On the augmentation quotients of the IA-automorphism group of a free group

東京理科大学理学部第二部数学科 佐藤 隆夫* (Satoh, Takao) Department of Mathematics, Faculty of Science Division II, Tokyo University of Science

$\mathbf{Abstract}$

In this article, we study the augmentation quotients of the IA-automorphism group of a free group and a free metabelian group. First, for any group G, we construct a lift of the k-th Johnson homomorphism of the automorphism group of G to the k-th augmentation quotient of the IA-automorphism group of G. Then we study the images of these homomorphisms for the case where G is a free group and a free metabelian group. As a corollary, we detect a **Z**-free part in each of the augmentation quotients, which can not be detected by the abelianization of the IA-automorphism group. For details, see our paper [25].

Let F_n be a free group of rank $n \ge 2$, and Aut F_n the automorphism group of F_n . Let ρ : Aut $F_n \to \operatorname{Aut} H$ denote the natural homomorphism induced from the abelianization $F_n \to H$. The kernel of ρ is called the IAautomorphism group of F_n , denoted by IA_n . The subgroup IA_n reflects much of the richness and complexity of the structure of Aut F_n , and plays important roles in various studies of Aut F_n . Although the study of the IA-automorphism group has a long history since its finitely many generators were obtained by Magnus [14] in 1935, the combinatorial group structure of IA_n is still quite complicated. For instance, no presentation for IA_n is known in general.

We have studied IA_n mainly using the Johnson filtration of Aut F_n so far. The Johnson filtration is one of a descending central series

$$\mathrm{IA}_n = \mathcal{A}_n(1) \supset \mathcal{A}_n(2) \supset \cdots$$

consisting of normal subgroups of Aut F_n , whose first term is IA_n. Each graded quotient $\operatorname{gr}^k(\mathcal{A}_n) := \mathcal{A}_n(k)/\mathcal{A}_n(k+1)$ naturally has a $\operatorname{GL}(n, \mathbb{Z})$ -module structure, and from it we can extract some valuable information

^{*}e-address: takao@rs.tus.ac.jp

about IA_n. For example, $\operatorname{gr}^1(\mathcal{A}_n)$ is just the abelianization of IA_n due to Cohen-Pakianathan [6, 7], Farb [9] and Kawazumi [13]. Pettet [19] determined the image of the cup product $\cup_{\mathbf{Q}} : \Lambda^2 H^1(\operatorname{IA}_n, \mathbf{Q}) \to H^2(\operatorname{IA}_n, \mathbf{Q})$ by using the $\operatorname{GL}(n, \mathbf{Q})$ -module structure of $\operatorname{gr}^2(\mathcal{A}_n) \otimes_{\mathbf{Z}} \mathbf{Q}$. At the present stage, however, the structures of the graded quotients $\operatorname{gr}^k(\mathcal{A}_n)$ are far from well-known.

On the other hand, compared with the Johnson filtration, the lower central series $\Gamma_{IA_n}(k)$ of IA_n and its graded quotients

$$\mathcal{L}_{\mathrm{IA}_n}(k) := \Gamma_{\mathrm{IA}_n}(k) / \Gamma_{\mathrm{IA}_n}(k+1)$$

are somewhat easier to handle since we can obtain finitely many generators of $\mathcal{L}_{\mathrm{IA}_n}(k)$ using the Magnus generators of IA_n . Since the Johnson filtration is central, $\Gamma_{\mathrm{IA}_n}(k) \subset \mathcal{A}_n(k)$ for any $k \geq 1$. It is conjectured that $\Gamma_{\mathrm{IA}_n}(k) = \mathcal{A}_n(k)$ for each $k \geq 1$ by Andreadakis who showed $\Gamma_{\mathrm{IA}_2}(k) = \mathcal{A}_2(k)$ for each $k \geq 1$. It is currently known that $\Gamma_{\mathrm{IA}_n}(2) = \mathcal{A}_n(2)$ due to Bachmuth [2], and that $\Gamma_{\mathrm{IA}_n}(3)$ has at most finite index in $\mathcal{A}_n(3)$ due to Pettet [19].

