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1 Introduction
We consider an autonomous evolution equation:
u—Au=f, Bu=g fort >0, uli=0 = uo. (1.1)

Here, A and B are some linear operators and Bu = g represents a non-homogeneous boundary
condition. Through the Laplace transform with respect to time variable, we have the corre-
sponding generalized resolvent problem:

Mw—Av=f, Bv=yg. (1.2)

Here, the reason why we call (1.2) a generalized resolvent problem is that we consider non-
homogeneous boundary condition. Let v be represented by v = R(\)(f,g) with some solution
operator R()A) to (1.2). When g = 0, if R()) satisfies the condition of Hille-Yosida type, then
A generates a continuous semigroup, which gives us a unique solution to the Cauchy problem:

ut—Au =0, Bu=0 fort >0, ul=0 = uo.

Moreover, if R()) satisfies suitable multiplier conditions, the Laplace inverse transform of
R())(f, g) gives us a solution to the non-homogeneous initial-boundary value problem:

ug—Au=f, Bu=g forteR.

In addition, the condition f and g vanish for ¢ < 0 implies that u also vanishes for ¢t < 0, which
especially means that uli—o = 0. Combining these two results, we can solve (1.1). In fact,
Sakamoto [6] proved the unique existence of solutions to the initial-boundary mixed problem
for the general hyperbolic equations with the boundary condition satisfying uniform Lopatinski
conditions in rather general domains *. Since her problem is hyperbolic, she considered the
problem the in the Ly framework. Therefore, the boundedness of the operator norm of R(\)
implies the unique existence and suitable estimates of solutions to the evolution equations by
means of the Plancherel formula.

*Partially supported by‘JST CREST and JSPS Grant-in-aid for Scientific Research (S) # 24224004
*"Kreiss [5] treated the hyperbolic system case, but he proved a priors estimates only.



We wanted to extend Sakamoto’s approach to the L, framework for a long time and the Weis
theorem [10] of the L,-boundedness (1 < p < 00) of the operator valued Fourier multiplier theo-
rem enables us to extend Sakamoto’s approach at least to the parabolic type equations including
Stokes equations for both of the compressible and incompressible fluid flows (cf. Enomoto and
Shibata [4] and Shibata [8]). In fact, the R-boundedness of solution operator R()\) implies not
only the generation of analytic semigroup but also L,-L; maximal regularity by means of the
Weis theorem.

In this paper, we explain how to prove the R-boundedness of solution operators by treating
the following generalized resolvent problem for the weak Dirichlet-Neumann problem:

(M, ©)a + (Vu, Vo)a = —(f, Vo)a + (9, 9)a+ < hn, >r, for any ¢ € Wy (Q), (1.3)

subject to u = hq on I';. Here,  is a uniform C' domain in RN (N > 2) with boundary I'; UT;.
We assume that ['; N[y = §. For any domain G in RY, we set (a,b)¢ = [; a(x)b(x) dz. When
T is a C! hypersurface with surface element do, we set < a,b >r= [ a(z)b(z) do. quyp1 ()
denotes the functional space: {¢ € qu (Q) | ¢lr, = 0}.

Before stating our main results, first we introduce the Weis operator valued Fourier multiplier
theorem. For this purpose, we introduce the notion of R boundedness of operator families.

Definition 1.1. Let X and Y be two Banach spaces and £(X,Y’) denotes the set of all bounded
linear operators from X into Y. A family of operators 7 C L(X,Y) is called R bounded, if
there exist constants C > 0 and p € [1,00) such that for any natural number n, {T;}7-; C 7,
{zj}}-1 C X and sequences {rj(u)};‘zl of independent, symmetric, {—1,1}-valued random
variables on [0, 1] there holds the inequality:

{/01 ||ir3(u)TJ:cJ||’§', du}% < C{/Ol ||zn:7"g(u)$3||z})( du}%
i=1 =1

The smallest such C is called R-bound of T, which is denoted by R.(x,y)(T)-

Let D(R, X) and S(R, X) be the set of all X valued C* functions having compact supports
and the Schwartz space of rapidly decreasing X valued functions, respectively while S'(R, X) =
L(S(R,C), X), C being the set of all complex numbers. Given M € L joc(R\ {0}, X), we define
the operator Ty : F!D(R, X) = S'(R,Y) by

Tu¢ = F [MFg]l, (F[g] € DR,X), (1.4)

where F and F~! denote the Fourier transform and the Fourier inverse transform, respectively.
The following theorem is obtained by Weis [10].

Theorem 1.2. Let X and Y be two UMD Banach spaces and 1 < p < co. Let M be a function
in CY(R\ {0}, L(X,Y)) such that

R () M(r) | 7 € R\ {0} S k<00 (€=0,1)

with some constant k. Then, the operator Tys defined in (1.4) is extended to a bounded linear
operator from Ly(R, X) into Ly(R,Y). Moreover, denoting this extension by Tpr, we have

I Tmll ez, x),L,®Y) < CK

for some positive constant C' depending on p, X and Y.



Remark 1.3. For the definition of UMD space, we refer to a book due to Amann [1]. And, for
1 < g < o0, Lebesgue space Ly(€2) and Sobolev space W;*(2) are both UMD spaces.

Secondly, we introduce the definition of uniform C! domains.

Definition 1.4. Let Q be a domain in RY with boundary Q. We say that Q is a uniform C?

domain if there exist positive constants «, 8 and K such that for any zg = (xo1, ..., zon) € 00
there exist a coordinate number j and a C! function h(z') (' = (21,...,%j-1,%j41,---,ZN))
defined on By, (xp) with zj = (2o1, ..., Z0j—1, Zoj+1, - - - ; Ton) and rllwa (Br,(y)) < K such that

QN Bg(zo) ={x € RY | z; > h(.’El) (ZL‘, € B{,(x()))} N Bﬁ(mo),
0N Bg(zo) = {z € RY | z; = h(a') (2’ € Bl(z)))} N Bg(xo).

