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GLOBAL STRONG SOLUTION WITH VACUUM TO THE 2D
DENSITY-DEPENDENT NAVIER-STOKES SYSTEM

XIANGDI HUANG AND YUN WANG

1. INTRODUCTION

The Navier-Stokes equations are usually used to describe the motion of Auids.
In particular, for the study of multiphase fluids without surface tension, the
following density-dependent Navier-Stokes equations acts as a model on some
bounded domain Q& C RN(N = 2,3),

(o +div (pu) =0, inQ x (0,77,

(pu)e + div (pu @ u) — div (2u(p)d) + VP =0, in Q x (0,T],
(1.1)  divu =0, in Qx|[0,7T),

u=0, on 052 x [0, T,

| Pli=o = po, ul=o=uo, in Q.

Here p, u, and P denote the density, velocity and pressure of the fluid, respectively.
d =5 [Vu+ (Vu)T] is the deformation tensor. s = u(p) states the viscosity and
is a function of p, which is assumed to satisfy

(1.2) pe CY0,00), and p > 4 >0 on[0,00) forsome positive constant I

In this paper, we study the two-dimensional initial boundary value problem for
the system (1.1)-(1.2) .

Let us recall some known results for this system (1.1). The mathematical study
for nonhomogeneous incompressible flow was initiated by the Russian school.
They studied the case that u(p) is a constant and the initial density Po is bounded
away from 0. In the absence of vacuum, global existence of weak solutions was
established by Kazhikov [17], see also [2]. Later, Antontsev-Kazhikov-Monakhov
[3] gave the first result on local existence and uniqueness of strong solutions.
Moreover, the unique local strong solution is proved to be global in 2D, see
also (16, 18,21].

On the other hand, when the initial density allows vacuum in some region and
p(p) is still a constant, Simon [22] proved the global existence of weak solutions.
For strong solutions, to treat the possible degeneracy near vacuum, Choe-Kim [5]
proposed a compatibility condition, which is the original form of (1.4) below.
Under such a compatibility condition, local existence of strong solutions was
established. Global strong solution with vacuum in 2D was recently derived by
the authors [15]. Meanwhile, some global solutions in 3D with small critical norms
have been constructed, refer to the results in [1,6,7,20] and references therein.

Finally, we come to the most general case: viscosity u(p) depends on density p.
Global weak solutions were derived by the revolutionary work [9,19] of DiPerna
and Lions. Later, Desjardins [8] proved the global weak solution with more
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regularity for the two-dimensional case provided that the viscosity function u(p)
is a small pertubation of a positive constant in L*°- norm. Regarding the strong
solution away from vacuum, Gui-Zhang [12] proved global well-posdness with pg
is a small perturbation of a constant in H°, s > 2. To deal with the possible
presence of vacuum, Cho-Kim [4] generalized the compatibility condition in [5]
and constructed the local strong solution. Their result is stated as follows(2D
Version):

Theorem 1.1. Assume that the initial data (po,uo) satisfies the regularity con-
dition

(1.3) 0<pe WH, 2<qg<oo, wug€E Hé’a NH?

and the compatibility condition

(1.4) —div (u(po) [Vo + (Vuo)T]) + VP = pig

for some (Py, g) € H* x L?. Then there exists a small time T and a unique strong
solution (p,u, P) to the initial boundary value problem (1.1) such that

peC([0,T]; wh9),  Vu,PeC([0,T]; H')NL*0,T; W),
pe € C([0,T]; L9), Vous € L®(0,T; L?), wuy € L*(0,T; Hy),

for any r with 1 < r < q. Furthermore, if T* is the mazimal existence time of
the local strong solution (p,u) , then either T* = oo or

(15) sup (VD) + Vu(t)z2) = oo.

It is worth noting that the blowup criterion (1.5) involves both ||Vpl|L« and
|Vul|z2. Motivated by the global existence result [15] for the special case that u
is a constant, we aim to remove the second part in (1.5). In fact, we find that
the boundedness for ||Vu(p)||L« implies that for ||Vul|zz, which is true at least
for 2D case. More precisely,

Theorem 1.2. Assume that the initial data (po,uo) satisfies the regularity con-
dition (1.3) and the compatibility condition (1.4), as in Theorem 1.1, and 0 <
po < p. Suppose (p,u, P) is the unique local strong solution derived in Theorem
1.1, and T™ is the maximal existence time for the solution, then

(1.6) sup ||[Vu(p)|lzr = oo,
0<t<T* \

for every2 < p<gq.

