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- Adams filtration

§0, Background - untill early 90’'s

mod p Adams filtrationof a spectramap f: X - Y
2¢t The maximum s (0 < s < 00) with such a lift f: X — Fj

l (1)
Foprn—F, 1 NHZ/p

F;
|
Fi———F ANHZ/p

FsANHZ/p

XLy =F——FAHZ/p
\_
- Adams spectral sequence
e Adams spectral sequence := the spectral sequence

to compute {X,Y}. w.r.t. the Adams filtraion s
o B3 = ExtL (H*(Y;Z/p), H*(X;Z/p)) == {X,Y}is
where A* = {X*HZ/p,Z*HZ/p}_,,
the mod p Steenrod £
e Especially when X =Y = >80,

t t
By = Ext(Z/p, 2/p) = w{_y(5%))

e Elements in Extj’li(Z/p,Z/p) = Exti’li(Z/p,Z/p) are repre-
sented by cobar complexes as [(1|¢o]---|¢s], a; € A«, where
S

. = P(§1’£2’--~) (p=2)
P(£1,82,...) ® E(10,71,...) (p=o0dd)
o Jlen| =27 -1 (p=2)
i {I£n| =2(p" - 1), || =2p"-1 (p= odd)

is the Milnor’s dual Steenrod algebra.
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~———— The Steenrod algebra action on Ext%*(Z/p,Z/p) ———

e The mod-p Steenrod algebra A* also acts on the coho-
mology of the cocommutative Hopf algebras over Z/p, in
particular, on Ext%*(Z/p,Z/p) .

e« HOWEVER, NEITHER S¢° (p =2) OR P? (p = 0dd) ACT
IDENTICALLY ON Ext%*(Z/p,Z/p) !

Sq@ : Ext¥ (2/2,2/2) — Ext3(2/2,2/2)

[¢11Cal - - 1¢s) = [¢IC3] - - - 1¢2],
PO ExtS{(Z/p, Z/p) — EXtZPY(Z/p, Z/p)

L [¢1l¢al -+~ I¢s] = [¢RICAI - -~ ICE),

p p =2, filtraion s=1 case N
1,
Ext 42 (Z/2,2/2) i
= 2/2{h|h; € Ext}Z (2/2,2/2) i € Z0}
(infinite dimensional Z/2 vector space!)

e S¢O(h;) = hit1

e Only hg, h1, ho, h3 are the permanent cycle
(Adams Hopf invariant one theorem)

e (J. Cohen; Doomsday Conjecture:) Fix a prime p. Then,
for each filtration s , only finitely many of

ES' = Ext%L(Z/p, Z/p)

are permanent cycles.
(Regard t as time ... As t increseas, or, as time
passes, no one can survive!)

N _
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- p =2, filtraion s =2 case —~

Ext%5(2/2,Z/2)
= Z/2{h:h;j|0 < i < G, # i+ 1}
o SqO(hihj) = hiy1hjqq
e (Mahowald) Vj > 1 hih; is @ permanent cycle.
== Doomsday conjecture “doomed !”
e (Browder) hf € Exti’le(Z/Q,Z/Q) is a permanent cycle.
< 7a Kervaire invariant one element in o1, (S9)

<= an element in m5+1_,(89), which is never represented
by a homotopy sphere as a framed bordism element.
e Until earlier 90’'s, experts believed that all the hi2 are per-
manent cycles.
e.g. “An inductive approach to (constructing)

the Kervaire invariante (one elements)”

§1, Newdoomsday Conjecture
- untill 2009

- Motiviational Question
Is there any systematic method to construct elements and

permanent cycles of Ext’;"(Z/p,Z/p) ?
—

~

)

~ An Answer
Set V; := (Fp)® and consider the composite:
T (BVs) = PHn(BV:) (2 Exty"(Z/pn(BV:)))
= 2/p OGLy(F,) PHn(BVs)
— Exty"*(Z/p, Z/p)

~
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- M. 2
The stable Hurewicz map

ﬂgn—s(BVS) - H2n—s(BVs)
has a trivial image, when .
2u2(n)+2—2s > Vg(n) + 2 + |:5[T]:| —ap ([S — 1:1) if p= 2

2 2

prM+2-2 5 (p_Dy(n)+1+p [s ; 1] — op ([s ; 1]) if p=odd

\Where vp(n) is the index of the highest p-power dividing n.

