THE SHARP GROWTH ESTIMATE FOR $U(\lambda)$

Hiroshi Yanagihara
Department of Applied Science
Faculty of Engineering, Yamaguchi University
Tokiwadai, Ube 755-8611, Japan

ABSTRACT. For $0 < \lambda \le 1$ let $\mathcal{U}(\lambda)$ be the class of analytic functions in the unit disk \mathbb{D} with f(0) = f'(0) - 1 = 0 satisfying $|f'(z)(z/f(z))^2 - 1| < \lambda$ in \mathbb{D} . Then it is known that every $f \in \mathcal{U}(\lambda)$ is univalent in \mathbb{D} . In the present article we shall prove the sharp estimates $|f''(0)| \le 2(1+\lambda)$ and $|z|/\{(1+|z|)(1+\lambda|z|)\} \le |f(z)| \le |z|/\{(1-|z|)(1-\lambda|z|)\}$. As an application we shall also give the sharp covering theorems.

1. Introduction

We denote the complex plane by \mathbb{C} and the extended complex plane by $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. For $c \in \mathbb{C}$ and r > 0 let $\mathbb{D}(c, r) = \{z \in \mathbb{C} : |z - c| < r\}$ and $\mathbb{D} = \mathbb{D}(0, 1)$. Similarly let $\Delta_r = \widehat{\mathbb{C}} \setminus \overline{\mathbb{D}}(0, r) = \{z \in \widehat{\mathbb{C}} : r < |z| \le \infty\}$ and $\Delta = \Delta_1$.

Let $\mathcal{A}(\{\mathbb{D}\})$ denote the space of analytic functions in \mathbb{D} and $\mathcal{A}_0(\{\mathbb{D}\}) = \{f \in \mathcal{A}(\{\mathbb{D}\}) : f(0) = f'(0) - 1 = 0\}$. Here we regard $\mathcal{A}(\{\mathbb{D}\})$ as a topological vector space endowed with the topology of uniform convergence over compact subsets of \mathbb{D} . A function f is said to be univalent in a domain D if it is one-to-one in D. Let S denote the class of univalent functions in $\mathcal{A}_0(\{\mathbb{D}\})$.

For $0 < \lambda \le 1$ let $\mathcal{U}(\lambda)$ be the class of functions $f \in \mathcal{A}_0$ satisfying

$$\left|f'(z)\left(\frac{z}{f(z)}\right)^2-1\right|<\lambda$$

in \mathbb{D} . The boundedness of $f'(z)(z/f(z))^2$ forces $f \in \mathcal{U}(\lambda)$ that $f(z) \neq 0$ in $\mathbb{D}\setminus\{0\}$. Hence $f'(z) \neq 0$ holds in \mathbb{D} and f is locally univalent in \mathbb{D} . Moreover it is known that $f \in \mathcal{U}(\lambda)$ is univalent in \mathbb{D} , i.e., $\mathcal{U}(\lambda) \subset S$.

In the present article we shall prove the sharp inequalities

$$|a_2(f)| = 2^{-1}|f''(0)| \le 1 + \lambda,$$

$$\frac{|z|}{(1 - \lambda|z|)(1 - |z|)} \le |f(z)| \le \frac{|z|}{(1 - \lambda|z|)(1 - |z|)}$$

for $f \in \mathcal{U}(\lambda)$. To this end we introduce three classes of meromorphic functions in Δ closely related to $\mathcal{U}(\lambda)$. For $0 < \lambda \le 1$ let $\mathcal{M}(\lambda)$ be the class of meromorphic functions g in Δ which has a Laurent expansion of a form

(1.2)
$$g(w) = w + c_0 + \frac{c_1}{w} + \frac{c_2}{w^2} + \cdots, \quad 1 < |w| < \infty$$

and satisfying

$$|g'(w)-1|<\lambda.$$

Now for $f \in \mathcal{U}(\lambda)$ put

$$T(f)(w) = \frac{1}{f(\frac{1}{w})}, \quad w \in \Delta.$$

Then we have

$$\frac{d}{dw}T(f)(w) = \frac{f'(1/w)}{w^2f^2(\frac{1}{w})} = f'(z)\left(\frac{z}{f(z)}\right)^2, \quad z = \frac{1}{w}$$

and hence $Tf \in \mathcal{M}(\lambda)$. Thus T is a transformation which maps $\mathcal{U}(\lambda)$ injectively into $\mathcal{M}(\lambda)$. The image $T(\mathcal{U}(\lambda))$ is a proper subset of $\mathcal{M}(\lambda)$ and it is easy to see that

$$\mathcal{M}_0(\lambda) = \{g \in \mathcal{M}(\lambda) : g(w) \neq 0 \text{ in } \Delta\} = T(\mathcal{U}(\lambda)).$$

Notice that $a_2(f) = -c_0(T(f))$ hold for $f \in \mathcal{U}(\lambda)$. Moreover let

$$\widetilde{\mathcal{M}}(\lambda) = \{ g \in \mathcal{M}(\lambda) : c_0(g) = 0 \}.$$

In the next section we shall show that every $g \in \widetilde{\mathcal{M}}(\lambda)$ satisfies $g(w) \neq 0$ in Δ . Thus the relation

$$T(\widetilde{\mathcal{U}}(\lambda)) = \widetilde{\mathcal{M}}(\lambda) \subset T(\mathcal{U}(\lambda)) = \mathcal{M}_0(\lambda) \subset \mathcal{M}(\lambda)$$

holds.