Corollary 1.3. If u is a constant, then Vu(p) is always 0, which implies that
the strong solution to the system (1.1) will exist globally. This is recently proved
by the authors [15].

Our second result proves the existence of global strong solution under the
condition that ||Vu(po)||Le is small.

Theorem 1.4. Assume that the initial data (po, uo) satisfies (1.3) and (1.4), and
(1.7) 0<po<p, luollm <K, p<plp)<Eonl0p]



Then there exists some small positive constant e, depending only on €, q, U, I,
p and K, such that if

(1.8) IVi(po)llze < €o,

then there is a unique global strong solution (p,u) of the density-dependent equa-
tions (1.1) with the following regularity

p € C([0,00); W),  Vu, P e C([0,00); H)N L2 (0,00; W),
pe € C([0,00); L), \/pug € Lf5,(0,00; L?), w; € Lf,,(0, 00; Hy),

foranyr with1 <r <q.

(1.9)

Remark 1.1. Compared to Gui-Zhang [12]’s global well-posedness result, our
result does not require that density is a small perturbation of a positive constant.
In fact it allows for the presence of regions of vacuum. The smallness assumption
is made on Vu(po), instead of po. So Theorem 1.4 also implies global strong
solution for the case u(p) = constant.

The main idea for proving Theorem 1.4 is similar to that in [6,14], and partly
due to Hoff [13]. The proof is a sort of energy estimate method and utilizes the
parabolic property of the equations.

First we assume ||Vu(p)llze < 1 on [0,7], then we prove that there exists
a positive constant €y as stated in Theorem 1.4 such that ||Vu(p)|lre < L on
[0, T] provided [|Vu(po)llze < €0 < 3. So if |Vu(p)|| e are initially less than e,
then it is always less than % On the other hand, as proved in Theorem 1.2,
the boundedness of ||V u(p)||s leads to uniform estimates for other higher order
quantities of the density and velocity, which guarantees the extension of local
strong solutions.

The rest of the paper is organized as follows: Section 2 consists of some nota-
tions, definitions, and basic lemmas. We give the proof for Theorems 1.2, 1.4 in

Sections 3 and 4 respectively.

2. PRELIMINARIES

In this paper € is a bounded smooth domain in R2. Denote

/fda:=/9fdx.

For 1 <r < oo and k € N, the Sobolev spaces are defined in a standard way,
L'=L"(Q), W+ ={feL: VifelL)},

Hf=Wk?  C2 ={feC: divf=0inQ}

H} =C%, Hy, = G5, closure in the norm of H'.

High-order a priori estimates rely on the following regularity results for the
Stokes equations.

The following lemma plays an important role in the whole analysis.
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Lemma 2.1. Assume that p € W', 2 <p<o00,0< p<p, and p < p(p) <0
on [0, 7). Let (u, P) € H} x L? be the unique weak solution to the boundary value
problem

(210)  —div 2u(p)d)+ VP =F, divu=0 inQ, and / Pdz =0,

where d = 1 [Vu+ (Vu)T] and p satisfies (1.2). Then we have the following
reqularity results:

(1) If F € L?, then (u,P) € H* x H' and
lullz= < CIIF |2 (1 + IV (o)) 7

(2.11) ; 2p-2
1P < ClIFllze (1 + V(o)) 72

(2) If F € L" for somer € (2,p), then (u, P) € W2" x W' and
lullwzr < CIF |- (1 + 1V0(p)122) ™

IP|lwar < ClIF||zr (1 + ||V is(p)||zo) 70

Here the constant C in (2.11) and (2.12) depends on Q, p, p, .

(2.12)

The proof of Lemma 2.1 is a slight variation of the version in [4]. We sketch it
here for completeness.

Proof. For the existence and uniqueness of the solution, please refer to Giaquinta-
Modica [11]. We give the a priori estimates here. Assume that F € L?. Multiply
(2.10) by u and integrate over €2,

(213 2 [P de = [ F-ude < CIFa|Vula.
Since p(p) > p and 2 [ |d|*dz = [ |Vul|*dz, (2.13) implies that
IVullzz < C|IF||z2 -
Choose some function v € H}, such that P = divv and ||v||g1 < C||P||z2, then
/|P|2dac = —/VP cvds = /(2u(p)d : Vv — F -v) dz < C||F||12]| V| 2.