Observe the following commutative diagram
T3 —s(BVs) PHp,_4(BVs)

+1
BPyy_(BVs)#" < BPap_o(BVs) —- Hop_s(BVs)
where ¢! is the BP-Adams operation.

Then the proof makes use of the computation of

BP.(BV;)
by Johnson-Wilson and Johnson-Wilson-Yan, and
Sq® : PHn(BVs) —  PHp, (n)(BV) (p=2)
ti, @i, ® - = 1041 @241 Q- B t2441
PO . PH,,(BT?) —  PHyp, (n)(BT?) (p = odd)

(Y2i1 ®Y2i ® B Y2is = Ya(piy+p-1) B Y2(pin+p-1) @ @ Y2(pis4p-1)
s.t. Y1 > 0, the following are isomorphisms:

(S¢°)! : PHyso1,_,(BV5) = PHoepi-1;,_,(BVs) (r=2)

(POY : PHy o1, (BT®) =  PHyeno1,_o(BT)  (p=odd) L[]
L (p ) (p )
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r Coroliary —
The stable iterated trasfer map

2
3n—s(BVs) = ExtZ"(A/p, A/p)
has a trivial image, when

s=1 _
2(MH2-2 5 () + 24 [5[22 ]} — ([s 5 ID if p=2

*

prm¥e=2s 5 Dyp(n)+1+p [s ; 1} — oy ([s ; 1}) if p=odd

(Where vp(n) is the index of the highest p-power dividing n.

/
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Barratt-Jones-Mahowald claimed h2 € Ext%°%(4/2,4/2) = n£,(5%))

is a nontrivial permanent cycle, where n = 25 = 32 violates * .

Still, we may speculate the following conjecture:

- Strong Conjecture
For each s2>1, there exists some integer n(s) such that,
if up(n) 2 n(s), then no element in
,2
Ext’"(2/p,Z/p)
\is a notrivial permanent cycle.

In view of the commutative diagram:

PHn(BVs) ——Ext$""*(2,/p, Z/p)
PO|(S° if p=2) POJ(S¢ if p=2)
PHy 1 oy o(BVs) —Ext2 ) (z/p, 7/p)

we may formulate the following slightly modest conjecture:
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r

-

New Doomsday Conjecture
For each s> 1, there exists some integer n(s) such that no
element in the image of (P2)n(s)

(PO (Ext P (Z/p, 2/p))
c exts "2/, 2/p)

is a nontrivial permanent cycle. Here, PO = 5¢° when p = 2.

N

J

e At any prime p, these conjectures are true for s =1, by the
Hopf invariant one theorem of Adams, Lieulevicius, Shimada-
Yamanoshita (also follows from M. with the aid of the Kahn-
Priddy theorem).

e When p > 2, “the odd primary Kervaire invariant one ele-
ments”

2,2(p—1)pit! .
b = (hj,. .., hy) € ExtZ2P VP (2/p,2/p) enjoy PO(b;) = bj41,

p
and Ravenel showed, for p =2 5, b; is not a permanent cycle
for j = 1.

e Until 2009 , the first unsetttled cases of these conjectures
are:
.3d+1
— At p =3, b; = (hj,hj,h;) € Ext3T¥" (2/3,2/3)
41
— At p=2, 2 Ext}?" (2/2,2/2)

= According to the traditional wisdom of the homotopy
theory, the next good news was supposed to come at p = 3...
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§2, The work of Hill-Hopkins-Ravenel
on the Kervaire invariant one problem
- the year 2009

Strangely enough, the next good news came at p = 2, bypassing
the case p = 3...