Here, By, (zp) = {' € RN7!| |2/ — z}| < a}, Bg(zo) = {z € RN | |z — 20| < B}.

Thirdly, we recall some further symbols used throughout the paper. For any multi-index
a = (a,...,an), we set D®h = 01 --- 038 h. We write Vu = (D1y,..., Dyu) with D; =
0/0z;. For any domain G in RV, L,(G) and W7*(G) denote the usual Lebesgue space and
Sobolev space, respectively, while || -||1 (¢ and || - llwym(c) denote their norms, respectively. For
a Banach space X with norm || - || x, X% denotes the d-product space of X, while | - ||x denotes
also the norm of X? for the sake of simplicity. For a domain U in C, C being the set of all
complex number, Anal (U, X) denotes the set of all X-valued holomorphic functions defined on
U. ¥ and X ), are sets for the resolvent parameter A defined by

Te={A€C\ {0} | |arg\| < T —€}, Zepg ={AE Zc| A > Ao}

The letter C denotes generic constants and Ca,b,c,- means that the constant Cop... depends
on a, b, c, ---. The values of constants C' and Cj p,... may change from line to line.
The following theorem is our main result in this paper.

Theorem 1.5. Let 1 < g < 0o and 0 < € < 7/2. Assume that Q is a uniform C! domain in
RY and the boundary of 0 consists of two C hypersurfaces 'y and Ty with T1 NTy = (. Let
Xq(2) and X,(Q) be functional spaces defined by

Xo(Q) = {(£,9,ha, hn) | [ € Lg()N, g € Lg(), ha, hn € W, ()},
X)) ={F = (F,...,Fs) | F1,Fy,Fs € Ly(Q)N, Fy, F3,F5 € L,(Q)}.

Then, there exists a Ao > 0 and an operator family A(\) € Anal (E y,, £(Xy(Q), qu (Q))) such
that for any A € X 5, and (f, g, ha, hn) € Xq(Q) v = AN)EFr(F, 9, ha, hn) is a unique solution
to (1.3), where we have set Fy(f, g, ha, hn) = (f, \"Y2, X1/ 2hg Vhg, hn, A12%h,).

Moreover, there exists a constant k such that

d
Rz:(xq(n),Lq(n)N“)({(/\EX)K(AUZ, VIAQ) [AE€Zcp}) <k (£=0,1).

Finally, we discuss the generation of analytic semigroup and maximal L,-L, regularity results
related to (1.3) as an application of Theorem 1.5. Let ijlll () be the dual space of qu',r‘ L(Q).

It follow from the Hahn-Banach theorem that for any F € W, 111 (2) there exist f € Ly(Q)N
and g € Lg(2) such that

F(p) = =(f,Vp)a + (9, 9)a for any p € W} (). (1.5)



Let A be an operator defined by
Au(p) = (Vu,Vp)q for any u € qu,n(ﬂ) and p € qul’r‘l ().
It follows from (1.3) and (1.5) that the resolvent problem: Au — Au = F is represented by
(M, p)a + (Vu, Vp)a = —(f, Ve)a + (9,¢)a for any ¢ € Wy r, (Q) (1.6)

subject to u = 0 on I';. Since R-boundedness implies boundedness, by Theorem 1.5 we see that
the equation (1.6) admits a unique solution € qu,r ,(Q) satisfying the estimate:

(A2, Vu)||y () < &IF lw-1 (@) (1.7)

for any A € e ), and F € W 111 (R2). Here, we may assume that Ao > 1. In addition, by (1.6)
we have

|, @)l < Vull, @) IVellr, @ + 1fl,@ Vel @ + lgllz@llelL, @
< Cfc||F||Wq-‘111(n)H‘P”qu,yrl(n),

which furnises that
||Au||W;%1(Q) < CK”F”Wq_,lll(Q)' (1.8)

Therefore, A generates an analytic semigroup {T'(t)}¢>0 on W I¥1 () satisfying the estimate:

IOl @ + G TOFTOF)lzq@ < O™ I Flly 2 @ (19)

for any ¢ > 0 with some constant C.
Next, we consider the evolution equation:

w—Au=F inQ, ulr, =h4r, (1.10)
for any t € R. Applying the Laplace transform to (1.10), we have
(A, 9)a + (Va, Ve)a = —(f, Ve)a + (§,9)a  for any o € W () (1.11)
subject to @ = hq on I';. Using the operator A(A) given in: Theorem 1.5, i is represented by
@ = AN (f, \"Y2g, \1/2hy4, V 1y, 0,0)

with A = 4+ it € C. Let £L~! be the inverse Laplace transform, and then a unique solution u
to (1.10) is represented by

u(t) = LA (F, X729, X/ ?ha, Vha, 0,0)](0).
Therefore, by Theorem 1.2 we have
- - 1/2
lle 7tut||L,,(R,ijl£l @) T lle ’Yt(A'y/ U, V)|l LR, Lo(0)
< Cklle™(f, A7 Y29, AY2ha, Vha) |1, (R, Lo()

for any v > Ag. Namely, the operator A has maximal L)-L, regularity. Here, we have set

_ *© 1/p
e ol = ([ o@lxrat) ",
—00

e Aol man = ([ e o0l )



2 Model Problems
2.1 A Model Problem in the whole space RY

Let us consider the problem:
Au, @)rv + (Vu, Volry = —(f, V)pw + (9, 9)rv  for any p € Wi(RY).  (2.1)

Instead of (2.1), we consider the equation: (A — A)u = div f + ¢ and then using the Fourier
transform and its inversion formula, we have

e [FlAiv £+ g)©)], e [ f(8) i 8
u(w)—fgl[w——](x)—;fg 1[/\11'&2](9:”@ 1[”'5'2](95) (2.2)

Here and hereafter, F[f](¢) = f(¢) and Fe 1[A(&)](x) denote the Fourier transform of f (z) and
the Fourier inverse transform of h(¢), respectively, which are defined exactly by

ey = [ e -1 __1 io€
PN = O = [ e fw)dn, FHMEND) = oy [ = hie)de

To prove the R boundedness of the operators defined by the Fourier transform in RY , We use
the following lemma due to Enomoto-Shibata [4, Theorem 3.3].