Hence, || Pl < C||F|| 2.
For higher-order estimates, we make use of the classical theory for Stokes system.
Rewrite (2.10) as

(2.14) —Au+VP=yp""! (F +2Vyp-d—- PV}L) , and divu =0,

where P = P/pu. It follows the well-known regularity results for Stokes system [10]
that

lulls + 1Bl < € (1l + V(o) IVullz2 + | PV(o)lz2 + 11Pllz2)
< C|IF |2 + CIVu() I Vul_zs, + CIVu() o1l 3z,
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By Gagliardo-Nirenberg inequality,
[l 2 + | Pl
2 1—2 . 2 ~
< ClIFlzz + ClIVu(p)l| e [lull fel Vull 127 + ClIVEeo I Pl Pz
which together with Young’s inequality proves that

—P_

(2.15) lullzz + 1PNl < CIIF)|a (1 + V(o) 20) 72
Hence by Poincaré’s inequality,
1Pl < ClIVPlizz < CVP|L2 + C|| Pl | Via(p) | o

< C|Flla (1 + 1V (o) ll2s) 77

Similarly, using the W2"-regularity theory for Stokes system, we have

(2.16)

@17)  lullwar + [ Pllwse < CIFlur (1 -+ V(o)) 55
and
(2.15) 1Plwsr < CIPllo (1 + V(o)) + 755

(2.15)-(2.18) complete the proof for Lemma 2.1.

Next, for u € Hj(Q2), by Gagliardo-Nirenberg inequality, we have in 2D
(2.19) lullze < Cllullzz ||Vl -

However, to deal with nonhomogeneous problem with vacuum, some interpolation
inequality for u with degenerate weight like V/p is required. We look for a similar
estimate for /pu as in (2.19). Here we will use a lemma first established by
Desjardins [8] which reads as follows,

Lemma 2.2. Suppose that 0 < p < p, u € H}, then
(2.20) Ivpullzs < C(5,9) (1 + |l pullr2) lquHm\/log (2 + [IVul2,) .

3. PROOF OoF THEOREM 1.2

Let 7" be the maximum time for the existence of strong solution (p,u, P) to
the system (1.1). Suppose that the opposite of (1.6) holds, that is,

(3.21) sup [[Vu(p)(®)llr = M < +o0 ,
0<t<T™

with some p satisfying 2 < p < ¢.

In this section, without special claim, C' denotes some positive constant which
may depend on €2, u, p, the initial data, 7 and M.

Under the assumption (3.21), we will show that

52 (le@llwra + oe®)llze + V@)l + | Voudle) < C

(3.22) ¢ t
sup (/ 1 Vul|Z..- ds +/ | Vul|22 ds) <C forl1<r<y,
0 0

0<t<T*
which can guarantee the extension of local strong solution. So the whole proof of
Theorem 1.2 consists of a priori estimates of different levels.
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3.1. Energy level estimates. First, as the density satisfies the transport equa-
tion (1.1); and making use of (1.1)3, one has the following lemma.

Lemma 3.1. Suppose (p,u, P) is a strong solution to (1.1) on [0,T*). Then for
every t € [0,T*),
o)z = lloollze < 7 -

Next, the basic energy inequality of the system (1.1) reads
Lemma 3.2. Suppose (p,u, P) is a strong solution to (1.1) on [0,T*). Then for
every t € [0,T*),
1 ¢ 1
(3.23) : / olu(®)? dz + 2 / / ) ldP dads < / poluo|? dz .
0
Since p(p) > p, and 2 [|d|*dz = [|Vul*dz, owing to div u = 0, then (3.23)
implies

t
(3.24) / /qu|2d:1:ds < C’/p0|uo|2 dr .
0

Before proceeding to higher order estimates, we insert one lemma for further
use.

Lemma 3.3. Suppose (p,u, P) is a strong solution to (1.1) on [0, T*). Under the
assumption (3.21), it holds that for every t € [0,T*)

(3.25) IVullis < Cllpullzz + CllpullZalVullzz
and consequently by Sobolev embedding,
(3.26) IVul| g < Cllpws||z2 + C||Vul)32 .

