating our main results, some necessary notations and terminology will be prepared.

Let I'(s) be the gamma function, (s)x = I'(s + k)/I'(s) for any k € Z the shifted

factorial of s, and write

r()-r(ty:t) - Dl

for complex vectors g = (u1,...,un) and v = (v1,...,vx). In the sequel the sets of
non-negative and non-positive integers are respectively denoted by No = N U {0} and
~Ny = {—k | k € Ng}. The (fourth) Lauricella hypergeometric function of m-variables z;
(i=1,...,m) is defined by the m-ple power series

(12) Fl()m) (a;ﬂl,;y--’ﬁm;l‘l,...,ﬂ?m)
_ i (a)k1+"'+km (ﬁl)’u e (/Bm)km ‘,L.Ilﬂl e xfnm

Kty o =0 (’)’)k1+...+kmk1! e km'

for complex parameters o, G; (i = 1,...,m) and v # —k (k € Ny), where the series
converges absolutely in the poly-disk |z;] < 1 (i =1,...,m); this is continued to a one-
valued holomorphic function of (o, 3,7, ) for all (o, 3,v) € C™** x {C\ (—Np)}, and
« in the poly-sector |arg(l — z;) — @o| < 7/2 (¢ = 1,...,m) for any angle fixed with
wo € [-7/2,7/2] (cf. [1]). Note that (1.2) reduces when m = 1 to Gauf’ hypergeomtric
function oFy(%P;z), and when m = 2 to (the first) Appell’s hyepergeometric function
Fy(*PyP2; 21, ;). The abbreviations

Bk = Bl Bm)ems Kl =kal- - kml,

k _ .k k
=2 T

for k = (k1,...,km) and & = (z1,...,Zm) allow to rewrite (1.2) in a more concise form

m) (a, B..\ _ (@) (B
Fp (a’yﬁ,m)_;o I z*,

where (and hereafter) the summation condition k > h means that the sum runs over all
indices k with k; > h; (j = 1,...,n). Furthermore, a new class of m-variable hyperge-
ometric functions Fig™ (®@n-1;x) is obtained from FS™ (%P ;) through the confluence
operation

(1.3) Fi (a, )@m,y—la Pow ., %:_ ) m 7 (a, qym_l; m)

v @ (Br-1)km-1_k
—kZ Mwk
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Note that the case m =1 of (1.3) gives Kummer’s hypergeometric function

ﬁz()l) (g;x) =,F (g;:c) = Z (’()’(;tlzlkflmk

k=0

for |z| < 400, while m = 2 the confluent form of Fy(*PuP2; 3, 1,), defined by

FyY (a’fyﬁl;an,xz) =& (a’ﬁIQCL'l;.’IIz) - Z (ritks (B zhghe

1
v k1, ka=0 (7)k1+k2k1!k2! 2
for |z;] < 1 and |z,] < +o0 (cf. [4]).
Main objects
We can now introduce the hypergeometric type generating function Zg\)(s;/ﬁ ; 20, 2) of

(n + 1)-variables (29, 2) = (29, 21,...,2n) associated with ((s,a + 2, ), defined by the
n-ple power series

(2.1) Zgﬁ\) (siyﬂ; 20,2) - Z (S()()M#C(s + (), a + 20, \)(—2)*
k1, k=0 Y (k) K

- i ($)krtthin Bty (B )i
ki,..,kn=0 (7)k1+"-+kn kil k!
X C(S + kl 4 kn: a + 2o, )\)(_Zl)kl . (_Zn)k”,

which converges absolutely in the domain |2;| < |[Im 2| (j = 1,...,7n). The change of the
order of summations in (2.1) readily implies that

(2.2) z (3’7'6; 20, z) = ZO: e(N)(a + 1+ 2) " Fp” (S’vﬂ; _a+zz—+z0)

for o > 1; the cases 8 =0 and z = 0 of (2.2) both reduce to

Zé?)\) (S,’YO;Z,Z()) = Zé:n)\) (SZY’B; 20, 0) = C(s,a + Zo,>\),

while the cases n = 1 and n = 2 respectively to

28 (%P20.2) = l;ew)(a b a) R (5 ),

e(X)a+1+42)"°

M8

Z(S,,z))\ (S’ /6%/, ;82; 205 21, 22) =
1=0

21 V)
X F <8,,81,,62;_ — )
A a+l+z a+l+z

for ¢ > 1. It is further possible to obtain a new class of generating functions, denoted by
Zf;)( s’ﬁ;‘-l s 20, 2), from Zé’f\)( B 29, 2) through the confluence operation

