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1. INTRODUCTION
Ohya and Karasudani [8] developed a new wind turbine system that consists of a diffuser
shroud with a broad-ring at the exit periphery and a wind turbine inside it. Their ex-
periments show that a diffuser-shaped (not nozzle-shaped) structure can accelerate the
wind at the entrance of the body. $A$ strong vortex formation with a low-pressure region
is created behind the broad brim. Accordingly, the wind flows into a low-pressure region,
the wind velocity is accelerated further near the entrance of the diffuser. We would like
to analyze this “wind-lens phenomena” in pure mathematical approach. For the first
step, we need to figure out why the diffuser shroud creates vortices easier than the nozzle
shroud. In general, creation of a vortex needs separation phenomena near a boundary
(namely, topological changing phenomena), and before separating from the boundary, the
flow moves toward reverse direction near the boundary against the laminar flow direc-
tion. There are several results related to the separation (in other words, wake region)
in pure mathematics. Using the Oseen system is one of the mathematical approach to
analyze the wake region. For the detailed discussion of the Oseen system, we refer the
reader to [2]. In a convex obstacle case, the character of the system is elliptic in front
of the obstacle. To the contrary, its character changes into parabolic type (wake region)
behind the obstacle (see [4] for example). Maekawa [6] considered the two-dimensional
Navier-Stokes equations in a half plane under the no-slip boundary condition. He estab-
lished a solution formula for the vorticity equations and got a sufficient condition on the
initial data for the vorticity to blow up to the inviscid limit. Ma and Wang [5] provided
a characterization of the boundary layer separation of 2- $D$ incompressible viscous fluids.
They considered a separation equation linking a separation location and a time with the
Reynolds number, the external forcing and the initial velocity field. However, none of the
above studies has shown the mecbanism behind the reverse flow phenomena (topological
instability) rigorously. In this paper we show that a diffuser-shaped boundary induces the
reverse flow even near the entrance of the diffuser. Let us be more precise. We consider
the two-dimensional Navier-Stokes equation in $\Omega\subset \mathbb{R}^{2}$ (define $\Omega$ later) with no-slip and
inflow-outflow conditions on $\partial\Omega$ . We need to handle a shape of the boundary $\partial\Omega$ precisely,
thus we set a parametrized smooth boundary $\varphi$ : $[0, S]arrow \mathbb{R}^{2}$ as $|\partial_{s}\varphi(s)|=1,$ $|\partial_{s}^{2}\varphi(s)|=\kappa$

(curvature), $\varphi(0)=(0,0),$ $\partial_{s}\varphi(0)=(1,0),$ $\partial_{S}^{2}\varphi(0)=(0, -\kappa)$ . We choose $S$ later (should
be sufficiently small). We define $n=n(s);=(\partial_{s}\varphi(s))^{\perp}$ as a unit normal vector and
$\tau=\tau(s)=\partial_{s}\varphi(s)$ as a unit tangent vector, where $\perp$ represents upward direction.

In order to define the domain $\Omega$ , we need the following coordinate.
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Definition 1.1. (Normal coordinate.) For $s\in[O, S]$ and $r\in[O, R]$ , let
$\Phi(s, r)=\Phi_{\varphi}(s, r):=n(s)r+\varphi(s)$ .

Remark 1.2. Since $\partial_{S}n(s)=\kappa\tau(s)$ (Renet-Serret formulae), we see that

$(\partial_{r}\Phi)(s, r)=n(s)$ and $(\partial_{s}\Phi)(s, r)=(r\kappa+1)\tau(s)$ .