Proof. According to Lemma 2.1 and Gagliardo-Nirenberg inequality,
IVullan <C (llouellz2 + llow - Vullz2) - (1+ [|Va(p)s) 7
<Cllpwllzz + Clloull e Vul 32l Vull,
<Cllowllzs + Cllowll3eVedlza + 5 | Vulls
which verifies (3.25). O

Now we are ready to estimate ||Vu| Lo (042), Which is one of the key steps in
the blow-up criterion (1.5). More precisely, we have the following lemma.

Lemma 3.4. Suppose (p,u, P) is a strong solution to (1.1) on [0,T*). Under the
assumption (3.21), there exists a generic positive constant C such that

(327) sup | IVu@Es + [ Ivpudsds| <.

0<t<T*
Proof. Multiply the momentum equation (1.1), by u; and integrate over €2, then

d
/ﬂwWW+a u(p)|dP? dz
(3.28)

< ’/pu-Vu-utdx +C/|Vu(p)|-|u|-|Vu|2dm.



Here we have used the renormalized mass equation for u(p),

(3.29) O [u(p)] +u- Vu(p) =0,
which is derived due to the fact div u = 0.
Applying Gagliardo-Nirenberg inequality and Lemma 3.3, we get

/pu-Vu-utda:
< /Bl + Clly/pullal Val2e

1
< S IBulEs + OllyAuls IVl el Vel

L, ;
< ZlIlvpuslzz + Clly/pullal|Vul?. -
By Sobolev embedding theorem and Lemma 3.3,
[ 1Vu@) - ful 1Vt ds
| < ClIVpo)llzellello | Vullze - for 1/p+1/p* = 1/2
(3.31) < COIVullzalIVullm
< ClIVulZalloutllzz + Clloul 74| Vull3:

(3.30)

1
< ZIVpueliz + Clloul|zal|VullZs + Ol Vullz2 -

Note that Lemma 2.2 tells

IVPullze < C (1 + lloullZe) I VullZe - log (2 + I VullZ2)
< C||Vullz log (2 + | VullZ2) -

Insert the estimates (3.30)-(3.32) into (3.28),

1 d
633 5 [ plulde+ 5 [ u(o)ld? ds < CIVults (14 1og 2+ Vi)

The proof of Lemma 3.4 is finished after applying Gronwall’s inequality to (3.33).
g

(3.32)

3.2. Higher order level estimates. Now we are ready to derive the higher
order derivatives estimates of the density and velocity.

Lemma 3.5. Suppose (p,u, P) is a strong solution to (1.1) on [0,T*). Under the
assumption (3.21), there exists .a generic positive constant C such that

(3.34) sup  (||lullz2orize) + lullLsorize)) < C .
o<T<T*

Proof. By Gagliardo-Nirenberg inequality and Lemma 3.3, we have

T T
AHM&ﬁSCAHw%WW%ﬁ
T

SGA(WWMWW%HWWMdu

which completes the proof for (3.34), owing to Lemma 3.4. O

123
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The next lemma is crucial to derive the second order derivatives of the velocity.

Lemma 3.6. Suppose (p, u, P) is a strong solution to (1.1) on [0,T*). Under the

assumption (3.21), there exists a generic positive constant C such that

(3.35) ol + [ vl ds] <

sup
0<t<T*

Proof. Take t-derivative of the momentum equation,

(3.36) pug+(ou)-Vug—div (2u(p)ds)+V P, = —pyus— (pu)- Vu+div (2u(p)ed) -

Multiplying (3.36) by u; and integrating over €2, we get after integration by parts

that

1d
28 [ otz +2 / u(p)ldf? de

(3.37) = - / pilus)* dz — / (pu); - Vu - up dz — / 2u(p)ed - Vuy dz

Let us estimate each term I; step by step.

First, utilizing the mass equation, one has

I, = —Z/pu-Vut-utd:z
(3.39) < Cllullz [ Vel 1
1
<5 [ WE Il do+ Cllule | Bl

where for the last inequality we used the fact [ |Vu|?dz =2 [ |dy|* dz.