Theorem 2.1. Let 1 < g < oo and let A be a set in C. Let m(\,€) be a function defined on
A x (RN \ {0}) such that for any multi-indez o € N{ (No = NU{0}) there ezists a constant C,
depending on a and A such that

|6gm(X, €)] < Cale| 71! (2.3)

for any (A, &) € A x (RN \ {0}). Let Ky be an operator defined by K)f = Fgl[m()\,f)f(f)].
Then, the set {Ky | A € A} is R-bounded on £(Ly(R™)) and

Re@i({Er A €A}) < Con max Co (24)

with some constant Cq v that depends solely on g and N.

Since [A+|€|%| > 2sin? S(JAl+€]?) for any A € T, and £ € R, we see easily that (A+€3)1
satisfies the following multiplier conditions:

|02 + 1612 7] < Cac(IA[V2 + €)1,
08 [(AM2ig) A + [€1)7H| < Care(INY2 + [g]) 1o, (2.5)
R 1(865€6) (A + [€11) 7] < Cae(INY2 + €]y 1o,

for j,k=1,...,N and any A € X and ¢ € R Since

1 N TOY2)ig . AR
)\zu(x)=;}"51[———( /\flffg(@](x)wg [—*—A[Hgﬁ]?(&)}(x)’

N . 2 1, -1
j=1

Dy, A+ |12 A+ ¢



Therefore, if we define an oprator Up(A) by

Vo) (Fy, Fy) = Zf ig; PO+ 7 () + F 2RO+ 61 (=) (26)
Jj=1

with F' = (Fiy, ..., Fin), then we have the following theorem.

Theorem 2.2. Let 1 < g < oo and 0 < € < 7/2. For any domain G in RN, we set
Xeo(G)={(f,9) | f € LGN, g e Ly(@)},
Xp(G) = {(F1, F) | Fi = (Fu1, .., Fin) € LyRY), Fy € Ly(R")}.

Let Up(\) be the operator defined by (2.6). Then, Up()) € Anal (e, L(Xp0(RY), qu(lRN))), for

any X € Z¢ and (f,9) € X{RV)N wu(z) = Uo(M)(f, \"1/2g) is a unique solution to (2.1), and

d
Re(x(RN), Lq(IRN)N‘“)({(’\a)eUO()‘) [ A€ Xe}) <0 (2.7)

with some constant o depending solely on €, ¢ and N.

2.2 A model problem in the half space Rﬂ\r’ , Dirichlet condition case.

In this subsection we consider the weak Dirichlet problem in the half-space Rﬁ_’ :
(O, @)gy + (Vo Vool = —(f, Veolgy + (9, @)my  for any p € Wy o(RY)  (28)

subject to u = hg on RY, where Wlo(G) = {u € W}(G) | ulsc = 0}, G being the boundary
of G, R_,_—-{z—(:vl, mN)EIRN|xN>0} andRéV={1:-(x1,. ~N) € RN | zy =0}
Since C$°(RY) is dense in Lg(R ), we may assume that f € C§° (RN and g€ C’g°(RN ), and
we consider the strong equation: (A — A)u =divf+gin R subJect to u = hy on RY instead
of (2.8). Given function h defined on RY, A¢ and h° denote the even extension of h and the odd

extension of h to zy < 0, respectively. A unique solution u(z) is given by

1 [ Fl(div £)° _1[Flg° 1w (E)en ! V(s
u(w)=f£I[W](x)+fgl[%(—fzz](x)+f£,l[e €2n Fo[ha)(€,0))(") (2.9)

with wx(§') = /A + [¢'|2. Here, F¢r and Fy, ! denote the partial Fourier transform and partial
inverse fourier transform defined by

Felha @) = [ e hale'sun) ety Flo@e) = e [, o F o€ ae

with 2’ = (Xl, - xN—-l) and fl = (61, e ,§N—1)- To obtain

& F(£71(6) L TENFSS
ule) = zf'e v ]<x>+fsl[§’§ﬁ[’§]2(é)]<w>

)‘1/2]:'[A 1/2 o](
—1
+ 7 [

+ Z / fgl[e—m(&')(‘xwymwﬁ,)fg'[Djhd](ﬁ',yN)](w’) dyn

o0
n / fg—ll[e—wx(f )($-N+UN)]:§/ [Dnha)(€,yn))(z") dyn
0 (2.10)

0o 1/2
_/O NG )(mN+yN)w’:(§)}-6,[)\1/2hd](€ yn))(e') dyn,



we use the formula: (div f)° = Z D, i (f)+ DN (f) with D; = 8/0x;, wa(€') = dwn (€)1 -
1 (3€5) (i€5)wa (€))L and the Volev1ch trick:
® 9

N FS a0 == | 5

— [emAEVeN ) FOU RNy )] dyn.

In view of (2.10), we define an operator Sz(\) by

i F i €

1/2 0 ,
+Fe 1[%?&(5) +/o Fo e r@En+vm) £ (PN (€, yn))(@') dyw
2.11)
N1 .o "
+3 [rtie@etB p € i) don
=1

00 , 1/2
_/O e—wx(f Yaxn+yn) )\(g, fg [F3](§ YN ]( I’)dyN

with F, F3 € Ly(RY) and Fy, Fy = (Fy,...,Fyn) € Ly(RY)Y. Combining (2.10) and (2.11),
we have

w(z) = Sa(NF(f, g, ha). (2.12)

with FE(f, g, ha) = (f, \"Y2g, AV/2h, Vhg). To prove the R-boundedness of Sy()), we use the
following lemma due to Shibata and Shimizu [9, Lemma 5.4]

Lemma 2.3. Let 0 < ¢ < /2 and 1 < q < oo. Let mi and mg be functions defined on
Te x RV=1\ {0} that satisfy the multiplier conditions:

08 [0 ma (0 €)]1 < a2+ €)1 (2= 0,1),
(2.13)
08 [()\d/\)mz()\ﬁ)]|<c g (e=0,1)

forany o/ = (an,...,an_1) € N7 and (), ¢') € . x RV-1\ {0}, where §, = O, --~8g$"_"11.
Let K;j(\) (j = 1,2) be operators defined by

(K (Vg)(a) = /0 " Fo (0, )NV 2e At F (616 )] () dy,
[K2(N)g)(z) = /0 " Fg ma(0, €1 e N R gl(€ )@ du.
Then, there exists a constant By depending on €, ¢ and N such that
Rty (O K ) 1A €S <o (£=0,1, j=1,2).