(23) Zéﬁ\) (57 ﬂnﬂ—y—h ﬂn; 20, Zn—1, Z_") - 2{5’3? (S;%n—-l; 20, Z)
Br (ﬂn — -|-oo)

—sp(n y Mn—1. 2
=2 eat 1+ ) FY (Mot — )
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for ¢ > 1, where the change of the order of summations in the last expression gives

2(m) (8, Bp-1. o )y (Ba-1)kn- _
(24) Zox (s 5 1,20,2) = go Mok (s + (k),a + 20, \)(—2)"

in the domain |z;| < |Imz| (j =1,...,n).

We shall give in the remaining of this section a brief overview of the history of research
related to various generating functions associated with specific values of zeta-functionst.
Several power series involving the particular values of ((s,a) were first studied by Sri-
vastava [18][19][20], while Klusch [11] treated the Taylor series for ((s,a + 2, ) in the
variable z € C, and gave its many interesting applications. Hypergeometric type gener-
ating functions of ¢(s) were first introduced and studied by Raina-Srivastava [17] and the
author [6][7], independently of each other; we refer the reader to the comprehensive ac-
count [21] into this direction. Hikami-Kirillov [5] more recently investigated hypergeomet-
ric generating functions of various L-function values in connection with g-hypergeometric
series and quantum invariants. Hypergeometric type generating functions associated with
¢, (s,a,w) (a weighted extension of (s, a, A)) were first introduced and studied by Bin-
Saad and Al-Gonah [3] and further by Bin-Saad [2]. Li-Kanemitsu-Tsukada [14] made
Maijer’s G-function theoretic interpretation of the results in [6][7], while similar G-function
theoretic study on the results in [8] was made by Kuzumaki [12]. We next mention sev-
eral relevant asymptotic aspects into this direction. Complete asymptotic expansions of
¢(s,a+z, ) for small and large z € C in the sector | arg z| < 7 was established by the au-
thor [8]. Matsumoto [15] investigated complete asymptotic expansions of (a(s,a | (1, w))
(Barnes’ double zeta-function) for small and large basis parameter w € C in |argw| < .
Onodera [16] more recently studied complete asymptotic expansions of (n(s,a + = | w)
(Barnes’ multiple zeta-function) for small and large z € R, and one of w;’s in the basis
parameters w = (wy, .. . ,wm) € RT, where R, denotes the set of positive real numbers.

Asymptotic expansions for small and large (z, z)

To describe our results we introduce the generalized Bernoulli polynomials Bi(z,y) (k €
Ny) for any parameters z,y € C by the power series

zezz

_ o~ Bi(z,y) &
=2 AR

yer —1 P

centered at z = 0; this in particular gives

1 ify=1;
Bﬂ("”y)={0 g2l

Note that By(z) = Bx(z,1) are the usual Bernoulli polynomials, and so By = By(0) are
the usual Bernoulli numbers. The vertical straight path from u — ico to u + 900 (with
u € R) is hereafter denoted by (u).

We first state the asymptotic expansion of Z (",\) (*P; 29, z) when (2o, z) becomes small.

a,

Theorem 1. Let 6, be any angle fized with 6y € [—7/2,7/2]. Then for any integer K 2> 0,
in the region ¢ > 1 — K except at s = 1 the formula

(3.1) Zé"A) (S:Yﬂ; 20, z) =SHhk (s’,y'a; 20, z) + Rl x (Siy'a; 20, z)

tThe author would like to make apology for insufficiency (in many respects) of the present survey.
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holds for all (29,2) in the poly-sector |argz; — 6p| < 7/2 (j = 0,1,...,n) and for all
(B,7) € C* x {C\ (-Ny)}. Here