Now we define the domain $\Omega$ as follows:
$\Omega=\Omega_{S,R}:=\{\Phi(s, r)\in \mathbb{R}^{2}:s\in(O, S), r\in(O, R)\}.$

Note that we take $S$ and $R$ to be sufficiently small depending on the initial data and the
inflow condition. The non-stationary two-dimensional Navier-Stokes equation is expressed
as

(1.1) $\{\begin{array}{ll}\partial_{t}u-v\Delta u+(u\cdot\nabla)u=-\nabla p, divu=0 in \Omega\subset \mathbb{R}^{2},u|_{\bigcup_{\iota=0}^{S}\varphi(s)}=0, \end{array}$

where $u=u(x)=u(x, t)=(u^{1}(x_{1}, x_{2}, t), u^{2}(x_{1}, x_{2}, t))$ . In this paper we sometimes
abbreviate the time $t$ not $x$ . Let $\alpha_{1},$ $\alpha_{2}>0$ and $\alpha_{3}\in \mathbb{R}$ be coefficients of the inflow
condition (Poiseuille type flow profile which seems to be the most natural setting) such
that

$(u \cdot\tau)(\Phi(0, r))=u^{1}(0, r, t)=\alpha_{1}r-\frac{\alpha_{2}}{2}r^{2}+\frac{\alpha_{3}}{3!}r^{3}+O(r^{4})$ .

Also assume $(u\cdot n)(\Phi(0, r))=u^{2}(0, r)=0$ . We assume that there exists a smooth solution
except for the origin, namely, assume that there exists a pair of solution $(u,p)$ to (1.1) in

$u,p\in C^{\infty}([0, T]\cross D)\cap C^{\infty}((0, T]\cross(\Omega\backslash B_{\epsilon}))$ for any $D\Subset\Omega$ and $\epsilon>0,$

where $B_{\epsilon}=\{x\in \mathbb{R}^{2}:|x|<\epsilon\}.$

Remark 1.3. Combining a result of Navier-Stokes initial value problem in Lipschitz
domain [7], and a boundary regularity result [3] (We believe we can generalize their result
to various smooth domains), the above smoothness assumption should become true.

Remark 1.4. We can avoid interior blow-up by taking sufficiently small $R$ . Thus we
only need to care boundary regularity not interior regularity. Moreover we can also avoid
boundary blow-up except for the origin by taking sufficiently small $S$ . Thus it is reasonable
to assume $T$ to be sufficiently large (for sufficiently small $S$ and $R$).

Definition 1.5. (Laminar flow.) $u$ is “laminar flow” (near the origin) iff $u$ is smooth
(including the origin) in $\Omega,$ $|u(x)|\neq 0$ for $x\in\Omega$ and the flow $u$ is to the rightward
direction (laminar flow direction), namely,

$(u\cdot\tau)(x)>0$

for $x\in\Omega.$

We mainly consider a geometrical shape of the laminar flow near the origin. In this
case, one of the five situations only occur (for fixed time $t$ ): diffusing, almost parallel,
concentrating laminar flows, topologically changing flow (inducing the reverse flow) or
non-smoothness at the origin. Sometimes we write $u\cdot\tau=(u\cdot\tau)(s, r)=(u\cdot\tau)(s, r, t)=$

$(u\cdot\tau)(x, t)|_{x=\Phi(s,r)}$ unless confusion occurs.
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Definition 1.6. (Classification of Navier-Stokes flow for fixed time.) Let
$\mathcal{L}_{t}(s, r)=\mathcal{L}(s, r)$ $:=(r \kappa+1)\frac{u\cdot n}{u\cdot\tau}$ (slope of the velocity with Riemannian metric)

and
$\beta(t):_{S}=li_{arrow 0}^{m\partial_{s}\partial_{r}\mathcal{L}(s,r)}.$

$\bullet$ Diffusing laminar flow: We call diffusing laminar flow iff $u,p\in C^{\infty}(\Omega)$ and
$\beta(t)>0.$

$\bullet$ Almost parallel laminar flow: We call almost parallel laminar flow iff $u,p\in C^{\infty}(\Omega)$

and
$\beta(t)=0.$

$\bullet$ Concentrating laminar flow: We call concentrating laminar flow iff $u,p\in C^{\infty}(\Omega)$

and
$\beta(t)<0.$

$\bullet$ Topologically changing flow (not laminar flow case): We say topologically changing
flow iff $u,p\in C^{\infty}(\Omega)$ and there is $x\in\Omega$ such that $|u(x)|=0$ or $(u\cdot\tau)(x)<0.$