Since AY2/wy(¢') and i€;/wy(¢') satisfy the multiplier conditions (2.13), respectively, by
Lemma 2.3 and Theorem 3.4, we have the following theorem.

N denotes the set of all natural numbers and No = NU {0}.



Theorem 2.4. Let 1 < ¢ < 00 and 0 < € < /2. For any domain G in RV, we set

qu(G) = {(f’gu hd) | f € Lq(G)N1 g € LQ(G)a hd € qu(G)}a
X4(G) = {(F1, F3, F3, Fy) | F1, Fy € Lg(G)N, Fy, F3 € Ly(G)}.

Let S4()) be the operator defined in (2.11). Then, S4(\) € Anal (Z¢, £(Xgq(RY), W;(Rf))), for
any A € T, and (f, 9, ha) € Xga(RY) u = Sg(A\)FE(f, g, ha) is a unique solution to (2.8), and
d
RL(A’qd(M),Lq(M)NH)({()\a)e()\l/r‘), V)Sa(M) | A€X}) < Bo (£=0,1)

with some constant By depending on €, ¢ and N.

2.3 A model problem in the half space RY, Neumann condition case.
In this subsection we consider the weak Neumann problem in the half-space Rf :

(O, @)ryy + (Vu, Volpy = = (£, Volry + (9, Q)ry+ < hny @ >y (2.14)
for any p € qu, (RY), where < a,b SRy= Jrn-1a(z")b(z') da’. We consider the strong equation:

(A= A)u = div f + g in RY subject to Dyu = h, on R instead of (2.14). Then, its unique
solution is given by

_ [ Fl(div £)°](§) L[ Flgel€) re~aa(@)an , ,
u(z) = F¢! [Tlﬁl"’] (z)+F; [ pyE ] (z)+Fg! [_ng[hn](g ,0)] (z). (2.15)

Since we may assume that f € C°(RY)Y, we have (div f)¢ = E D](fJ )+ Dn(f%), so that

u(z) = ng [z&f[f ](5)](m) N }.{_I[i.fo[fI‘{,]({)} @)

A+ [€]2 A+ €12
[ AEFATI269(8)
@ (2.16)
+ /°° FilewrE)entun) /2 FerAY2Dyha) (€, yn))(z") d
T ) 3 Ninj\S YN YN
- [ e O R € )l du
In view of (2.16), we define an operator Sp()) by
i&; F[FT;1(€) 1 [ENFIFEN](E)
Sn(’\)(FliF27F51F6) Z'Fg [ A+|£‘2 ]( ) [_X:—']gz—] (I)
1/2 e 1
¢ 7 [POTEO ) [ i@t X0 pe @l auy P17

(o ¢]
B /0 e~ &NtV Fou [F) (€', yn))(2) dyn

with Fy, F5 € Lq(Rf) and Fi, Fg = (F61, .. -,FGN) € LQ(RJ_,\_{)N. Combining (2.16‘) and (2.17),
we have

u(z) = Sp(N)FX(f, 9, hn) (2.18)
with FY¥(f, g, hn) = (f, A\"1/2g h,, A"1/2Vh,). Applying Lemma 2.3 and Theorem 3.4, we have
the following theorem.



Theorem 2.5. Let 1 < ¢ < 00 and 0 < € < /2. For any domain G in RN, we set
Xn(G) = {(£,9:hn) | f € Lo(G)Y, g € Lo(G), hn € W, (G)},
Xn(G) = {(F1, P2, F5, F3) | F1, Fs € Ly(G)N, Fy, Fs € Ly(G)}.

Let Sp(A) be the operator defined in (2.17). Then, Sp(\) € Anal (Z¢, L(Xgn(RY), Wi (RY)),
for any X € Z¢ and (f,9,hn) € Xgn(RY) u = Su(A)FF(F, 9, hn) is a unique solution to (2.14),
and
Lo d
Rt R0 a0y (O Y A2, D)5, [ A€ B)) < By (€= 0,1)

with some constant By depending on €, ¢ and N.

3 R-boundedness of solution operators in a bent-half space

Let @ : RY — RV be a bijection of C! class and let ®~! be its inverse map. We assume that
V® = A+ B(z) and V®! = A_; + B_;(z), where A and A_; are orthonormal matrices with
constant coefficients and B(z) and B_;(z) are matrices of functions in Lo (R") such that

1(B, B-1)l Lo (my < M. (3.1)

We will choose M; small enough eventually, so that we may assume that 0 < M; < 1 in the
following. Set Q4 = ®(RY) and 'y = &(RY). Let g be a function defined by det(V®) = 1 +g.
We choose 0 < M; <1 so small that

8/l oo m) < Cn M (3.2)
with some constant depending solely on N. In this section, we consider the weak Dirichlet
problem and the weak Neumann problem on Q..