Seconly, utilizing the renormalized mass equation (3.29) for u(p),

I; = —/2u(p)t +d-Vudz

<C [ lul- 1Vue)| -l - [Vl de

< Ollulle= V(o) olldll o | Vtiellz2,  for 1/p+1/p* = 1/2

(3.39) 1
< 5 [ WO do + Clulfe V() 1Vl

/ u(p)|duf2dz + Cllu) 2o [ V]2

[ o) + e /Bl + Ol Vs

<

<

ool +— 00| 0o
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Finally, taking into account the mass equation again, we arrive at
I = —/(pu)t-untdx
=—/pu-V[u-Vu-ut] dx—/put-Vu-utdm
(3.40) < [ otul- (V0P -l da+C [ pul? - 19%] el da

n / plul? - |Vu] - V| da + / plusf? - |Vu| de

4
23N
i=1

Herein, it follows from Sobolev embedding theorem, Gagliardo-Nirenberg inequal-
ity, and Lemma 3.3 that

o= /p|u| |Vl - | da

(3.41) SN
< Cllull3w ly/BucllZs + ClIVula | Va2
< Cllul2wllv/Buel% + CIVullally/pus)22 + ClVullss

and
Jy = / plul? - V2l - Juy| da

(3.42) < Cllullze [ V?ull 22 ]| v/puel| 2
< Cllulizee lvpudlize (lousllze + | Vul32)
< Cllullzellvpueliz + Cllullze [ VullZ. -

Owing to the fact that 2 [ |d;|?dz = [ |Vu|? dz,
J3 = /plu[2 |Vl - V| dzx
(3.43) < Cllullzee | Vel 2| V|2
<5 [ WO o+ Ol |Vl
Recall Lemma, 3.3 and Sobolev embedding theorem again, one deduces that
Jy= /p|ut|2 - |Vu| dz

< Cllvpu p2 lluel| 24| V]| o
< Cllvpuell 2| V|| 2| V| 1

/ 1(0)1de]? dz: + Ol|/Pu | Ve

/u(/f))ldtl2 dz + Cllv/purllzz + Cllv/pudll: 1 Vullze -

(3.44)
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Inserting the estimates (3.38)-(3.44) into (3.37), we obtain that

1d

55/?m#mwg/mmMFm

A4

(345) " < CflullZwllv/AuelZ + C (IVullZs + |VullSs) lly/puelZs + Cllv/Aucliia
+ Ol | VulS + Cllullie [ Va2 + Cl[VullSs .

Consequently, it follows from Gronwall’s inequality and Lemmas 3.4,3.5 that

t
hwmmm5+éanﬁmﬂsc.

sup
0<t<T*

Now we are ready to estimate ||Vu||g1.

Lemma 3.7. Suppose (p,u, P) is a strong solution to (1.1) on [0,T*). Under the
assumption (3.21), there exists a generic positive constant C such that

sup ||[Vu(@®)|l;m <C .
0<t<T™

Proof. By Lemma 3.3,
(3.46) [Vullm < Cllowslicz + C||Vulz:
which proves Lemma 3.7 with the aid of Lemmas 3.4 and 3.6. a

Furthermore, one has

Lemma 3.8. Suppose (p,u, P) is a strong solution to (1.1) on [0,T*). Under the
assumption (3.21), there exists a generic positive constant C such that

T
(3.47) sup (/ IVl oo dt) <C.
0

o<T<T™

Proof. Choose some 7, with 2 < r < min{p, 4}, by Sobolev embedding theorem

and Lemma 2.1,
(3.48)
HVU”LI(O,T;Lw) < CHVUHLI(O,T;WM)

< Cllpuel| L2 o,r;24) + Cllpw - VullLior;ze)

< C||Vus|lLrorie2) + ClIVull 22 oy

< ClIVuellyozizs) + Clloul| 207,02y + Cll Vullfe oz 22y »
which completes the proof for (3.47), with the aid of Lemmas 3.4 and 3.6. g

With the help of Lemma 3.8, we are in .a position to close the first order
derivative estimates for the density.

Lemma 3.9. Suppose (p,u, P) is a strong solution to (1.1) on [0,T*). Under the
assumption (3.21), there exists a generic positive constant C such that

(3.49) 2 (lo@llwra + llo(E)l]ze) < C .
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Proof. Consider the z;-derivative of the mass equation, i = 1, 2,
(Gip); + (u-V)0p+ (Ou-V)p=0.
It implies that for every ¢ € [0,T%),

(3.50) I90(6) 122 < Vg0l exp { / V()] ds} |

Hence, by Lemma 3.8, we finish the proof for the first part of (3.49).
It follows from the mass equation and Sobolev embedding theorem that
loellze < llu- Vollze < [[ulleeliVollze < [Vullm || Vollze

which together with (3.50) and Lemma 3.7 completes the proof for the second
part of (3.49).
O

In addition, one has the following regularity.

