Continued fractions and Dedekind sums for function fields

Yoshinori Hamahata
Institute for Teaching and Learning
Ritsumeikan University

1 Introduction

For coprime integers a and c > 0, the classical Dedekind sum d(a, c) is defined by

$$d(a,c) = \frac{1}{4c} \sum_{k=1}^{c-1} \cot\left(\frac{\pi k}{c}\right) \cot\left(\frac{\pi k a}{c}\right). \tag{1}$$

For coprime positive integers a and c, it holds that

$$d(a,c) + d(c,a) = \frac{1}{12} \left(\frac{a}{c} + \frac{c}{a} + \frac{1}{ac} - 3 \right);$$

this is called the reciprocity law. The value of d(a,c) has been investigated. Rewriting (1) in terms of the sawtooth function, we can easily see that d(a,c) is a rational number. Rademacher [4] proved that d(a,c) is not bounded above and below in the neighborhood of each a/c. Rademacher and Grosswald [5] posed the following two questions:

- 1. Is $\{(a/c, d(a,c)) \mid a/c \in \mathbb{Q}^*\}$ dense in \mathbb{R}^2 ?
- 2. Is $\{d(a,c) \mid a/c \in \mathbb{Q}^*\}$ dense in \mathbb{R} ?

Hickerson [3] answered them using the theory of continued fractions.

As is well known, there is an analogy between algebraic number fields and function fields. For example, $A := \mathbb{F}_q[T]$, $K := \mathbb{F}_q(T)$, and $K_\infty := \mathbb{F}_q((1/T))$ are similar to \mathbb{Z} , \mathbb{Q} , and \mathbb{R} , respectively. Each A-lattice is an analog of a lattice in \mathbb{C} . In [1, 2], we introduced Dedekind sums and their higher-dimensional generalization for a given A-lattice in a function field, and we established the reciprocity law. The A-lattice L corresponding to the Carlitz module defines the Dedekind sum s(a,c) (see Section 2), which is very similar to d(a,c). In this report, we answer the analogous questions for s(a,c).

2 Dedekind sums

2.1 A-lattices and Drinfeld modules

Let C_{∞} be the completion of an algebraic closure of K_{∞} ; it is an analog of \mathbb{C} . A rank r A-lattice is a finitely generated A-module of rank r such that it is discrete in

 C_{∞} . For such an A-lattice Λ , we define the infinite product $e_{\Lambda}(z)$ by

$$e_{\Lambda}(z) = z \prod_{0 \neq \lambda \in \Lambda} \left(1 - \frac{z}{\lambda}\right).$$

This product uniformly converges at a bounded set in C_{∞} , and defines a map $e_{\Lambda}:C_{\infty}\to C_{\infty}$. The function $e_{\Lambda}(z)$ has the following properties:

- (E1) $e_{\Lambda}(z)$ is entire in the sense of rigid analysis;
- (E2) $e_{\Lambda}: C_{\infty} \to C_{\infty}$ is surjective \mathbb{F}_q -linear, and Λ -periodic;
- (E3) e_{Λ} has a simple zero at each point in Λ , and no further zeros;
- (E4) $de_{\Lambda}(z)/dz = e'_{\Lambda}(z) = 1$.

For $a \in A$, there exists a unique polynomial $\phi_a(z) = \phi_a^{\Lambda}(z) = \sum l_i(\phi_a)z^{q^i}$ such that $\phi_a(e_{\Lambda}(z)) = e_{\Lambda}(az)$ holds. Let $\tau: z \mapsto z^q$ be the Frobenius map, and let $C_{\infty}\{\tau\}$ be a non-commutative ring in τ with the commutation rule $c^q \tau = \tau c$ $(c \in C_{\infty})$. There exists a unique positive integer r such that for any $a \in A \setminus \{0\}$,