Hill-Hopkins-Ravnel

+1
At p=2, for i 27, h? € Exti2Z (z/2,2/2) are not permanent
cycles.

e Since, at p = 2, h3,h%,h3,h3, hZ (Barratt-Mahowald),
hZ (Barratt-Jones-Mahowald) are permanent cycles, the only
unsettied case of the Kervaire invariant one element is one
for hg € Ext31%%(2/2,2/2) = n,6(5°)5.

e The method employed by Hill-Hopkins-Ravenel is NOT ap-

.3j+1
plicable to the case p = 3 for b; := (hj, hj, h;) € Ext3*®" (2/3,2/3).
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Construct a multiplicative cohomology theory 2 as follows:

e Set MUy := the Cy-equivariant real bordism spectrum,
consiting of real manifolds, i.e. stably almost complex
manifolds equipped with a conjugate linear action of C>
e.g. the space of complex points of a smooth variety
defined over R.

e Set MU(C8) := MUR A MUg A MUg A MUg, the Cg-equivariant
spectrum whose Cg-action is induced by

(a,b,¢,d) — (d,a,b,c)

e Choose an appropriate D : S8 — MU(C8), representing a
suitable Cg-manifold M, whose restricted C>-action defines
a real structure, of real dimension 8/. (May take [ = 19)

e Set Qp := D 1MU(Cs), regarding D as an analogue of
equivariant Bott periodicity class.

o Finally, set Q2 .= Q’@Ca, the homotopy fixed point spectrum.

—— The Hill-Hopkins-Ravenel strategy of their proof - 1 —_W

- J

For the unit map S° — Q := QJ?,

~—— The Hill-Hopkins-Ravenel strategy of their proof - 2 j

| Adans-Novikov s.s. for S° —»| Hopkins-Miller homotopy Cs fixed point s.s. for Q>

[mo

d 2 Adams s.s. for 5°]

—— 2’21'—{-1
Extaig. a (MUs, MU M H2 (Cg, (Q0) 5i41)
T,

i+1
h? € Ext3?, (2/2,2/2)
Algebraic detection theorem

i+1 i+1
Vo € Ext2R, (MU, MUL), s.t. T(z) = h? € Ext32, (2/2,2/2)

HM(z)#0¢€ H? (C’g, (Qo)2i+1) - 7T2i+1_2(Q)

Since ds : HO (Cg, (Q0)ait1_1) — H? (Cs, (Q0)gi+1) Is trivial
for n¢,.,(Q2n) = 0, the algebraic detection theorem implies

Any Kervaire invariant one element in 7r§i+1_2(S0) is

detected in m,,41_,(2) via the unit map S° — Q.
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The Hill-Hopkins-Ravenel strategy of their proof - 3 ——
Now the proof follows from the following three theorems:

ofe
!
Souﬁ)tg-2 = Q}(’L)CS
Homotopy Fixed Point Theorem —
[ Qfe = e |
Periodicity Theorem —

Ewk (Qf(ﬁ)cs) is 28 = 256 periodic, i.e. depends on k mod 256.

Gap Theorem —~
C C
L mT_2 (QOB) =7_8(Q0) =0

In fact, the proof is completed by observing

Viz7, 27t1_2=28_2=_2 mod 28 =256 []

~——— Two remarks on the Hill-Hopkins-Ravenel proof ——

e Their proof makes use of the chromatic technology, e.g.
the algebraic detection theorem, the periodicity theorem.
However, the chromatic technology, is not new in this busi-
ness. It already appeard in Ravnel’s solution of the odd primary
Kervaire invariant one problem for p 2 5.

e Something really new is their proof of the gap theorem:
T2 (988) =79 (Q0) =0 where they constructed a Post-
nikov type filtration in the equivariant stable homotopy
theory, called _the slice filtration , which is an analogue
and the Voevodsky'’s slice filtration in the motivic stable
homotopy category.
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§3, Generalizing NDC, classically...
- from now on !

~ NDC problem for (nice) (—1)-connective ring spectra R
In the classical mod p Adams spectral sequence

Ext% (Z/p, H.(R)) == m_s(R),

=

- Strong Conjecture problem for R
For each s>1, does there exist some integer n(s) s.t.,
if vp(n) 2 n(s), then no element in

Ext%°"(Z/p, H«R)

\is a notrivial permanent cycle?