Lemma 3.10. Suppose (p,u, P) is a strong solution to (1.1) on [0,T*). Under
the assumption (3.21), it holds that for 2 <r < q,

T
(3.51) sup / (IVullyr + 1PIBrr) di < C .
0

0<T<T*
Proof. By Lemma 2.1, Lemma 3.9 and Sobolev embedding theorem,
IVullwrr + 1Pllwrr < C (lowellzr + llou - Va)|lzr) (1 4+ [[Via(p) || o) 4750
< O (IVurllz + | Vullfn) - (1 + [[Vplla) /26
Hence, (3.51) is proved with the aid of Lemmas 3.6, 3.7 and 3.9. O
Now, combining all the estimates derived in Theorems 3.4-3.10, we finish all

the estimates mentioned in (3.22), and hence completes the proof for Theorem
1.2.

4. PrROOF OoF THEOREM 1.4

The proof of Theorem 1.4 consists of two parts. The first part is devoted to
proving that || V(o) || e is always less than 1 provided that the initial data Vu(po)
is small enough. Based on these estimates, the second part aims to extend the
local strong solution to global one.

4.1. A Priori Estimates. In this subsection, we establish some a priori time-
weighted estimates independent of time interval. The idea is based on the para-
bolic property of the system.

In this subsection, the constant C' will denote some positive constant which
depends only on , q, p, p, Ti, || Vuol|r2 but independent of time 7.

First, just same as Lemma 3.1, one has

Lemma 4.1. Suppose (p,u, P) is the unique local strong solution to (1.1) on
[0, T), with the initial data (po,uo), it holds that

0<p(z,t)<p,  for every (z,t) € 2 x [0,T].
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Next, the basic energy estimate reads

Lemma 4.2. Suppose (p,u, P) is the unique local strong solution to (1.1) on
[0, T], with the initial data (po,uo), it holds that

¢
(4.52) /p[u(t)fzdx—i-/ /quPd:cds < C/p0|u0|2dx, for every t € [0,T],
0

Furthermore,

T
(4.53) sup tl/Ault)lf + / HIVul2 dt < C / poltio|2 dz .
te(o, 0

Proof. The proof of (4.52) is same as Lemma, 3.2. It only remains to prove (4.53).

First, one has

35 [ PluPds+2 [tz =o

Since (2 is a bounded domain, one can deduce from Poincaré’s inequality that

1
(4.55) 5/WMMsmMmsmwwzsc/MMWMa

where the fact p(p) > > 0 is used. Combining (4.54) and (4.55), we obtain

(4.54)

(4.56) /;olu(t)]2 dr < Ce'C‘/po[uol2 dr .

Multiplying the equality (4.54) by ¢ and integrating over 2, one has

d [t

1
G | el dev2t [ulads =5 [ phupdo

which together with (4.56) implies
T T
sup tlvEuOls+ [ Vulade<C [ [ pluPasde < 0 [ polu?da
t€[0,T] 0 0

O

The next lemma is exactly the same as Lemma 3.3 which will be used later.
We write down here without proof.

Lemma 4.3. Suppose (p,u, P) is the unique local strong solution to (1.1) on
[0,T] and

sup [|[Vu(p(t))llze < 1.
t€[0,T]

then
(4.57) IVull i < Cllpuglle + Cllpul|ia]| Vul 22 -

Now, we are ready to get some time-weighted estimates for ||Vul|pz.
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Lemma 4.4. Suppose (p,u, P) is the unique local strong solution to (1.1) o
[0,T] and satisfies

sup [[Vu(p(t))llze < 1.

t€[0,T

Then
(4.58)  sup t"‘HVuHLz +/ /t“plutlz dzdt < C(a) , for every a € [0, 2],

tefo,T

where C(a) is a positive constant depending on o, Q, g, p, i || wo|| e

Proof. Tt suffices to verify (4.58) for o = 0 and o = 2.

When a = 0, the proof is exactly the same as Lemma 3.4. Indeed, we get from
(3.33) that

1 d
/ plude+ 2 [ u(o)lat o
< C(1+ [pullze) [Vt (1 + log (24 | Vull%)) .