In this article, we consider the augmentation quotients of IA_n . Let $\mathbf{Z}[G]$ be the integral group ring of a group G, and $\Delta(G)$ the augmentation ideal of $\mathbf{Z}[G]$. We denote by $Q^k(G) := \Delta^k(G)/\Delta^{k+1}(G)$ the k-th augmentation quotient of G. The augmentation quotients $Q^k(IA_n)$ of IA_n seem to be closely related to the lower central series $\Gamma_{IA_n}(k)$ as follows. If the Andreadakis's conjecture is true, then each of the graded quotients $\mathcal{L}_{IA_n}(k)$ is free abelian. Using a work of Sandling and Tahara [21], we obtain a conjecture for the Z-module structure of $Q^k(IA_n)$:

Conjecture 1. For any $k \geq 1$,

$$Q^k(\mathrm{IA}_n) \cong \sum \bigotimes_{i=1}^k S^{a_i}(\mathcal{L}_{\mathrm{IA}_n}(i))$$

as a **Z**-module. Here the sum runs over all non-negative integers a_1, \ldots, a_k such that $\sum_{i=1}^k ia_i = k$, and $S^a(M)$ means the symmetric tensor product of a **Z**-module M such that $S^0(M) = \mathbf{Z}$.

We see that this is true for k = 1 and 2 from a general argument in group ring theory. For $k \ge 3$, however, it is still an open problem. In

general, one of the most standard methods to study the augmentation quotients $Q^k(\mathrm{IA}_n)$ is to consider a natural surjective homomorphism π_k : $Q^k(\mathrm{IA}_n) \to Q^k(\mathrm{IA}_n^{\mathrm{ab}})$ induced from the abelianization $\mathrm{IA}_n \to \mathrm{IA}_n^{\mathrm{ab}}$ of IA_n . Furthermore, since $\mathrm{IA}_n^{\mathrm{ab}}$ is free abelian, we have a natural isomorphism $Q^k(\mathrm{IA}_n^{\mathrm{ab}}) \cong S^k(\mathcal{L}_{\mathrm{IA}_n}(1))$. Hence, in the conjecture above, we can detect $S^k(\mathcal{L}_{\mathrm{IA}_n}(1))$ in $Q^k(\mathrm{IA}_n)$ by the abelianization of IA_n .

Then we have a natural problem to consider: Determine the structure of the kernel of π_k . More precisely, clarify the $\operatorname{GL}(n, \mathbb{Z})$ -module structure of $\operatorname{Ker}(\pi_k)$. In order to attack this problem, in this article we construct and study a certain homomorphism defined on $Q^k(\operatorname{IA}_n)$ whose restriction to $\operatorname{Ker}(\pi_k)$ is non-trivial. For a group G, let $\alpha_k = \alpha_{k,G} : \mathcal{L}_G(k) \to Q^k(G)$ be a homomorphism defined by $\sigma \mapsto \sigma - 1$. Then, we can construct a $\operatorname{GL}(n, \mathbb{Z})$ -equivariant homomorphism

$$\mu_k : Q^k(\mathrm{IA}_n) \to \mathrm{Hom}_{\mathbf{Z}}(H, \alpha_{k+1}(\mathcal{L}_n(k+1)))$$

where $\mathcal{L}_n(k)$ is the k-th graded quotient of the lower central series of F_n . Furthermore, for the k-th Johnson homomorphism

$$\tau'_k : \mathcal{L}_{\mathrm{IA}_n}(k) \to \mathrm{Hom}_{\mathbf{Z}}(H, \mathcal{L}_n(k+1))$$

defined by $\sigma \mapsto (x \mapsto x^{-1}x^{\sigma})$, we show that $\mu_k \circ \alpha_k = \alpha_{k+1}^* \circ \tau'_k$ where α_{k+1}^* is a natural homomorphism induced from α_{k+1} . Since α_{k,F_n} is a GL (n, \mathbb{Z}) -equivariant injective homomorphism for each $k \geq 1$, if we identify $\mathcal{L}_n(k)$ with its image $\alpha_k(\mathcal{L}_n(k))$, we obtain $\mu_k \circ \alpha_k = \tau'_k$. Hence, the homomorphism μ_k can be considered as a lift of the Johnson homomorphism τ'_k . In the following, we naturally identify $\operatorname{Hom}_{\mathbb{Z}}(H, \mathcal{L}_n(k+1))$ with $H^* \otimes_{\mathbb{Z}} \mathcal{L}_n(k+1)$ for $H^* := \operatorname{Hom}_{\mathbb{Z}}(H, \mathbb{Z})$.