— (—1)k .
(32) S::;\,K(S:Yﬂ; 2072) = kZ %)_k'pl())< If)/,ﬁ: —ZEO)C(S + kaa) )‘)Z(’)c’

0

and R;" rk 8 the remainder term expressed as

(33) Risx (S’vﬁ; %0; z) - zml/—_l (uk) F(S T _w) Fg (ﬂffﬂ; _Zio)

X ((s +w,a,A)zydw,

where ug is a constant satisfying max(1 — o, K — 1) < u} < K. Formula (3.1) further
provides the analytic continuation of Zgi\)(s’f ; 20, 2) over the whole s-plane except at s =
1, to the poly-sector |argz; — 6y| < /2 (j = 0,1,...,n), and for all (B,7) € C* x
{C\ (—No)}. Moreover if (z9,z) is in |argz; — 6| < 7/2 — & with any small § > 0
(4 =0,1,...,n), and satisfies

5l <zl G=1,...,n)

for some constant ¢ > 0, then the estimates

(n) —k,ﬂ.__z_ _ + S)ﬁ. — K
P (7R, ZO) =0(1)  and  RE,x(%P520,2) = O(|f¥)
Jollow for all K > k > 0 as zg — 0 through |arg zg — 65| < 7/2 — §, in the same region
of (s,B,7) above, where the constants implied in the O-symbols may depend on a, K,
¢, s, B, v and &; this shows that (3.1) with (3.2) and (3.3) gives a complete asymptotic
expansion in the ascending order of zy as zy — 0 through the sector | arg zo — o| < 7/2.

It can be seen that limg o R}, 5 (%P;20,2) =0 for |z;] < a (j =0,1,...,n); this
yields the following corollary.

Corollary 1. Let (s,3,7) be as in Theorem 1. Then the infinite series

X 4Nk
235 2) =Y C e (k8 =2 )Cls + ko 02}

holds for all (2o, z) in the poly-disk |2;] < a (j =0,1,...,n).

Corollary 2. Function Zi";\)( B 20, 2) is continued to a one-valued meromorphic function
of s over the whole s-plane, to the whole poly-sector |arg zil <7 (j=01,...,n), and
for all (B,7) € C* x {C\ (=Ny)}; its only singularity, as a function of s, is a (possible)
simple ple at s = 1 with the residue By(a,e())).

We next state the asymptotic expansion of Zéﬁ? ( s’f ; 20, 2) when (2o, 2) becomes large.

Theorem 2. Let 6 be any angle fized with 6y € [—7/2,7/2]. Then for any integer K > 0,
in the region 0 > —K ezcept the point at s = 1 the formula

(3.4) A (3’75; zo,z) =So,x (S’Vﬁ; zo,z) + R,k (s’f; 20, z)
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holds for all (29,2) in the poly-sector |argz; — 6p| < /2 (j = 0,1,...,n) and for all
(B,7) € C" x {C\ (—Nyg)}. Here

_ (s T DMk o (s + K, 8, _ 2 "
(3.5) Sa’,\_K( N ;zo,z) = Z WFD ( v ;_%)Bk+1(a’e(’\))z(-)_s ;
k=-1 ’

and R,  is the remainder term expressed as

(3.6) R, x (S,WIB; 2o, z) = 27T\1/__1 - F(s + w, —w) Fo (—iffy,ﬂ; _Zio)

X ¢(s 4+ w,a, \)zydw,

where uy is a constant satisfying —0 — K < ux < min(—oc — K + 1,0). Formula (3.4)
further provides the analytic continuation of Zé’;)( ’:{3 ; 20, 2) over the whole s-plane except
at s = 1, to the poly-sector |argz; — 6p| < 7/2 (j = 0,1,...,n), and for all (B,7) €
C™ x {C\ (—Ng)}. Moreover if (2, 2) is in |arg z; — 6p| < 7/2 — § with any small 6 > 0
(j =0,1,...,n), and satisfies

lzjl <clo|l  (G=1,...,n)
for some constant ¢ > 0, then the estimates
FR(TRP-2)=00)  and B (%fi20,2) = Ol 7)
0

follow for all K > k > 0 as 20 — oo through |arg zg — 6y| < m/2 — 6, in the same region
of (s,8,7) as above, where the constants implied in the O-symbols may depend on a, K,
¢, s, B, v and &; this shows that (3.4) with (3.5) and (3.6) gives a complete asymptotic
ezpansion in the descending order of 2y as zg — 0o through the sector | arg zg — 6p| < /2.