(4.59)

When a = 2, multiplying (4.59) by #? arrives at

1 d
3 / pluf?do + & / u(p)|d da

@60) <2t [ u(olade + CEIVullls (1 +1og 2+ |Vuls))

<2 / u(p)|d? dz + CL |Vl |

which together with Lemma 4.2 completes the proof for (4. 58) with @ = 2. Hence,
the proof for Lemma 4.4 is complete.

d

We insert a lemma before the estimates for ||,/puy||z2.
Lemma 4.5. Suppose (p,u, P) is the unique local strong solution to (1.1) on
[0, T] and satisfies
sup [Va(p(®)llze < 1.

t€[0,T]
Then
(4.61) lull2075z00) + IVullz20r29) < €,
and also
T T
(4.62) / tlulltw dt + / Pt dt < C
0 0

Proof. Tt follows from Sobolev embedding theorem and Lemma 4.3 that
lellzzoziz0)+H Vel r202,09) < ClIVull 20,
< Clipuellc2(o,;e2) + CllullZao.r.00) | VUil 1o 07;12)
< Cllouellzzo,rie2y + CllVullfar,o) VUl Lo or,2)
< Cllpwel|2(0,7;22) + ClIVull 200,02 I Vllioo 0,122
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which together with Lemmas 4.2 and 4.4 completes the proof for (4.61).
By Gagliardo-Nirenberg inequality and Lemma 4.3,

T T
[l de < [ lulaVuli d
0 0
T
<C [ tivulialouls d
0

T
(4.63) e / Bl V]2 i
0

T
< OVl oz / /B2

T
e
Also, upon the estimates in (4.63), we have

T T
/0 Ellullte dt < ClVul oz / 21| /122 dt

(4.64) T

+ OlVulte V8 sy [ IVulEsdt
Applying Lemmas 4.2 and 4.4 to (4.63)-(4.64) finishes the proof for (4.62). [
Lemma 4.6. Suppose (p,u, P) is the unique local strong solution to (1.1) on

[0,T] and satisfies

sup [[Vu(p())lle 1.
t€[0,T

Then
T
(4.65) sup tﬂ/plut|2dx+/ tP|| V|22 dt < C(B) , for every B € (1,2,
te(0,T) 0

where C(B) is a positive constant depending on B, q, p, i, T, ||uol| -
The proof of Lemma 4.6 is almost the same as that of Lemma 3.6.

Proof. Tt suffices to verify (4.65) for 3 =1 and 8 = 2.
When 8 = 1, multiplying the inequality (3.45) in Section 3 by t, we obtain
that

d

t
E/gplutpdz'*'t/ﬂ(mldtp dz

1
< 5 [ plul do + CtlulfullAuels +Ct (IVull + V0l [Vpulis
+ Oty + Otljul Vel + Ctllulm [Vl + CEI VullSs

Gronwall’s inequality gives that

T
(4.66) sup tl|y/pull2z +/ t|Vul|2.dt < C,
0

te[0,T)

owing to the estimates in Lemmas 4.2, 4.4 and4.5 .
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When 8 = 2, multiplying (3.45) by t? gives

d [t?

pr 5ﬂlutl2dw+t2/u(p)ldtl2d~r

< t/plutl2d~’v + O [ull e[l VpuellZz + Ot (IIVullfz + Vull3a) [lv/pudl?2
+ O Voullzz + Cjullfe [ Vulfa + O llull ][ Vull}: + CE|| VullSs .

Again, utilizing Gronwall’s inequality, Lemmas 4.2, 4.4 and 4.5, we prove (4.65)
for 8 = 2. Hence Lemma, 4.6 is proved. O

The next lemma is crucial to derive the higher order estimates for the density.

Lemma 4.7. Suppose (p,u, P) is the unique local strong solution to (1.1) on
[0, T] and satisfies

sup [[Vu(p(t))llze < 1.
t€[0,T]
Then there exists a generic positive constant C independent of time T, such that

(4.67) | IVullLiore) < C .

Proof. Choose some r, with 2 < r < min{q, 3}, by Lemma 2.1,

“VU”Ll(o,T;Lw) < C”VUHU(O,T;W“)

4.68
(468) < Cllpuel| 10,7523 + Cliow - Vullpro,r,z2) -

Herein, by Gagliardo-Nirenberg inequality and Poincaré’s inequality,
1 1 1 1
lpudllzs < Cllouel|Zlloucl3s < Cllvpus 211 Vel 22
which implies
T T, 1, 1
| e <€ [ il 1ol
0 0
T ., 13 T \ i
< C I:/ t_ill\/ﬁut”zg dt} . l:/ tEHVutIILz dt] .

