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Continued fractions and Dedekind sums for function fields
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1 Introduction

For coprime integers a and ¢ > 0, the classical Dedekind sum d(a, c) is defined by

c—1
d(a,c) = %ckZ;COt <£C]E> cot (Z"_’cfﬁ) . (1)

For coprime positive integers a and c, it holds that

1 1
d(a,c)+d(c,a)=ﬁ (a+E+——3>;

C a ac

this is called the reciprocity law. The value of d(a, c) has been investigated. Rewrit-
ing (1) in terms of the sawtooth function, we can easily see that d(a, c) is a rational
number. Rademacher [4] proved that d(a, c) is not bounded above and below in the
neighborhood of each a/c. Rademacher and Grosswald [5] posed the following two
questions:

1. Is {(a/c,d(a,c)) | a/c € Q*} dense in R??

2. Is {d(a,c) | a/c € Q*} dense in R?

Hickerson [3] answered them using the theory of continued fractions.

As is well known, there is an analogy between algebraic number fields and function
fields. For example, A := F,[T], K := Fy(T), and Ko, := F,((1/T)) are similar
to Z, Q, and R, respectively. Each A-lattice is an analog of a lattice in C. In [1, 2],
we introduced Dedekind sums and their higher-dimensional generalization for a given
A-lattice in a function field, and we established the reciprocity law. The A-lattice L
corresponding to the Carlitz module defines the Dedekind sum s(a, c) (see Section 2),
which is very similar to d(a, c). In this report, we answer the analogous questions for
s(a, c).

2 Dedekind sums

2.1 A-lattices and Drinfeld modules

Let C be the completion of an algebraic closure of K; it is an analog of C. A
rank r A-lattice is a finitely generated A-module of rank r such that it is discrete in



Coo. For such an A-lattice A, we define the infinite product e, (z) by

ea(z) =z H (1—;—).

0#AEA

This product uniformly converges at a bounded set in C,., and defines a map e, :
Cs — Cw. The function e, (2) has the following properties:

(E1) ea(z) is entire in the sense of rigid analysis;

(E2) ep : Cx — Cy is surjective [F,-linear, and A-periodic;

(E3) e, has a simple zero at each point in A, and no further zeros;

(E4) dep(z)/dz =€)\ (2) = 1.

For a € A, there exists a unique polynomial ¢,(z) = ¢2(2) = 3" 1;(¢)27 such that
¢a(en(z)) = ealaz) holds. Let 7 : 2 = 29 be the Frobenius map, and let Coo{T} be
a non-commutative ring in 7 with the commutation rule ¢ = 7¢ (¢ € Cs). There
exists a unique positive integer r such that for any a € A \ {0},

rdega
¢a= D L@  (lo(a)=a).
i=0
Then, the map ¢ : A — Coo{7}, a — ¢, is called a rank r Drinfeld module over
Coo. The map ¢ is an F,-algebra homomorphism; hence, the values ¢o(a € A) are
determined by ¢r. The rank 1 Drinfeld module p with py(z) = Tz + 27 is called the
Carlitz module. The Carlitz module and a Drinfeld module of rank > 2 are similar to
the multiplicative group G,,, and an elliptic curve, respectively. There exists a bijection
between the set of rank r A-lattices and the set of rank r Drinfeld modules over Coo,
defined by ¢a(ea(2)) = ea(az) (a € A). The A-lattice L corresponding to p is similar
to 27, and each A-lattice of rank > 2 is similar to a lattice in C.

2.2 Dedekind sums

Let L be the A-lattice corresponding to the Carlitz module p. For coprime a,c €
A\ {0}, we define the inhomogeneous Dedekind sum s(a, c) by

1 AN A
s(a,c) = = Z er (—) er <—> .
¢ 0#£eL/cL ¢ €

When L/cL = 0, s(a,c) is defined to be zero. Using the Galois theory, we see that
s(a,c) € K. By (E2), it holds that s(a,c) = 0if ¢ > 3. Thus, henceforth, we assume
that ¢ = 3 or 2. The reciprocity law for s(a, c) is as follows.
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Theorem 2.1 (Reciprocity law) For coprime a,c € A, we have

1 a c 1 .
i ifg=23,
_JT3-T\c a ac
s(a,c) + s(c,a) = 1 2 ¢ 1.1 1 f
= (2yS 44 41) ifg=2
T4+T2< +a+a+c+ac+) He

c
This result follows from the fact that the sum of all residues of 1/(2p4(2)p.(2)) is zero.