J

For each s > 1, there exists some integer n(s) such
element in the image of (P°%)n(s)

(PO)™S) (Ext5?!(Z/p, H+R)
C Extf,ifpn(S)t(Z/P, H.R)

is a nontrivial permanent cycle. Here, PO = S¢° when p =

—— New Doomsday Conjecture problem for R —j
that no

2.
_J

_/
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~ NDC problem for (nice) (—1)-connective ring spectra R - 2

e Of course, the case R = SO is our original case.

e The reason we restricted to (nice) (—1)-connective ring
spectra is to avoid ambiguity arising from the shifts by
suspensions R — Zt'R, by specifying the canonical granding
coming from the unit map S° — R, in addition to the
sonstruction of P° (S¢° (p = 2)) at the E,-term.

e The following (—1)-connective ring spectra R satisfy not
only the Strong Conjecture, but also even the doomsday
conjecture: R = MU, BP, BP(n),bo,bu, HZ,HZ/p,tmf,... Note
that many of these spectra have polynomial homotopy groups.

e However, I am not sure if this holds for free...

e.g. Express (So)p = holim, X" using the canonical Adams
tower, and consider each finite stage X"...
Note X" is NOT harmonic ! for any n.

e Considering the above example and that Hill-Hopkins-

Ravenel proof made use of the chromatic technology,

L we may have to impose the harmonic condition on R. )

§4, Generalizing NDC, motivically...
- from now on !

Motivation
Since the essential new ingredient in the Hill-Hopkins-Ravenel

is the slice filtration, which has the motivic origin, it might be
natural to speculate that the NDC has its origin in the motivic
Sstable homotopy category.
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— A summary of the motivic unstable homotopy theory - 1 —
S the base scheme , which is Noetherian (i.e. locally
Noetherian and quasi-compact) of finite dimension (i.e. the
dimensions of the local rings are bounded). Quite general!
Morel-Voevodsky, Theorem 2.3.2
A°PShv(Sm/S) ;s IS @ model category with:
Weak equivalences: Al-weak equivalence
Cofibrations: monomorphisms

Fibrations: RLP w.r.t. trivial cofibrations

H(S) : the homotopy category of A°PShv(Sm/S)nis W.r.t. the
above model structure

+ : the simplicial sheaf (associated to) A9, which is the final
object in A°?Shv(Sm/S)n;s and is called the point

A°PShve(Sm/S)n;s 3+ the pointed analogue of
APShy(Sm/S)ns;s- This is the category of the *“based
spaces” for Morel-Voevodsky!

He(S): the pointed analogue of H(S).

This is the (pointed) motivic unstable homotopy category!

— A summary of the motivic unstable homotopy theory - 2 —

s Questions N

From algebraists: Does H.(S) contain rich information?
From topologists: Is H.(S) friendly to deal with?

.

/

Answers ~N

-
To algebraists: K-theory representability :
Morel-Voevodsky, Theorem 4.3.13, Morel, Example 3.1

If S is regular , "'n >0, VX € Sm/S,

KT?(X) i HomH.(S) ((X+) AS™ 7 x G'r)

To topologistslil| Ho:netopy é)ukrity Tsh 3.9.93
orel-Voevodsky, eorem 3.2. Aﬁ

Let i : Z — X be a closed embedding of smooth
schemes over S. Denote by Nx z — Z the normal vec-
tor bundle to i. Then there is a canonical isomorphism
in He(S) of the form

X /(X \i(2)) = Th(Nx,z)-

11




~—— A summary of the motivic stable homotopy theory - 1 —

Topologists know unstable homotopy theory is hard...

Motivation T
[Can we go stably?

J

~—— two different kinds of circles in A%Shve(SMm/S)Nis ——
Sl:=Al/8Al, which is called the simplicial circle

S} := Gn, : the pointed k-scheme (Al\ {0},1), the Tate circl¢

- J
two different kinds of spheres and their mixture in AP Shve( S
Sti=SIA...ASL  SPi=SIA- ASE

N N——

n n

= ™ i=SrTIA S

\— J
These suspensins allows us to define two distinct concepts
of spectra w.r.t. “based spaces” A°Shve(Sm/S)nis » but

gatbb .= g2 A g0 (equivariant homotopy theoretical notatior|

Ksometimes they lack practical applicability... )

/S)Nis

~—— A summary of the motivic stable homotopy theory - 2 —
Set 7 := Al/(A1\ {0}) = Al/G., € APShve(Sm/S) niss
then, in He(S),

Al-eq.
¢ T=AGm " =V 4/Gm ~ TG = 521
¢ From the elementary distinguished square GmHAl ,
Nis. Al-eq ' ;
T :=AY/Gpm = P/AY & P! Al —.pl
Thus, Pl o T o~ 5,Gyy = S0

From this, we have three concepts of ‘“spectra” in
APShve(Sm/S)Nis -

Sl-spectrum {En, (on:ELASs — En+1)}

T-spectrum {En, (on: ExaANT — En+1)}

Pl-spectrum : {En, (on : En APl & En+1)}

SpPl(S) : The (naive) category of Pl-spectrra.