0 0

If T'< 1, taking 8 =1 in Lemma, 4.6, one has

T r T , i T, ; 1
/ HputHLadtSC[/ - 'ﬁdtJ [/ tauwtnizdt] <C.
0 0 0

N
N

g
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If T > 1, taking 8 = 2 in Lemma 4.6 again to get
T 1 T
[ owlzsde < [ lpulzsdt + [ loul
0 0 1

1 2 3 1, i
scv-ﬂmmmm][/ﬁwmmﬂ
1] 0

3 1
T1 2 1 Ta 1
ve| [ ehvaibal [ [ Aivul ¢
1 1

1 1 12 % 1 3 4
<C [/ t’i-t‘i'ﬁdt] [/ t§||vut||%2dt]
0 0
T 1 2 :4'5 T 3 Ii'
+CU t‘i-t“‘a'dtJ [/ tfnwtnizdt]
1 1

<C.

Hence, we have fOT llowll s dt < C, no matter T < 1 or T > 1, and we remark
again that C is independent of T
On the other hand, by Lemma 4.5,

T
/ (o - Vul|z2 dt < Cllull207i2) - [Vull2ozis < C
0

Now we can conclude that fOT |Vu||dt < C, which completes the proof for
Lemma 4.7. O

Finally, let’s close the estimates for Vu(p).

Lemma 4.8. Suppose (p,u, P) is the unique local strong solution to (1.1) on
[0,T] and

sup [Vu(o)lla <1 .
t€[0,T)

There exists a positive number €o depending only on Q, q, p, p, B, ||uol|m, such
that if

Vi(po)llze < €0,

then 1
sup [|[Vu(p)llze < 5 .
te[0,T] 2

]

Note that € is independent of T'.

Proof. Consider the z;-derivative of the renormalized mass equation for x(p),

(Butl)), + (Brt- V(o) + - Vo) = 0.
It implies that for every t € [0, T1,

IVi(p)(®)llze < CIIVi(po)llLa - exp {/O V]| oo ds}
< Cal|Vis(po)llze

where we used Lemma 4.7 and Cs is a constant independent of 7.

Hence, if we set o = 55, then Lemma 4.8 is proved. O

(4.69)



133

Now we plan to get high order estimates. The proof is the same as in Section
3. We will omit the details for brevity and just write down the lemma.

Lemma 4.9. Suppose (p,u, P) is the unique local strong solution to (1.1) on
[0,T], and

sup [|[Vu(p)lle < 1.
t€{0,T7]

Then it holds that
(le@llwra + loe(E)llze + [ Vu@)llar + Ivew(t)|z2) < C',

sup
0<t<T

(4.70) . ]
| (0l + vy e < 0

Here C is a positive constant, which may depend on T, u, and the initial data.

4.2. Proof of Theorem 1.4. With the a priori estimates in Subsection 4.1 in
hand, we are prepared for the proof of Theorem 1.4.

Proof. According to Theorem 1.1, there exists a T, > 0 such that the density-
dependent Navier-Stokes system (1.1) has a unique local strong solution (p, u, P)
on [0,7,], and T, depends on |||y, 1 Vuolla, N|9lz2 and p, where g is the
function in the compatibility condition (1.4). We plan to extend the local solution
to a global one.

Since |[Vu(po)|lze < €0 < 3 and due to the continuity of Vu(p) in L, there
exists a Ty € (0,7.) such that supoc,<p [|Vi£(p)(t)||lze < 1. Set

T* = sup{T| (p,u, P) is a strong solution on [0,T]} .
TY = sup {Tl (b, u, P) is a strong solution on [0,7] and sup ||Vu(p)||ze < 1} :
0<t<T

Then Tt > T; > 0. Recall Lemma 4.8, it’s easy to verify
(4.71) T =1T7.

We claim that T* = co. Otherwise, assuming that T* < o0. By Lemma 4.9,
for every ¢ € [0, T™), there exists a uniform generic constant C(T™*), such that

(4.72) le@llwa + I Vu@)llm < C@T™) .

which contradicts to the blowup criterion (1.5). Hence we complete the proof for
Theorem 1.4.
O
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