The cases s = —1 (I € Ny) of Theorem 2 reduce to the evaluations in finite closed form
of ng\)(“:f 20, Z)-

Corollary 3. Let (B,7) be as in Theorem 2, and (2, 2) in the poly-sector | arg z;—6o| < 7
(j=0,1,...,n) with any angle fized with 6y € [-7/2,7/2]. Then for anyl € Ny we have

l

o 1 l+1 n - z -

23(4P5m02) =~rn 30 (1028 (5 2 Bente et
k=-1

The asymptotic expansions of é\é’t\) (*P2-1; 29, 2) can be derived from our main formu-

lae (3.1) and (3.4) through the confluence operation in (2.3); this asserts the following
Theorems 3 and 4.

Theorem 3. Let 6y be any angle fizred with 6y € [—7/2,7/2]. Then for any integer K > 0,
in the region 0 > 1 — K except at s = 1 the formula

67) BBt s) = (B i05) + R (V202

holds for all (29,2) in the poly-sector |argz; — 6ol < 7/2 (j = 0,1,...,n) and for all
(Bn-1,7) € C** x {C\ (~No)}. Here

K-1

- —1)*(8)k am) /— z
(38) S::;\,K (S’ nyn_l; 20, Z) = kZ %#FI(D )( k’r)/ﬁn—l; ——Z-E)C(s + ka a, )\)z(l)c’
=0
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and R7,  is the remainder term expressed as

~ 1 - — z
9 + (5: :Bn—l. — s+ w, w) () w, :Bn—l. =
(3 ) Ra,z\,K ¥ 1 205 Z) 2,”\/?1 (u}) F( ) FD < Y ’ Zo)
x ¢(s + w, a,\) 2y dw,

where uj is a constant satisfying max(l — 0, K — 1) < u} < K. Formula (3.7) further
provides the analytic continuation of 25,71\)(3’3;-1;20,@ over the whole s-plane except at
s = 1, to the poly-sector |argz; — 6o| < 7/2 (j = 0,1,...,n), and for all (Bn-1,7) €
C™ ! x {C\ (—No)}. Moreover if (29, z) is in | arg z; — 6| < 7/2— 6 with any small § > 0
(4=0,1,...,n), and satisfies

7l <ol (G=1,...,n)

for some constant ¢ > 0, then the estimates

aSm) (—k h—1. _ % R yEn—L. =
FO(Thf-2) =0 and  Rbe(F20,2) = O(l0f)

Jollow for all K >k > 0 as 29 — 0 through | arg 2o — 65| < 7/2 — 8, in the same region of
(8,Bn-1,7) above, where the constants implied in the O-symbols may depend on a, K, c,
S, Bn-1, ¥ and &; this shows that (3.7) with (3.8) and (3.9) gives a complete asymptotic
ezpansion in the ascending order of zy as 2o — 0 through the sector | arg zg — 6g| < 7/2.
Corollary 4. Let (s,B,-1,7) be as in Theorem 8. Then the infinite series

= > (= 1)%(8)k 50m) /—

Zg;) (S’ qun—l; %0, Z) = %Fg}) ( k’r)'/an—l; _—z—)C(s + k; a, )‘)Z(’)C

k=0 Z0

holds for all (2, z) in the poly-disk |2;] < a (j =0,1,...,n).

Theorem 4. Let 0 be any angle fized with 6y € [—/2,7/2]. Then for any integer K > 0,
in the region o > —K except at s = 1 the formula

(3.10) 252 (s, %"_13 20, Z) = §¢1—AK (S’ @yn_13 20, z) + ﬁ;,\x (s, @y"—l; 2, z)

holds for all (zy,2) in the poly-sector |argz; — 6y| < 7/2 (j = 0,1,...,n) and for all
(Bn-1,7) € C" 1 x {C\ (—Ny)}. Here