Historically, the study of the Johnson homomorphisms was originally begun in 1980 by D. Johnson [11] who determined the abelianization of the Torelli subgroup of the mapping class group of a surface in [12]. Now, there is a broad range of remarkable results for the Johnson homomorphisms of the mapping class group. (For example, see [10] and [15], [16], [17].) These works also inspired the study of the Johnson homomorphisms of Aut F_n . Using it, we can investigate the graded quotients $\operatorname{gr}^k(\mathcal{A}_n)$ and $\mathcal{L}_{\operatorname{IA}_n}(k)$. Recently, good progress has been achieved through the works of many authors, for example, [6], [7], [9], [13], [15], [16], [17] and [19]. In particular, in our previous work [24], we determined the cokernel of the rational Johnson homomorphism $\tau'_{k,\mathbf{Q}} := \tau'_k \otimes \operatorname{id}_{\mathbf{Q}}$ for $2 \leq k \leq n-2$.

The main theorem of this article is

Theorem 1. For $3 \le k \le n-2$, the $GL(n, \mathbb{Z})$ -equivariant homomorphism

$$\mu_k \oplus \pi_k : Q^k(\mathrm{IA}_n) \to (H^* \otimes_{\mathbf{Z}} \alpha_{k+1}(\mathcal{L}_n(k+1))) \bigoplus Q^k(\mathrm{IA}_n^{\mathrm{ab}})$$

defined by $\sigma \mapsto (\mu_k(\sigma), \pi_k(\sigma))$ is surjective.

Next, we consider the framework above for a free metabelian group. Let $F_n^M := F_n/[[F_n, F_n], [F_n, F_n]]$ be a free metabelian group of rank n. By the same argument as the free group case, we can consider the IAautomorphism group IA_n^M and the Johnson homomorphism

$$\tau'_k: \mathcal{L}_{\mathrm{IA}^M_n}(k) \to H^* \otimes_{\mathbf{Z}} \mathcal{L}^M_n(k+1)$$

of Aut F_n^M where $\mathcal{L}_{\mathrm{IA}_n^M}(k)$ is the k-th graded quotient of the lower central series of IA_n^M , and $\mathcal{L}_n^M(k)$ is that of F_n^M . In our previous work [23], we studied the Johnson homomorphism of Aut F_n^M , and determined its cokernel. In particular, we showed that there appears only the Morita obstruction $S^k H$ in $\mathrm{Coker}(\tau'_k)$ for any $k \geq 2$ and $n \geq 4$. We remark that in [23], we determined the cokernel of the Johnson homomorphism τ_k which is defined on the graded quotient of the Johnson filtration of Aut F_n^M . Observing our proof, we verify that $\mathrm{Coker}(\tau'_k) = \mathrm{Coker}(\tau_k)$.

Now, similarly to the free group case, we can also construct a $GL(n, \mathbb{Z})$ equivariant homomorphism

$$\mu_k : Q^k(\mathrm{IA}_n^M) \to \mathrm{Hom}_{\mathbf{Z}}(H, \alpha_{k+1}(\mathcal{L}_n^M(k+1)))$$

such that $\mu_k \circ \alpha_k = \alpha_{k+1}^* \circ \tau'_k$. Then we have

Theorem 2. For $k \ge 2$ and $n \ge 4$, the $GL(n, \mathbb{Z})$ -equivariant homomorphism

$$\mu_k \oplus \pi_k : Q^k(\mathrm{IA}_n^M) \to (H^* \otimes_{\mathbf{Z}} \alpha_{k+1}(\mathcal{L}_n^M(k+1))) \bigoplus S^k((\mathrm{IA}_n^M)^{\mathrm{ab}})$$

defined by $\sigma \mapsto (\mu_k(\sigma), \pi_k(\sigma))$ is surjective.