3.1 Dirichlet boundary condition case

In this subsection, we consider the variational problem:
()‘u7 (P)Q+ + (V'U,, V(P)Q+ = _(fv V(P)Q+ + (ga SO)Q.;_ for any ¢ € WqI’,O(Q-i-)) (33)

subject to u = hq on I'y. By the change of variable: y = ®(z), we transform (3.3) into the
half-space problem. Setting u o ®(z) = v(z) and ¢ o ®(z) = (x) and using the formula:
%%f‘ = Ajk + Byj(z) with A_; = (Ay;) and B_1(z) = (By;(z)), we have

Ov(x) 0Y(x)
(Vu,Vo)a (Agj + Bij(2))(Aej + Bej(z)) (1+g(z))dz
Js ; 1 / ¥ N N o Oxj Oz
- (V’U, vdj)Rf + (va7 V‘/’)Rf,
with.
N v O

(PVv, Vih)gy = (8V0, Vih)pay + (1 + 9){D_ (Ak; Bej + BrjAes + BijBej)} o—

= 6 ’ 8.’11g )R+
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In the similar way, we have

(. 9hn, = 32 (1 0)fy 00, g + Big) 22

j,k=1

)RN = (F V"/))IRN’

where we have set F = (Fi,...,Fn) and Fy = Z;»V:l(l + g)(Axj + Byj)fj o ®. Setting G =
(14 g)go® and Hy = hgo P, finally we arrive at the variational equation:

(W, )rer + (o, Py + (Vo, Vih)gy + (PV0, Vg = (F, Vb)gy + (G, ¥)ry  (34)

for any ¢ € W,},’O(Rf ), subject to v = Hy on RY'. Let S4()) be the operator given in Theorem
2.4. Inserting the formula: v = Sy(\)FE(F, G, Hy) into (3.4), we have
(A, ¥)pyy + (Agv, P)ryy + (Vv, VY)gy + (PV0, V)guy

3.5
—(F — PVS4(NFS(F, G, Ha), Vi)gr + (G + AgSa(\) F{(F, G, Ha), ¥)gy (3:5)

for any ¥ € W} ((RY), subject to v = Hy on Rf'. Setting FiWNF? = —PVS;(\)F?¢ and
Fa(\)F4 = A\gSg(\)F? with F¢ = (Fy, F», F3, Fy), we write (3.5) as follows:

(A + g)v, )y + (I + P)Vo, Vi)gy

= —(F + fl()\)F:\i(F7 G, Hd)’ Vw)RN + (G + f?(’\)Fg(Fa G)Hd)a w)RN for any ¢ € W;’,(RI-!Y))

subject to v = Hy on RY. Setting F(A\)F? = (F1(A\)F?, F2(A)F<,0), we have
Remyn{Ags dyepdrn) | A€ T)) < CnMiBo (€=0,1) (3.6)

where f3; is the same constant as in Theorem 2.4. To prove (3.6), we use the following lemmas.

Lemma 3.1. (1) Let X and Y be Banach spaces, and let T and S be R-bounded families in
L(X,Y). Then, T+S={T+S|T €T, Se€S8} isalso an R-bounded family in L(X,Y) and

Rex ) (T +8) S Rexy)(T) + Rex,y)(S)

(2) Let X, Y and Z be Banach spaces, and let T and S be R-bounded families in L(X,Y)
and L(Y, Z), respectively. Then, ST = {ST |T € T, S € S} is also an R-bounded family in
L(X,Z) and

Rex,2)(ST) £ Rex,y)(T)Re(y,z)(S)-
Lemma 3.2. Let 1 < p, ¢ < oo and let D be a domain in RN,

(1) Let m(\) be a bounded function defined on a subset A in a complex plane C and let Mpm(N)
be a multiplication operator with m(\) defined by Mpm(A\)f = m(X)f for any f € Ly(D). Then,

Re(Lqy(0){Mm(A) | A € A}) < OngnlIm|Lo(a)

(2) Let n(t) be a C* funtion defined on R\ {0} that satisfies the conditions: |n(7)| < 7 and
|rn'(T)| £ v with some constant v > 0 for any 7 € R\ {0}. Let T, be an operator valued
Fourier multiplier defined by Tnf = F Y [nF[f]] for any f with F[¢] € D(R, Ly(D)). Then, T,
is extended to a bounded linear operator from Ly(R, Ly(D)) into itself. Moreover, denoting this
extension also by T,,, we have

I Tnllc(Lp(R,Lq (D)) < Cpg,D7V-



Remark 3.3. For proofs of Lemma 3.1 and Lemma 3.2, we refer to [3, p.28, 3.4.Proposition
and p.27, 3.2.Remarks (4)] (cf. also Bourgain [2]), respectively.

For any natural number n, {\}}_, C X, {Fy}}_, C Xq(RN) and sequence {ry(u)}y_; of
independent, symmetric, {—1,1}-valued random variable on [0, 1], using Theorem 2.4 we have

1 n
/0 I3 reWF ORI, g, du < (Crdy)" /O ||Z'r‘g W VSIOIEN g, d
=1

=1

< (Cwmtoy [ HZW (WF g o

1 n
/0 I 3y 2R Pl gy du < (Cna)? /0 I3 reN 2 Sa0 Rl o
=1 =1

1
< ©natipoy [ | S ru(w) Bl e

=1

Note that || FZ(F,G, Hy)ll ey = II(F, A~ 12G \V2H,, VHY)| L(Y) give us equivalent norms
on Xy (RY) for A # 0. Since

IF{F(\F(F, G, Ha)ll,mey) < ONMiBO||FS(F, G, Ha)llp,my)

as follows from (3.6) (cf. the definition of R-boundeness with £ = 1 in Definition 1.1), choosing
0 < M; <1 so small that OnM; 8y < 1/2, we see that (I + FZ)~1F()) exists in £(X, «(RY)) for
any A € I, and therefore v = Sy(\)F{(I + F(A\)F{)~Y(F,G, Hy) is a unique solution to (3.5).
Moreover, we have

F{(I+F\F)™ = Fy +Z( D F(FNFS = (I + F{F(V) 1 FY,
=1
which furnishes that Sy(A)F{(I + F()FE) ™ = Sa(\)(I + FEF(\)"LFL. Setting Spa(N) =
Sa(\)(I + FZF(N)~!, by (3.6) and Theorem 2.4 we have

Ry ), Loy ({55 )Zde(/\) [A€Xe}) <260 (£=0,1)

and the solution v to (3.4) is represented by v = de()\)F)‘\i (F,G, Hy). By the change of variable:
z = &~ 1(y) we have the following theorem.