3~ (5,8 = DXk 5 (s + & Jé; z
N

!
b1 k 20

X Byy1(a,e(N)zg* ",

and R, y is the remainder term expressed as

B 1 s+ w, —w\ 5 (—w, Bo_1.  *
3.12 R; (s’ﬂ”‘l;z ,2) = r ’ )F ( ) pn 1;———)
(3.12) ANy 0 ) 2mv=1 Jwg) ( s ? 7

X ¢(s +w,a,\)zy dw,

where uy is a constant satisfying —o — K < uyx < min(—o — K + 1,0). Formula (3.10)
further provides the analytic continuation of Zg\)(s’ﬁ;-l : 20,2) over the whole s-plane



168

except at s = 1, to the poly-sector |argz; — 6g| < 7/2 (j = 0,1,...,n), and for all
(Bn-1,7) € C" 1 x {C\ (—No)}. Moreover if (20, 2) is in | arg z; — o] < 7/2 — 6 with any
small6 >0 (j=0,1,...,n), and satisfies

i <cal  G=1,...,n)

for some constant ¢ > 0, then the estimates

F(n) (s + k’y'@n 1. ZO) =0(1) and ﬁ;,\,K (S,@yn—l; 20, z) = O(|z0|"a—K)

follow for all K > k > 0 as zg — oo through | arg zo — 6y| < w/2 — 6 in the same region of
(s,Bn-1,7) above, where the constants implied in the O-symbols may depend on a, K, c,
S, Bn-1, ¥ and §; this shows that (3.10) with (3.11) and (3.12) gives a complete asymptotic
expansion in the descending order of zy as zg — oo through the sector | arg zp — 6| < 7/2.

Corollary 5. Let (83,7) be as in Theorem 4, and (2, 2) in the poly-sector | arg z;—6y| < 7
(=0,1,...,n) with any angle fized with 6y € [—7/2,7/2]. Then for any ! € Ny we have

2 (M) == 35 (1) (D)t

Asymptotics for derivatives

We define the generalized Euler-Stieltjes constants 7, (a,e())) (m € Ny) and the modified
Stirling polynomials 0., »(z) (m,n € Ny) respectively by the power series

¢(s,a,A) = ————= ae/\) Z’ymae )(s—1)™
m=0
centered at s = 1, and
1 —x m o __ = am,n(a:) n
(1= (- log1 = )y =32

centered at z = 0. Note that o, ,(2) = 0 for 0 < n < m. We further set

Cklm(a e )\)) = Z( Uj,k(l) (ai)m—jc(s’a, )‘)

s=l+k

for any k,l,m € Ny. Then Theorem 1 yields:

Corollary 6. Let (8,7, 2) be as in Theorem 1. For any integer K > 1 the following
asymptotic ezpansions hold as zg — 0 through | arg 20— 6o| < /2~ 3§ with any § > 0, while
other z;’s move through the same sector satisfying the conditions |z;| < c|zo| (j =1,...,n)
with some constant ¢ > 0:

i) when s — 1,

im ()" {1 (Fr) - 2

K- l k

= mhm(a,e) + 3= - Chamla, N ES (758, -2) 2k + 0(1al);
k=1
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i) whens=1(1=2,3,...),

(52) 23 0.2)

It is known that lim,_,1{¢(s,2) —1/(s—1)} = yo(z ) = —¢(2) = —(I"/I')(z). The case
(A,B8) = (0,0) above reduces to the classical Taylor series expansion of 1(a -+ z) (cf. [4]).

Corollary 7. For |z| < a we have

Yla+2) = ¢(a) —i{(Z%)C(l+k,a)+cl(1+k,a)}zk

k=1 h=1

We next define the polynomials Py, Qk1m € Cl[z]][y] (k,l,m € Ny) by

(l+1 i—j—1
le(,y,:vy) Z(m ! {Z (5 —19)!
0 )5 (o)
X (%) FD (’Y ;& i1 ( y) )
B. _ S 7i,5(—
lem(fyaw y) JZ m j)' Z (] _ ’l)‘
Corollary 8. Let (8,7,z) be as in Theorem 2, and I, m € Ny arbitrary. Then for any
integer K > 1+ 1 the asymptotic expansion

i=0
() )
((;95) Z(n)( vﬁ’zﬂ’z) W

= —Bo(a, (M) P (5 2 . ,log 2
0

-1
K- 1 1)k+1

S e 0 G B2

- ,log zo)

+O(l20]~ log™ |20

holds as zg — oo through |arg zo — 6p| < 7/2 — § with any § > 0, while other z;’s move
through the same sector satisfying the conditons |z;| < c|z| (j = 1,...,n) with some
constant ¢ > 0.