Acknowledgments

This research is supported by a JSPS Research Fellowship for Young Scientists and the Global COE program at Kyoto University.

References

- [1] S. Andreadakis; On the automorphisms of free groups and free nilpotent groups, Proc. London Math. Soc. (3) 15 (1965), 239-268.
- [2] S. Bachmuth; Induced automorphisms of free groups and free metabelian groups, Trans. Amer. Math. Soc. 122 (1966), 1-17.
- [3] S. Bachmuth and H. Y. Mochizuki; The non-finite generation of Aut(G), G free metabelian of rank 3, Trans. Amer. Math. Soc. 270 (1982), 693-700.
- [4] S. Bachmuth and H. Y. Mochizuki; $\operatorname{Aut}(F) \to \operatorname{Aut}(F/F'')$ is surjective for free group for rank ≥ 4 , Trans. Amer. Math. Soc. 292, no. 1 (1985), 81-101.
- [5] K. T. Chen; Integration in free groups, Ann. of Math. 54, no. 1 (1951), 147-162.
- [6] F. Cohen and J. Pakianathan; On Automorphism Groups of Free Groups, and Their Nilpotent Quotients, preprint.
- [7] F. Cohen and J. Pakianathan; On subgroups of the automorphism group of a free group and associated graded Lie algebras, preprint.
- [8] T. Church and B. Farb; Infinite generation of the kernels of the Magnus and Burau representations, preprint, arXiv:math.GR/0909.4825.
- [9] B. Farb; Automorphisms of F_n which act trivially on homology, in preparation.
- [10] R. Hain; Infinitesimal presentations of the Torelli group, Journal of the American Mathematical Society 10 (1997), 597-651.

- [11] D. Johnson; An abelian quotient of the mapping class group, Math. Ann. 249 (1980), 225-242.
- [12] D. Johnson; The structure of the Torelli group III: The abelianization of \mathcal{I}_g , Topology 24 (1985), 127-144.
- [13] N. Kawazumi; Cohomological aspects of Magnus expansions, preprint, arXiv:math.GT/0505497.
- [14] W. Magnus; Uber n-dimensinale Gittertransformationen, Acta Math. 64 (1935), 353-367.
- [15] S. Morita; Abelian quotients of subgroups of the mapping class group of surfaces, Duke Mathematical Journal 70 (1993), 699-726.
- [16] S. Morita; Structure of the mapping class groups of surfaces: a survey and a prospect, Geometry and Topology Monographs Vol. 2 (1999), 349-406.
- [17] S. Morita; Cohomological structure of the mapping class group and beyond, Proc. of Symposia in Pure Math. 74 (2006), 329-354.
- [18] I. B. S. Passi; Group Rings and their Augmentation Ideals, Lecture Notes in Mathematics 715, Springer (1979).
- [19] A. Pettet; The Johnson homomorphism and the second cohomology of IA_n , Algebraic and Geometric Topology 5 (2005) 725-740.
- [20] C. Reutenauer; Free Lie Algebras, London Mathematical Society monographs, new series, no. 7, Oxford University Press (1993).
- [21] R. Sandling and K Tahara; Augmentation quotients of group rings and symmetric powers, Math. Proc. Camb. Phil. Soc., 85 (1979), 247-252.
- [22] T. Satoh; New obstructions for the surjectivity of the Johnson homomorphism of the automorphism group of a free group, Journal of the London Mathematical Society, (2) 74 (2006) 341-360.
- [23] T. Satoh; The cokernel of the Johnson homomorphisms of the automorphism group of a free metabelian group, Transactions of American Mathematical Society, 361 (2009), 2085-2107.

- [24] T. Satoh; On the lower central series of the IA-automorphism group of a free group, preprint.
- [25] T. Saoth; On the augmentation quotients of the IA-automporphism group of a free group, Algebraic and Geometric Topology, 12 (2012) 1239-1263.