Theorem 3.4. Let 1 < ¢ < 0o and 0 < € < /2. Then, there exists a constant My with
0 < M, <1 depending on q, N and € such that if the condition (3.1) holds, then the following

11

assertion holds: There ezists an operator family Tg(X\) € Anal (Z¢, L(Xya(924), W}(Qy4))) such

that w = Ta(N\)FZ(f, g, hq) is a unique solution to (3.3) for any (f, g, ha) € X;a(24) and X € I,
and.

Rex d(Q+),Lq(Q+)N+1)({(’\ )e(/\l/2 VITa(A) [ A € Z}) < By

with some constant B; depending on By, q, € and N.
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3.2 Neumann boundary condition case

In this subsection, we consider the variational problem:
(/\uv 30)94_ + (VU, V(,O)Q+ = —'(fs V(P)Q+ + (ga (P)Q++ < h"m 12 >F+ (37)

for any ¢ € qu,(Q+), where < hyn,p >r, = fr+ hnpdS, dS being the surface element of I'y.
Employing the same argument as in Subsec. 3.1, we transfer (3.7) to the half-space problem:

AL+ 8)v, W + (I + P)Vo, Voluy = —(F, Vi)gy + (G, @)+ < Ho,p >py  (38)

for any 9 € W, (RY). Let Sp()) be the operator given in Theorem 2.5. Inserting the formula:
v =S, (N)F}(F,G, Hy) into (3.8), we have
(A(L+ g)v,Y)ry + (I + P)Vv, V)gy = ~(F — PVS.(AN)F}(F, G, Hy), Vi)gn

3.9
+ (G + MgSn (V) FY(F, G, Hn),'w)]ki’"' < Hp,¢ >RY for any ¢ € qu'(Rf) (39)

Setting F(A\)F™ = (PVS,(A)F™, AgSn(A)F™,0) with F"™ = (Fy, Fy, Fs, Fg), by Theorem 2.5 we
have d
Rc(xq(mf))({(/\a)zFff()\) | A€ X}) SCnvMiBy (€=0,1). (3.10)

We choose M; € (0,1] in such a way that CyM;8 < 1/2. Since ||F)\(F, G’Hn)“Lq(Rf) =
|(F,\"Y2@G, Hy, )‘_1/2VHn)”Lq(RQ’) give us equivalent norms on X,(RY) for A # 0, by (3.10)
we see that (I + FRF()\))~! exists for any A € Z, and therefore

v =Sa(NEX(I + FNFR)™HF, G, Hy)
is a unique solution to (3.8). Moreover; we have FF(I + F(A)F})™! = (I + FRF(\)~LF}.
Therefore, setting Spn(\) = Spn(A\)(I + FRF(A))~1, by (3.10) and Theorem 2.5, we have

d
R ), g @) M) ({A53) 0 V)Sm(N) | A € Te}) < 280 (€=0,1)

and the solution v to (3.8) is represented by v = Spr (A) FY(F, G, Hy,). By the change of variable:
z = ®1(y) we have the following theorem.

Theorem 3.5..Let 1 < ¢ < o0 and 0 < € < 7/2. Then, there exists a constant My with
0 < M; £1 depending on q, N and € such that if the condition (3.1) holds, then the following
assertion holds: There exists an operator family T,(A) € Anal(Ee,E(an(Q+),W(}(Q+))) such
that u = To(N)FY(f, g, hn) is a unique solution to (3.3) for any (f, g, hn) € Xgn(24) and X € X,
and

d
Retm@),Lo(@v ) {Ag ) A2 D) Ta(N) [A € B) < By

with some constant B; depending on By, q, € and N.

4 A proof of Theorem 1.5

First, we state some properties of uniform C'! domain.



Proposition 4.1. Let Q be a uniform C* domain in RN. Let M; be a positive number given in
Theorem 3.4 and Theorem 3.5. Then, there exists positive constants d; (i = 0, 1 ,2) and co, at
most countably many N -vector of functions <I>’ € CYHRYN) (i = 1,2) and points a; €Q, x el
and 3: € ' such that the following assertzons hold:

(i) The map: RY 5z — & i(z) € RY (i = 1,2) are bijective.

(i) 2= (U2 Ba(=) U (UL 1 U521 (25(RY) N Byi(d}))), Bao(§) € Q
<I>1(RN)ﬂde( i) = QN By(al), <I>’(]RN) NBg(a}) = TN By(el) (i=1,2).

(i) There exist C*® functions C’ and C’ such that 0 < (’, C’ <1, supp Cj,supp f; C Byi(z z)
I I, @y 1CEIws 1 &~y < co, ¢ =1 onsupp(}, OZ i G=1onQ, and 332, i =
1onl; (z =1 2)

(iv) Fori=1,2andj € N, V& = A + Bi(z), V(®i)! = A%+ B:_, where Ak and
A’ are N x N constant oﬂhonormal matrices, and B;. and BJ’:’~ are N x N matrices of
contmous functions defined on RN such that ||(Bi~, Bt : M ie@yy < My

(v) There exists a natural number L > 2 such that any L + 1 distinct sets of {By (%) |i=
0,1,2, j € N} have an empty intersection.

In the following, we write B;. = By (:zzj) for the sake of simplicity. By the finite intersection
property stated in Proposition 4.1 (v) for any r € [1,00) there exists a constant Cy. 1, such that

2 o
[ZZ IlflIL,(QmB;)]l/r < Crrllfllz, @

=0 j=1
The following propositions were proved in Shibata [7, 8].