$$\phi_a = \sum_{i=0}^{r \deg a} l_i(a) \tau^i \qquad (l_0(a) = a).$$

Then, the map $\phi:A\to C_\infty\{\tau\}$, $a\mapsto \phi_a$ is called a rank r Drinfeld module over C_∞ . The map ϕ is an \mathbb{F}_q -algebra homomorphism; hence, the values $\phi_a(a\in A)$ are determined by ϕ_T . The rank 1 Drinfeld module ρ with $\rho_T(z)=Tz+z^q$ is called the Carlitz module. The Carlitz module and a Drinfeld module of rank ≥ 2 are similar to the multiplicative group \mathbb{G}_m and an elliptic curve, respectively. There exists a bijection between the set of rank r A-lattices and the set of rank r Drinfeld modules over C_∞ , defined by $\phi_a(e_\Lambda(z))=e_\Lambda(az)$ ($a\in A$). The A-lattice L corresponding to ρ is similar to $2\pi i$, and each A-lattice of rank ≥ 2 is similar to a lattice in \mathbb{C} .

2.2 Dedekind sums

Let L be the A-lattice corresponding to the Carlitz module ρ . For coprime $a, c \in A \setminus \{0\}$, we define the inhomogeneous Dedekind sum s(a, c) by

$$s(a,c) = \frac{1}{c} \sum_{0 \neq \ell \in L/cL} e_L \left(\frac{a\ell}{c}\right)^{-1} e_L \left(\frac{\ell}{c}\right)^{-1}.$$

When L/cL = 0, s(a, c) is defined to be zero. Using the Galois theory, we see that $s(a, c) \in K$. By (E2), it holds that s(a, c) = 0 if q > 3. Thus, henceforth, we assume that q = 3 or 2. The reciprocity law for s(a, c) is as follows.

Theorem 2.1 (Reciprocity law) For coprime $a, c \in A$, we have

$$s(a,c) + s(c,a) = \begin{cases} \frac{1}{T^3 - T} \left(\frac{a}{c} + \frac{c}{a} + \frac{1}{ac} \right) & \text{if } q = 3, \\ \frac{1}{T^4 + T^2} \left(\frac{a}{c} + \frac{c}{a} + \frac{1}{a} + \frac{1}{c} + \frac{1}{ac} + 1 \right) & \text{if } q = 2. \end{cases}$$

This result follows from the fact that the sum of all residues of $1/(z\rho_a(z)\rho_c(z))$ is zero.

2.3 Continued fractions

Since the value s(a,c) depends on a/c, we write s(a/c) = s(a,c). Then s(a/c+b) = s(a/c) is valid. For $x = a/c \in K$, we define the sequence $(x_n)_{n\geq 0}$ by $x_0 = x$, $x_{n+1} = 1/(x_n - a_n)$, where a_n is the polynomial part $\sum_{i=0}^k A_i T^i$ of the Laurent expansion $x_n = \sum_{i=-\infty}^k A_i T^i$. This sequence yields the continued fraction development of x:

$$x = [a_0, a_1, \dots, a_n] := a_0 + \frac{1}{a_1 + \frac{1}{a_1 + \frac{1}{a_{n-1} + \frac{1}{a_n}}}},$$

where a_i $(i \ge 1)$ are non-constant. Note that if $x \in K_{\infty} \setminus K$, x is an infinite continued fraction. The following theorem gives us the value of s(a/c).

Theorem 2.2 (i) If q = 3, then

$$s([a_0, \dots, a_r]) = \begin{cases} \frac{1}{T^3 - T}([0, a_1, \dots, a_r] + (-1)^{r+1}[0, a_r, \dots, a_1] \\ + a_1 - a_2 + \dots + (-1)^{r+1}a_r) & \text{if } r \ge 1, \\ 0 & \text{if } r = 0. \end{cases}$$

(ii) If q=2, then

$$s([a_0, \dots, a_r]) = \begin{cases} \frac{1}{T^4 + T^2} ([0, a_1, \dots, a_r] + (-1)^{r+1} [0, a_r, \dots, a_1] \\ + \prod_{i=1}^r [0, a_i, \dots, a_r] + a_1 - a_2 + \dots + (-1)^{r+1} a_r + r - 1) & \text{if } r \ge 1, \\ 0 & \text{if } r = 0. \end{cases}$$

We can prove this by induction on r by using Theorem 2.1.