Note: T-spectra may be naturally regarded as Pl-spectra,

by use of Pl 5 T.

61
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~—— A summary of the motivic stable homotopy theory - 3 —
Let E be a Pl-spectrum, U € Sm/S and (n,m) € (Z)2. We set

Fn(EYm(U) = colim,_, 4 oo Homqy, (s (S"+m A(U+) A (PHT™, Er)
whose abelian group structure given by P! ~ S1 A G, in He(S).

~————— Morel, An introduction, Definition 5.1.4 ————

1. A morphism f : E — F of Pl-spectra is called an
Al-stable weak equivalence if and only if for any U ¢
Sm/S and any pair (n,m) € (Z)? the homomorphism :

Fn(E)m(U) = 7in(F)m(U)

is an isomorphism.
2. A morphism f : E — F of Pl-spectra is called a
cofibration if and only if the morphisms
Ep — Fp
En+1 /\En/\lP’l Fa A pl — Fn+1 (Vn Z O)

are cofibrations (= monomorphisms in  A°PShve(Sm/S) Nis

).

—— A summary of the motivic stable homotopy theory - 4 —

: “The” model structure of SpP' (S)
SpP (S) becomes a model category, by

Weak equivalences: Al-stable weak equivalences
Cofibrations: cofibrations
Fibrations: RLP w.r.t. trivial cofibrations

The corresponding homotopy category is de-

noted by SHP'(S) or even by SH(S), which is

the motivic stable homotopy category, and for E, F € SH(S),
[E, F] := Homgy(s)(E, F)

~—— Morel, An introduction, Definition 5.1.6 ——————

For any spectrum E, and for any integers n,i € Z set

E@@)[n] := EAS™
For any X € A%PShve(Sm/S)nis» aNd Y € APShv(Sm/S)nis» SEL

Eni(x) i= [£7(2), E@nll, B(Y) = [£%(3), B In]] & E(Y

=+
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— Examples of Pl-spectra - Morel, Example 5.1.2 - 1 ———

- Pl-suspension spectrum N

YX € APShve(Sm/S)N;s @ “based space”,
TR(X) = {X A (PYYN, (on S A PHNY AP S x A )N

example: SO = Z]?,,?(Spec S_,.), the sphere spectrum |
N

r algebraic K-theory Pl-spectrum - Morel, Example 5.1.7 —
algebraic K-theory Pl-spectrum K is given by

K:= {Z x Gr, <0'n = Bottmap : (Z x Gr) APl - 7Z x Gr)}
The Bott map induces the Bott periodicity in SH(S):

KAP! ~K
which is (2, 1)-periodic. Thus, for X € Sm/S and (n,i) € (Z)2,

Good News! KS_ (X)) 2 K™(X)

~—— Examples of Pl-spectra - Morel, Example 5.1.2 - 2 ———
For X € Sm(S), the motivic Eilenberg-MaclLane “space” L[X]
is the sheaf of abelian groups

U ce(U,X)
where c(U,X) denotes the group of finite correspondences
from U to X, i.e. the free abelian group generated by closed
irreducible subsets of U x X which are finite over U and sur-
jective over a connected component of U.

examples: For any morphism f: U — X in Sm/S, its graph (f)
is an element of c(U, X).

Researchers of the classical homotopy theorists might find
it useful to regard this as an analogueq of the Dold-Thom
infinite symmetric product construction: T — Sp°°T .