Proposition 4.2. Let1 < g < o0, ¢ =¢q/(g—1) and i =0,1,2. Then, the following assertions
hold.

(1) Let {f;j}32; be a sequence in Ly(2) and let {g; }521 be a sequence of positive real numbers.
Assume that

S <oo and ((f5¥)al < Magllellp,npyy for any p € Le(Q)  (4.1)
J=1

with some constant M3 independent of j = 1,2,3,.... Then, f = Z] 1 [; exists in the
strong topology of Le(Q), (f,¥)a = 3_52,(fi <p)Q for any ¢ € Ly(Q), and

1

1£llz,() < CoMs (Z g)".

(i) Let {f;}52, be a sequence in W}(Q) such that Py ”fj“%Vql(Q) < o0 and

{(fi,)al < M|\ fill Ly llellz, npiys  [(Defi, )al < M3\ Defill @ llellz, @nBi)
forany p € Ly(Q) and £=1,...,N. Then, f = Z;"’:I f; exists in the strong topology of
W(Q) with

1

I llzate < Cads (3o 1A51L o) s 195 pi0) < Cads(D2 IV A IE ()
j=1 j=1

[

13
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(i) Let {f}i) 1521 (i =1,2) be sequences in Ly(Q2) and let {gj(-i)}]qo=1 (1 =1,2) be sequences of
positive numbers. Let a and b be any complex numbers. Assume that the condition (4.1)

is satisfied with f; = f;i) and g; = gj(-i). In addition, we assume that

1 2 3
(af{? + 652, 0)al < Magl® oLz, nss)

with some sequence {91(3)};“’:1 of positive numbers satisfying condition: E;’;l(gj(s))q < 00.
Then,

0o
af(l) + bf(2) = Z(af}l) + be@)) € LG(Q)7
j=1

o0 1
lofD + b5 1) < CoMs (Y (o5)7) .
j=1

In the following, we write ’H? =RY, ’H; = @;(Rf )s B’H; = @;(Ré\' ) (i =1, 2) for the sake of
simplicity. The following proposition is used to define the infinite sum of R-bounded operators
defined on .

Proposition 4.3. Let 1 < ¢ < oo, ¢ = q/(g—1) and i = 0,1,2. Let A be a domain in C.
Then, the following assertions hold.

(i) Let F(A) (A € A) be an operator family in £(Lq(7{;)) and let Gx(\) (k=1,...,K) be

operator families in Anal (A,E(Lq(H§))). Assume that there exist constants My and Ms
independent of j = 1,2,3,... such that

n K n
1O arF(A) fe, e)uil < AN DY a¢Gk (M) fll Lo 3 Nl g (21

=1 k=1 ¢=1

d
RE(LQ(H;))({(/\E)[gk(’\) I A€ A}) < M5,k (e =0,1, k=1,..., K)

for any ¢ € Lq:(’Hg) and for any integer n, {ae}y_; C C, {Ae}p_; C A and {fe}}—; C
Lg(H). Then, F(X) € Anal (A, L(Lg(#}))) and

p K
RL(L.,(H;))({()\J)E;()\) | XeA}) < CeMu() Mg,k)l/q (£=0,1).

k=1

(i) Let {F5(N)}5%, be a sequence in Anal (A,E(Lq(’H;'.), Lq(2))) and let {Gx (M)}, (k=
1,..., K) be sequences in Anal (A, E(Lq(Hﬁ))). Assume that there erist constants Mg and
M7 x independent of j = 1,2,3... such that

d
RC(Lq('H;))({()‘E}\_)Zgjk(A) | A€ A}) < M7,k (E =0,1, k=1,.. -’K)7

n K n
10" acFi(Me) ferp)al < Ms(D_ 11D Gk (M) fell L, i)l (@i

=1 k=1 {£=1

for any integer n, {as}}_; C C, {M}je; C A and {fe}}., C Lq(’}-tg) and for any ¢ €
Ly (). Let 0; be operators in LI(Lq(Q),Lq(’H;-)) (1=1,2,3,...) such that ||9;‘f”L.,(H;i) <



Ms||fllz,@n BY) with some constant Mg for any f € Ly(Y). Then, there exists an oper-
ator F(A\) € Anal (A, L(Lqg(92), Lg())) such that F(A)f = 332, F5(M0if in the strong
topology of Lqy(2) for any f € Lqe(S2) and

K
d
Rea@),Lo@) (AT FO) | X € AY) < CoMs(Y | M7 )YIMs  (£=0,1).
k=1

Using Theorem 2.2, Theorem 3.4 and Theorem 3.5, we construct a parametrix. For f €
Ly()N, g € Ly(Q), hg € W4 (Q) and h, € W}(), let v} € Wl(’Hl) be solutions to the

J
following variational equations:
O, ) + (V. Voo = ~(( 1, V0)ao + (9, 0)o for any p € Wh(H)),  (4.2)
()\’LL 7(P)’H1 + (V’U,J, V‘P)’Hl = _(Eylfa VSO)'H]I + (é]lga 90)?{]1 for any ¢ € qu',O(H;) (43)

subject to uj = (thq on oM}, and

(g, )z + (Vi Vol = —((F 1, Viohaez + (g, )zt < Gl >n2 (4.4)

for any ¢ € qu, (’H?) By Theorem 2.2, Theorem 3.4 and Theorem 3.5 there exist operator
families T7()) € Anal (S, L(Xp0(H?), Wi (H3))), T} (A) € Anal(Z, L(Xpa(H]), W} (H)}))) and
T?(X) € Anal (S, £( qn(”HQ) Wl(’HQ))) such that

ud = TN, A1),

Raxqomg),Lqmg)Nu)({(A%)K(AW, V)IT)A) A€} < Bz (£=0,1), (4.5)
uj = T (N FH(E} f, E}g,E}hd)
R (xpa(rad) Ly(riyv+1) (O —)W/Z VT |A€S} < B (£=0,1),  (46)
ui = TP (NFY(E £, 8G9, G ),
RL(an(H]?),Lq(H;‘T)N“)({()‘%)e()‘lﬂ? VIT;(A) [X€X}) < B2 (£=0,1) (4.7)

with some constant 3 independent of i and j. Set u = Zz—~0 Z, 1C] ;- Noting that the
R-boundedness implies the boundedness, by (4.5), (4.6) and (4.7) we have