2.3 Continued fractions

Since the value s(a, c) depends on a/c, we write s(a/c) = s(a, c). Then s(a/c+b) =
s(a/c) is valid. For z = a/c € K, we define the sequence (zn)n>0 by Zo = &, Tny1 =
1/(z, — a,), where ay, is the polynomial part Ef:o A; T of the Laurent expansion
Ty = Zfz_oo A;T¢. This sequence yields the continued fraction development of z:

1
:c=[a0,a1,...,an] =qg + 1 y
a1+ 1
R

Gn—1 + —
Qn,

where a; (i > 1) are non-constant. Note thatif x € K, \ K, z is an infinite continued
fraction. The following theorem gives us the value of s(a/c).

Theorem 2.2 (i) If ¢ = 3, then

1 T
T‘(‘}-—j([o’ ai,--- ’aT] + (_1) +1[0, Qr, .- - 10'1]
3([@0,...,@,-]) = +a1—a2+...+(__1)7‘+1ar) 1f,’.2 1’
0 ifr=0.
(ii) If ¢ = 2, then
( 1 ,
T T T2([0’ ai,...,a;] + (-1) +10,a,,...,a]

5([“0,---;ar])=ﬁ +H[O,ai,...,ar]+a1—a2+---+(—1)r+1ar+r—1) if r >1,
i=1

0 ifr=0.

\
We can prove this by induction on r by using Theorem 2.1.

Remark 2.3 Hickerson [3] proved the following result for d(a/c) := d(a, c):

4 2 (001, + (<10 ar,
d([ag,..-,ar]) =< +a1—ag+---+ (-1)"a,) if r >1,
0 ifr=0.
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3 Density theorem

As an analog of Hickerson’s result, the following two theorems are obtained.
Theorem 3.1 Ifq = 3 or 2, then {(a/c, s(a/c)) | a/c € K*} is dense in K2,
Theorem 3.2 Ifq = 3 or 2, then {s(a/c) | a/c € K*} is dense in K.

Outline of proof of Theorems 3.1, 3.2. We consider the case ¢ = 3. Since (Koo \
K) x K is dense in K2, it suffices to prove that for any (z,7) € Ko \ K and for
€ > 0, there exists a/c € K* such that |z — a/c| < ¢, |y — s(a/c)| < 2¢. We write
x = [by,by,...]. Take any element a € K}, For any ¢ > 0, taking fully large s,
[z — [bo, ..., bs-1,0]| < €holds. Similarly, we write z — (T® — T)y = [do, dy, .. ].
Taking fully large ¢, |z — (T° — T)y — [dy, . . . , di-1, @]| < € holds. Suppose that s + ¢
is even. There exits m,n € A\ F, such that

—bo + bl - bz + - -+ (—l)sbs_l -+ (—1)t—1dt__1 + o= d1 + do = (—1)s(m - TL)
Putting
afc=1[bo,...,bs_1,m,n,ds_1,..., di], a=[m,n,ds,...,dy],

we have |z — a/c| < e. By Theorem 2.2 (i), we obtain

1
S(G/C) = m([oa bla Ty b&'—l) m,n, dt—la s adl]

- [0, d17 v 7dt—17n: m, bs—l; tee bl]
+b1— b+ 4+ (=1)% + (=1 m + (=1)**2n
+ (1) dpr 4 -+ —dy),

which yields |y — s(a/c)| < 2e. Theorem 3.2 follows from Theorem 3.1. The case
g = 2 can be proved in the same way.
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