The symmetric product construction shows up in the motivic
analogue of the Steenrod algebra. Since the symmetric prod-
uct construction takes us out of the smooth category, must

kresort to the resolution technologies...
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HZ :

——— Examples of Pl-spectra - Morel, Example 5.1.2 - 3 ——

The motivic cohomology spectrum, motivic Eilenberg spectrum

HZ is a T-spectrum (thus a Pl-spectrum), given by
{L1A™ /LIA™\ {0}]; (on : LIA"] /LIA™ \ {O}] A T — L[A™F!] /L[A™+1\ {
where o, is given by

on : LIA"] /LIA™\ {0} AT = (L[A™] /LIA™\ {0}]) A (A/(A\ {OD))

LATD, (Liam /ziam\ {0}]) A (LIAY]/L1A\ {0}])

— L[(A"/(A™\ {0})) A (A1/(aT\ {0}))] = LIA™T!] /L[a™FT\ {0}]
Here the quotients /, where L shows up, are taken in the

category of sheaves of abelian groups 2b((Sm/k)nis)-
motivic cohomology - Suslin-Voevodsky, Voevodsky

For X € Sm/S, (n,i) € ()2,
H™(X) & H" (X, Z(:)),

the Suslin-Voevodsky motivic cohomology group .

on)}

~ The motivic mod 2 cohomology and Steenrod algebra - 1
We now assume the base scheme S = k, a field of characteristic noﬂ
equal to £ =2 (The case Voevodsky prove the Milnor conjecture).

e Now, we have defined the motivic cohomology H™*(—) and
so the motivic mod 2 cohomology H™*(—; Z/2), just like the
topological cohomology H*(—) and the topological mod p
cohomology H*(X;Z/2).

¢ In topology, the dual mod 2 Steenrod algebra A is a

commutative Hopf algebra

Hu(Pt;Z/2) = H™*(pt; 2/2) = {

Z/2 ifx=0
0 if %0
Av = HZ/2,HZ/2 = Hy(Pt; Z/2)[¢ | k = 1]

k .
Ag =Y 62,08 (o=1)
3=0

inducing the action of the Steenrod algebra (w/ Sq¢° # 1)
on Ext**(H«(pt; Z/2), Hx(Pt; Z/2)) = Ext%*(Z/2,Z/2), with
Adams S.S. Byt = Ext¥t(2/2,2/2) = 77 (S9)%
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(- The motivic mod 2 cohomology and Steenrod algebra - 2 —

The Question
[How about the motivic case? ]

Bad News : The dual motivic mod 2 Steenrod algebra
Anrot, (*,%) is not a Hopf algebra, but a Hopf algebroid.
== May’s machine to define the Steenrod algebra action on
the Ext is not applicable to the case of Ao, (%,%) !

Good News : May use Bruner’'s machine....

There is some similarity between the motivic AMOtk(*,*) and
the topological A.. The main difference comes from kM (k),
the mod 2 Milnor K-theory of the field k .

The Milnor K-theory KM (k) of a field k

Given a field k, treat k> additively as a Z-module...

KM (k) :=Ty(k*) / ({a} ® {1 —a} | a # 0,1)

k! (k) = KM (k) /2 =Ty (K /(0)?) / ({a} @ {1 —a} [a % 0,1)

J

~— The motivic mod 2 cohomology and Steenrod algebra - 3 —

H**(Speck;Z/2) N
Voevodsky computed (c.t. Milnor conjecture
HP4(Speck; Z/2) = HE,(Speck; u9) (p £ q))

-

H, «(Speck;7/2) = kM (k)[r]
where 7 is the Tate twist with || = (0,-1), [kM(k)| =
(—1>_1)
(- : J

The algebra structure of AMOtk(* )
r )
Voevodsky computed

AMoty (4 ) = kM (B [r)lro, 71, €1, €2, 1/ (T2 i1 —p(Tip 1+ 7064
where p = {-1} € kM (k) with

'pl = (_1) _1)7
Imsl = (2° = 1)(2,1) + (1,0) = (2'T1 — 1,2 — 1),
&l = (28 - 1)(2,1) = (2"T1 - 2,20 — 1)
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~ The motivic mod 2 cohomology and Steenrod algebra - 4 T

_________ The Hopf algebroid structure of AMotk(*,*) )ﬁ
Voevodsky also computed the Hopf algebroid structure of

AMoty (- While elements in kM (k) are primitive, 7 is NOT

primitive : nLT=T

NRT = T+pT0
k .
Ag =Y 2., ®¢
=0
k 0]
Ary =101+ 3 2,7

=0
_J

S
he motivic mod 2 Adams spectral sequence for S0 = T°(Specky)

1
Voevodsky also contructed the motivic Adams spectral se-
quence:

B0 =gl (KWL R B]) = o (Speck))

M tk(
which has been to converge by Hu-Kriz-Ormsby.