”(Cofa A_l/zgog)”Lq('Ho)a
IO 20, V)il ey < B2 § N(GHF A V2819, /3¢ h, V(Eh)y 1)
G £ AT2G 9, Gl X2V (G hn)) g a42)-

By Proposition 4.2, we have u € qu(Q) and
IO 20, Va)1y0) < ConBall(f, A2, \YV2hy, Vha, by A2V h0) |1 ()

for any A € £, ;. Using Proposition 4.2 and noting that (J = 1 on supp CJ, by (4.2) - (4.7) we
have for any ¢ € VV1 ()

2 oo
(M, @)a+ (Vu, Vola =D > [(AGuj, @) + (VU5 Vioda + (Vb Vo))
1=0 j=1

15
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NE

(v s + (Y, VG0N — (VG) - Vb @)yes — (div (TG, )]

+

M2 11
a

< (VCJ2)'U'32’ ' >8'H;‘?

LY
Il
-

[=(F, VGioDns + (9, Giphas — (2V€) - (V) + (AGu, o)

1

J

+ D < Gha+ (VEUS, 0 >ap2
j=1
= _(f’ VQO)Q + (g + Rl(fag)hd’ hn)a‘P)ﬂ"" < hn+ R2(fvga hda hN)v‘P >Ty

1M
Mg

where we have set

o0

2
Ri(f,9,hayhn) = =) Y {2(VE) - (VU)) + (AG)ws},  Ra(f, g, hay hn) = Z(vg)u
i=0 j=1
Noting that
V(GHha) = ¢} Vha + (V¢))ha, N V2V(Cha) = GGXTH2Vha) + XTVA(V(]) R,

for F = (F1, F3, F3, Fy, F5, Fg) € X4(Q?) we define an operator U(\) by
UNF = Z ST (G FL G F)

+ Zc, {T} (NS} F1, ¢ Fa, § Fs, § Fa) + A7Y2TH(0)(0,0,0, (V) ) Fy)}
]_

Z 2T N (G F, G F, G Fs, G Fs) + AT (1)(0,0,0, (V) Fy)}

By Proposition 4.3 and (4.5) — (4.7), we have
u = U(’\)F/\(fa 9, ha, hn),

Rc(xq(n),wg(n)fwl)({()\a) UA) | X € Ze1}) < Cyaba.

In view of (4.8), we define operators V1(X) and V2()) as follows:

VIVF = =Y {2(V¢) - (VI )G F1, G F2)) + (AT (N (G F1, § F))}

j=1
-2y (V) - {VT} (G F, G Fa, § P, G Fa) + X2V (A)(0,0,0, (V) Fy))

Jj=1

= S (AGHTH NG} Py, & Fa, § F3, G Fa) + XV2TH(X)(0,0,0, (V) i)}
i=1
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=2 (V¢ - {VTZN)(GF1, G Fa, CFs, CFe) + X2V T2(2)(0,0,0, (VEE) Fs) }
=
Z(ACJ {Tl /\)(CJ Fla C]2F27 CJ F57 CJ FG) + A7 1/2T2(/\)(07 01 0, (v5]2)F5)})
j=1
ViWF =} (VU NG F, G Fe, G Fs, (G Fs) + X72T7(0)(0,0,0, (VE) F) ).
j=1

By Proposition 4.3, Proposition 3.1, Propsition 3.2 and (4.5)-(4.8), we have
VI(A)Fr(f, 9: ha, bn) = Ri(f, 9, hay hn),
Rcwq(n),Lq(n»({(A%)ek‘” V1A | A € Bea}) < Coarg™? (€=10,1)
Va(MFX(f, g, ha, b ) = Ro(f,9, ha, hn), (4.10)
R oy ({Aam) Vo) | A€ Tepod) < Cuadg™ (£=0,1)
Rex®, Lqm)({(A—)‘fx VIV | X € Tar) S Coade ™ (£=10,1).

with some constant Cy o depending solely on g and 2. If we set V(A\)F = (0, Vi(A\)F, 0, Va(\)F),
then by (4.10)

-1 v
Regry@ () BV [ € Sx)) < CuaXg™ (=01, (41)
Therefore, choosing Ag so large that C Q/\—l/ > <1/2, then (I + F\V(\))~! exists and

d _
Rty UOS BRI+ BYO) ! A €S <2 =01, (412
If we set R(f, g, ha,hn) = (0, R1(f, g, ha, hn), 0, Ra(f, g, ha, ), then by (4.11)

IEXR(S, g, hay hn)llLg) < (L/2)IFA(S, 9, Bas Bl Ly (02)-

Since
IFSR(f, 9, has n)l| () = I1(F, X729, XY/ ?ha, Vha, b, VY2V R |1 )

give us equivalent norms on X,(Q2) for A # 0, (I + R)™! exists in £(X4(2) for any A € I, Ao
which combined with (4.10) furnishes that u = U(A\)F)\(I + R)™!( [, 9, ha, hyn) is a unique so-
lution to (1.3). Here, the uniqueness follows from the existence theorem for the dual prob-
lem. By (4.9) and (4.11) R(f, g, ha, hn) = V(A)Fi(f, 9, hd, hn), and therefore Fy(I + R)~! =
(I + F\V(X))~'F), which furnishes that u = U\ + F\V(A)~1E\(f, g, ha, hn). Setting
A(X) = UM + FyV(\)7L, by (4.10) and (4.12) we have

d
Ry, Lo@) {AZ0) A2 VAR | X € Bepo}) 204082 (£=0,1),

which completes the proof of Theorem 1.5.
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