$\bullet$ Non-smoothness at the origin: We say non-smoothness at the origin iff
$u(\cdot, t)\not\in C^{\infty}(\Omega\cap B_{\epsilon})$ or $p(\cdot, t)\not\in C^{\infty}(\Omega\cap B_{\epsilon})$ for $\epsilon>0.$

Remark 1.7. Rigorously, we need to quantify the first order diffusing/almost parallel/
concentrating laminar flows by using $\lim_{s,rarrow 0}\partial_{r}\mathcal{L}(s, r)$ , and we need to say the above
definition $\beta(t)$ as the second order diffusing/almost parallel/concentrating laminar flows.
However, due to the inflow condition $(u\cdot n)(\Phi(0, r))=0$ , namely, $\lim_{sarrow 0}\mathcal{L}=0$ for $r>0$
the first order part is always zero: $\lim_{s,rarrow 0}\partial_{r}\mathcal{L}=0$ . Thus in this paper, we do not
distinguish “order” of the laminar flow (higher order part is not important in this paper).
Remark 1.8. If we consider the most general inflow condition, we need to handle
$\lim_{s,rarrow 0}\partial_{r}^{2}\mathcal{L}(s, r)$ (quantified non-uniform structure). However we do not mention more
in this paper. Note that non-uniform and the first order part are included in the inflow
condition. But the second order part is not (it is included in the interior flow structure).

In order to give the main theorem, we need to define “trajectory”
Definition 1.9. (Rajectory.) Let $\tilde{\gamma}_{X}$ be in $\Omega$ and it satisfies

$\partial_{t}\tilde{\gamma}_{X}(t)=u(\tilde{\gamma}_{X}(t), t) , \gamma_{X}(0)=X\in\Omega.$

Note that the equation (1.1) can be rewritten as $\partial_{t}(u(\tilde{\gamma}(t), t))=(\triangle u-\nabla p)(\tilde{\gamma}(t),t)$ .
The following is the main theorem.

Theorem 1.10. (Horizontally stopping particles phenomena.) Let the initial datum $u_{0}$

satisfies diffusing laminar flow condition, namely, $\beta(0)>0$ . If $\kappa\alpha_{2}+\alpha_{3}>0$, then the
topologically changing flow (or non-smoothness at the origin) must occur at finite time. $In$

other words, particles near the boundary slow down and finally stop horizontally at finitetime. More precisely, there is $R<R$ such that if $\tilde{r}<\tilde{R}$ , then
$\lim_{tarrow\overline{T}}(u\cdot\tau)(\tilde{\gamma}_{\Phi(0,\overline{r})}(t), t)=0,$

where $\tilde{T}<T$ is depending on $\tilde{r},$ $v,$ $\kappa,$ $\alpha_{1},$ $\alpha_{2}$ and $\alpha_{3}.$
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Remark 1.11. $A$ sort of Reynolds number does not appear in the above main theorem
due to the inflow condition (Poiseuille type flow profile). If we relax the inflow condition,
namely, we take non-uniform $( \lim_{s,rarrow 0}\partial_{r}^{2}\mathcal{L})$ and first order $( \lim_{s,rarrow 0}\partial_{r}\mathcal{L})$ parts into inflow
condition to be nonzero, some kind of the Reynolds number should appear in the above
main theorem.

Remark 1.12. There are direct and indirect evidences for the validity of the “Kutta
condition” in restricted regions (see [1]). The method used in the above theorem may
give another support for the validity of the Kutta condition in pure mathematical sense.

Now we give outline of the proof briefly. Basically, we need to estimate trajectory of
a particle near the boundary. In order to do so, we need to estimate each $\Delta u$ and $\nabla p$

near the boundary. First we construct “ streamline coordinate” and then we estimate
$\triangle u$ directly. Next we construct “ pressure coordinate ’ based on level set of the pressure
and no-slip boundary condition. In this case, $\Delta u=\nabla p$ on the boundary is the crucial
point. Third we calculate some kind of Riemannian metric of the ‘ pressure coordinate
at the origin (the pressure is nonlocal operator, nevertheless we can estimate it by using
orders of approximation).
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