It is known that (8/0s)((s, 2)|,_o = log{I'(2)/v2r} (cf. [4]). The case (n,8) = (2,0)
and A € Z above reduces to the following variant of Stirling’s formula (cf. [4]).

Corollary 9. For any integer K > 0 the asymptotic expansion

—1)*1B;11(a) Lk
POES)

1 1 K——l(
logl'(a+2) = (z+a— 5) logz+—2—log(27r)+kz:;

+ O(|2|"¥ log |])
holds as z — oo through |argz| < m — § with any small § > 0.
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Applications of our main formulae with n = 2

One can observe that the case (n,v) = (2, s) of (2.2) and (2.4) reduce respectively to the
expressions

(2) saﬂlaﬁZ- ): - s —21— i
(5.1) ZM( 1072 20,21, 22 ;e()\l)(a—i—l-i—x'.'o) (1+a+l+z0)
-3
X (1 + ——22—) ’
a+l+ 2z
and
2(2) (s, Bi. - s _a \™”
(5.2) Za,A( sl’ZO’ZI’ZZ) z=oe)‘l Ja+1l+z)” (1+a+l+zo)

e (- %)
xp| — —— .
P a+l+ 2

Theorems 1 and 2 in particular assert on (5.1) and (5.2) the following corollaries.

Corollary 10. Let 6y be as in Theorem 1. The for any integer K > 0, in the region
o >1— K except at s =1 Function Zfﬁ(svﬁ};f’? i 20, 21, 22) 18 represented as (3.1) in the
poly-sector | arg z; — 6p| < 7/2 (j = 0,1,...,n) and for all (81, B2) € C?, where

SIA,K(S’ﬁé’ﬁ2;ZO,Zl;22) = Z ( ) (S) ( k, :815,32

k=0

P zo)((s—i—k a, \)zE,

and

+ 87/81a;32- ) — 1 I"(S+w’_w)F (_wn@l:,@Z-_ﬂ _Q)
Raax ( s AL % 2mv—1 Jowt) 5 ' S 0z oz
x ((s +w,a,\)zydw.

These formulae give a complete asymptotic expansion of 2,"57,\)(’42”32 1 20,21, 22) @S 29 — 0
through | arg 2o — 6g| < 7/2 in the sense of Theorem 1.

Corollary 11. Let 6y be as in Theorem 1. Then for any integer K > 0, in the region
o > —K except at s = 1 Function A )‘( 8BLb2 ; 20, 21, 22) s Tepresented as (3.4) in the
poly-sector |arg z; — 6| < 7/2 (j =0,1,. ,n) and for all (81, B2) € C%, where

- (851,52 = (CD* Sk 1o (s +k,B1,B. A1 _*2
Sa,A.K( s ;20,21,22) = Z WFI( ) ;—5’—2_0)
X Bra(a,e(N)z5° %,

and

- S
R K( ’/8;’/82;20’21,22) =

a,,

I“(s + w, _w)F (_waﬁlaﬂ2; __:z_l, _2)
s 1 s 2’ 2

1
2V =1 Jwg)
x C(s + w,a, A)zy dw.

These formulae give a complete asymptotic ezpansion of Zfi\)( $PLPz 2,21, 22) GS Zp — OO
through | arg zq — 0o| < m/2 in the sense of Theorem 2.



Corollary 12. Let 6y be as in Theorem 1. Then for any integer K > 0, in the region
0 >1— K except at s = 1 Function Z( )(551 29, 21, 22) 15 represented as (3.7) in the

poly-sector |arg z; — p| < 7/2 (j =0,1,...,n) and for all B, € C. Here
K—1
= —1)k(s — 2z
S;:,\, ( ’581,20,21,2’2) = Z ( 36'( )kgpl( kéﬂl;_i’_i)g(s+k, a, \)zg,
and
o+ Saﬁl. ) — 1 (S+w7 —w (_wa Bl-_il_ _é
Ra,A,K( 5 170,21, 22 27V Juzy r s )451 s T gy Zo)

X C(s + w,a,\)zy dw.