~ The motivic mod 2 cohomology and Steenrod algebra - 5 —
The real reason why elements in kM (k) are primitive is ex-
plained by the following theorem of Morel-HopkKins:

~— (Hopkins-Morel) Milnor-Witt K-theory KMW (k) of k —

Free associative algebra ring on (kx ]_[{n})

{a}{1 — a} = 0, {ab} = {a} + {b}+n{a}{b},
n{a}={a}n, (2+{-1}m)n=0

with |{a}| = (-1,-1), |n| =(1,1). Then,

K,{VIW(k) =

L ﬂ‘nn(SpeC k+) - Kn(l 1)(’(7) )

Thus, by the mod 2 Hurewicz map,

fan(specky) = kI M B ) € KW = Hu(Speck|z/2)
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~— The motivic mod 2 cohomology and Steenrod algebra - 6 —

Are you scared of the Minor K theory? Then, we might assume
k is friendly enough to guarantee kM (k) = Z/2, which is the
case for k algebraic closed.
In this case,

B = Extiigfl’::i(* ) (M (B[], kM (W) r]) = 7, u(Specky)h
becomes closer to the classical topological situation.
In fact, using the solution of the Bloch-Kato conjecture for
p odd, the correspong mod p odd E,-term computation for
algebraic closed field turns out to be the same as the classical
E> term, with an extra grading.

= Wish to export more classical insight about the classical
Adams spectral sequence to the motivic Adams spectral sequence!

~— The motivic mod ¢ cohomology and Steenrod algebra - 1 —

Now, let us consider more general base scheme S, which is
Noetherian of finite dimension. From our viewpoint, we with
to understand:

o HPI(S,Z/¢). (c.f. H*(pt;Z/p) =Z/p )

e HZ/¢ NHZ/C in H(S). (c.f. HZ/p«HZ/p = As)
HP4(S,Z/¢) may be interpreted as the Bloch Higher Chow
group by the Nesterenko-Suslin theorem:

HPA(S,Z/) = CHI(S, 2q — n; Z/f) (2)

But the best tool to study HP9(S,Z/¢) has been provided by
the Voevodsky-Rost solution of the Bloch-Kato conjecture:
.

J
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~— The motivic mod ¢ cohomology and Steenrod algebra - 2 —

—— Bloch-Kato conjecture, Voevodsky-Rost theorem ——
Suppose further that S is smooth scheme over a field k of
characteristic # ¢, then the norm residue homomorphism

HPI(S;2/8) — HE,(S; uP) 3)

is an isomrohpsim for p £ ¢ and a monomorphism for p = g+1.
This recovers a theorem of Levine, which states under the
same assumption,

HPA(S; 2/0) 7] S5 HE(S: pu§Y) (4)
| where 7 € HOY(Speck) £ p,(k), the primitive £ th root of unity.

Thus, up to nilpotency, HP9(S;Z/¢) is extremely simple!!!
A\

~ The motivic mod ¢ cohomology and Steenrod algebra - 3 —
For HZ/¢ A HZ/¢ (in H(S)),
arXivl13055690, The motivic Steenrod algebra in pos-
itive characteristic,
Marc Hoyois, Shane Kelly, Paul Arne Ostvar
made use of the Gabber’s alteration to show (under some
extra minor assumption):

HZ/E*, *HZ/Z = H_*’_*(S; Z/Z) ®H‘*’_*(k;Z/€) A*7*, (5)

where A, . is the dual motivic Steenrod algebra for the base
schme Spec k, defined by Voevodsky. A, . is very close to the

Ltopological Steenrod algebra!!!




~— The Motivic New Doomsday Conjecture ——

- New Doomsday Conjecture
For each s 2 1, there exists some integer n(s) such that no
element in the image of (P2)"(s)

0yn(s) s,(2t,u)
P OEE (5.5))
C 87(2pn(s)t)u)
= EXtAMotk(*y*) (87 ’ S)

is a nontrivial permanent cycle. Here, PO = Sqo when p = 2.

Lendltembox )
( - D EE?? ~
The New Doomsday Conjecture implies the New Doomsday
kConjecte. )

— J