Remark 2.3 Hickerson [3] proved the following result for d(a/c) := d(a,c):

$$d([a_0, \dots, a_r]) = \begin{cases} \frac{-1 + (-1)^r}{8} + \frac{1}{12}([0, a_1, \dots, a_r] + (-1)^{r+1}[0, a_r, \dots, a_1] \\ +a_1 - a_2 + \dots + (-1)^{r+1}a_r) & \text{if } r \ge 1, \\ 0 & \text{if } r = 0. \end{cases}$$

3 Density theorem

As an analog of Hickerson's result, the following two theorems are obtained.

Theorem 3.1 If q=3 or 2, then $\{(a/c,s(a/c))\mid a/c\in K^*\}$ is dense in K^2_{∞} .

Theorem 3.2 If q = 3 or 2, then $\{s(a/c) \mid a/c \in K^*\}$ is dense in K_{∞} .

Outline of proof of Theorems 3.1, 3.2. We consider the case q=3. Since $(K_{\infty}\setminus K)\times K$ is dense in K_{∞}^2 , it suffices to prove that for any $(x,y)\in K_{\infty}\setminus K$ and for $\epsilon>0$, there exists $a/c\in K^*$ such that $|x-a/c|<\epsilon$, $|y-s(a/c)|<2\epsilon$. We write $x=[b_0,b_1,\ldots]$. Take any element $\alpha\in K_{\infty}^*$. For any $\epsilon>0$, taking fully large s, $|x-[b_0,\ldots,b_{s-1},\alpha]|<\epsilon$ holds. Similarly, we write $x-(T^3-T)y=[d_0,d_1,\ldots]$. Taking fully large t, $|x-(T^3-T)y-[d_0,\ldots,d_{t-1},\alpha]|<\epsilon$ holds. Suppose that s+t is even. There exits $m,n\in A\setminus \mathbb{F}_q$ such that

$$-b_0 + b_1 - b_2 + \dots + (-1)^s b_{s-1} + (-1)^{t-1} d_{t-1} + \dots - d_1 + d_0 = (-1)^s (m-n).$$

Putting

$$a/c = [b_0, \ldots, b_{s-1}, m, n, d_{t-1}, \ldots, d_1], \quad \alpha = [m, n, d_{t-1}, \ldots, d_1],$$

we have $|x - a/c| < \epsilon$. By Theorem 2.2 (i), we obtain

$$s(a/c) = \frac{1}{T^3 - T}([0, b_1, \dots, b_{s-1}, m, n, d_{t-1}, \dots, d_1] - [0, d_1, \dots, d_{t-1}, n, m, b_{s-1}, \dots, b_1] + b_1 - b_2 + \dots + (-1)^s b_s + (-1)^{s+1} m + (-1)^{s+2} n + (-1)^{t-1} d_{t-1} + \dots + -d_1),$$

which yields $|y - s(a/c)| < 2\epsilon$. Theorem 3.2 follows from Theorem 3.1. The case q = 2 can be proved in the same way.

References

- [1] A. Bayad and Y. Hamahata, Higher dimensional Dedekind sums in function fields, Acta Arithmetica 152 (2012), 71–80.
- [2] Y. Hamahata, Dedekind sums in function fields, Monatshefte für Mathematik 167 (2012), 461–480.

- [3] D. Hickerson, Continued fractions and density results for Dedekind sums, J. Reine Angew. Math. 290 (1977), 113–116.
- [4] H. Rademacher, Zur Theorie der Dedekindschen Summen, Math. Z. 63 (1956), 445-463.
- [5] H. Rademacher and E. Grosswald, Dedekind sums, Math. Assoc. Amer., Washington, DC, 1972.

Institute for Teaching and Learning Ritsumeikan University 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577 JAPAN

E-mail address: hamahata@fc.ritsumei.ac.jp

立命館大学・教育開発推進機構 浜畑 芳紀