These formulae give a complete asymptotic expansion of Z( )(Sﬂ1 20,%21,%2) @S zg — 0
through | arg zg — 6y < 7/2 in the sense of Theorem 3.

Corollary 13. Let 6y be as in Theorem 1. Then for any integer K > 0, in the region
o > —K except at s = 1 Function Z( )(351 29,21, 22) s represented as (3.10) in the
poly-sector |arg z; — 6p| < 7/2 (j =0,1,...,n) and for all B, € C. Here

K-1
g;A,K( I ZO,Z],Zg) = Z m@1<5 +;C,,81;_ﬂ
1

22 —s—k
——= 1B
s ! £ (k+1)! o 20) k+1(a, e(A))zg

and

B- (85 ) __ 1 (S-HU, —w)@ (—waﬁl._ﬂ __EE)
Ra,)\,K( 5 320521, 22 /1 (uj_()F s 8 T T
X ¢(s +w,a,\)zy dw.

These formulae give a complete asymptotic expansion of A A(*‘r"1 20,21, 23) GS Zg — OO
through | arg zg — 6y| < m/2 in the sense of Theorem 4.

Further applications
We define for z,y € R, and for ¢ > 1 the functions

oo cos {ﬂArctan <—+%—ﬁ) }
Can(s, B;,y) =Ze Ya+l+z)"* a ,

B/2
{1+ (7))

o sin {ﬁArctan (ﬁ}l!ﬁ) }
Sa (s, 85z, y) =Ze M)(a+1+z)™°

B/2
= {1+<a+?lJ+x)2}

and their confluent forms

(55,9) = 3o+ 1+ 2) cos (),
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§a,,\(s; z,y) = i e(M)(a+ 1+ z) °sin (__1!___)

— a+l+zx
It is in fact possible to show that Theorems 1 and 2 are valid when n = 1 in a wider sector
max(—m,argzp — 7) < arg z; < min(~, arg zy + ),

and this allows us to take 2y = z and z; = e¥™/?y with argz = 0 and argy = 0; the
following Corollaries 14 and 15 are derived.

Corollary 14. Let (s,3) be as in Theorem 1. Then for any s € C except at s =1~k
(k € Ny), and any z,y € R with |z|, |y| < a the following formulae hold:

Ca(s,B;z,y) = 22 { ( kB, zy)+ F( ’Z’ﬁ;%w)}C(s-i-k,a,)\)x",

N o0 - k 1: _ —.
Con(s;2,y) = % kZ: g——l)k!ﬂ{lﬂ (_;,k; gy) + 1F1( sk; %) }C(s +k,a, \)z*
=0

and similarly,

(5,8;2,9) = %i - (s)’“{ (TREY) R (RS )}C(s+ka>\)

1
Sualsiz) = 5;

(—l%ﬁ{lFl(—‘sk;%) 1F1( ka iy)}((3+k:aa)‘)xk

Ti‘Ms

Corollary 15. Let (s,3) be as in Theorem 2. Then for any integer K > 0 in the region
o > —K except at s = 1 — k (k € Ny) the following asymptotic expansions hold as
x — 400, while y satz’sﬁes y<Lz

X Bk+1(a, e(A\)z™*F + O(x'”'K),

1)k+1(s), s+k W s+k —iy
aA(SIy) 22 (k+1)' {1F1< s 7';)+1F1( P ,—x—-)}
X Brya(a,e(N)z~*"F + O(z~7F),
and similarly,
1 K-1 (—1)k+1(3)k & Zy Tk _Zy
aA(SBSCy) 21 ZW{2F1(3+S)B;;)_2F1(S s,'B,T)}
1
X Byi1(a,e(N)z~*7% + O(z™7F),
~ 1 K-1 _1 k+1 . .
Sz =g 3 ST g (04K 8) gy (o 1k 7))

%~ (k+1) z

X Brr1(a,e(N)z™*% + O(z7¥).
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