In Section 2 we shall derive an integral representation of $g \in \mathcal{M}(\lambda)$ and prove existence of the boundary limit $g(\eta) = \lim_{\Delta \ni w \to \eta} g(w)$ for each $\eta \in \partial \Delta$. Further we shall precisely study the boundary values of $g \in \widetilde{\mathcal{M}}(\lambda)$ and obtain the sharp estimate $|g(\eta)| \le 1 + \lambda$ for $g \in \widetilde{\mathcal{M}}(\lambda)$ and $\eta \in \partial \Delta$, which is equivalent to the sharp upper bound $|a_2(f)| \le 1 + \lambda$ for $f \in \mathcal{U}(\lambda)$.

In Section 3 for each fixed $w_0 \in \Delta \setminus \{\infty\}$ we shall treat the sharp estimate on $|g(w_0)|$ for $g \in \mathcal{M}_0(\lambda)$. The result has an immediate counterpart in $\mathcal{U}(\lambda)$ and we shall derive the sharp growth estimate and the sharp covering theorem for $\mathcal{U}(\lambda)$.

2. INTEGRAL REPRESENTATION

For $g \in \mathcal{M}(\lambda)$ let

$$(2.1) b_g(w) = \frac{w^2}{\lambda}(1 - g'(w)), \quad w \in \Delta,$$

(2.2)
$$\beta_g(z) = b_g(1/z), \quad z \in \mathbb{D}.$$

Note that $g'(w) - 1 = O(w^{-2})$ as $w \to \infty$ and that g'(1/z) is analytic in \mathbb{D} . Applying the maximum modulus principle to g'(1/z) - 1 we have

$$|g'(w)-1| \le \frac{\lambda}{|w|^2}, \quad 1 < |w| < \infty.$$

Hence $\beta_g \in H_1^\infty(\mathbb{D})$ and for any $w, w_0 \in \Delta \setminus \{\infty\}$ by integrating $g'(w) - 1 = -\lambda b_g(w)w^{-2}$ we obtain

$$g(w)-w=g(w_0)-w_0-\lambda\int_{w_0}^w\frac{b_g(\zeta)}{\zeta^2}\,d\zeta.$$

Since $\lim_{w_0\to\infty}(g(w_0)-w_0)=c_0$, we have

$$g(w) = w + c_0 - \lambda \int_{\infty}^{w} \frac{b_g(\zeta)}{\zeta^2} d\zeta = w + c_0 + \lambda \int_{0}^{1/w} \beta_g(\zeta) d\zeta.$$

Converse is also true and we have the following.

Theorem 2.1. For a meromorphic function g in Δ , $g \in \mathcal{M}(\lambda)$ if and only if there exist $\beta \in H_1^{\infty}(\mathbb{D})$ and $c \in \mathbb{C}$ such that

$$g(w) = w + c + \lambda \int_0^{1/w} \beta(\zeta) d\zeta.$$

Corollary 2.2. Each $g \in \mathcal{M}(\lambda)$ is Lipschitz continuous and satisfies (2.3)

$$\left(1 - \frac{\lambda}{|w_0 w_1|}\right)|w_1 - w_0| \le |g(w_1) - g(w_0)| \le \left(1 + \frac{\lambda}{|w_0 w_1|}\right)|w_1 - w_0|$$

for $w_0, w_1 \in \Delta$. Particularly

- (i) The limit $g(\eta) = \lim_{\Delta \ni w \to \eta} g(w)$ exists for every $\eta \in \partial \Delta$.
- (ii) g is univalent in Δ . Furthermore if $0 < \lambda < 1$, then g is univalent on $\overline{\Delta}$.

Proof. Inequality (2.3) easily follows from Theorem 2.1 and

$$\left| \int_{1/w_0}^{1/w_1} \beta(\zeta) \, d\zeta \right| \leq \left| \frac{1}{w_1} - \frac{1}{w_0} \right| = \frac{|w_1 - w_0|}{|w_0 w_1|}.$$

By (2.3) the function g is Lipschitz continuous in Δ and from this the boundary limit $g(\eta) = \lim_{\Delta \ni w \to \eta} g(w)$ exists for each $\eta \in \partial \Delta$. Inequality (2.3) also shows that g is univalent in Δ . Since (2.3) still holds on $\overline{\Delta}$ by continuity, g is univalent on $\overline{\Delta}$, when $0 < \lambda < 1$.

Each $f \in \mathcal{U}(\lambda)$ is univalent in \mathbb{D} , since Tf is univalent in Δ by Corollary 2.2.

Corollary 2.3. For each $0 < \lambda \leq 1$ the inclusion relation $\widetilde{\mathcal{M}}(\lambda) \subset \mathcal{M}_0(\lambda)$ holds.

Proof. For $g \in \widetilde{\mathcal{M}}(\lambda) (\subset \mathcal{M}(\lambda))$ we have by Theorem 2.1

$$|g(w)| = \left|w + \lambda \int_0^{1/w} \beta(\zeta) d\zeta\right| \ge |w| - \frac{\lambda}{|w|} > 0, \quad |w| > 1.$$

Thus g has no zeros in Δ and hence $g \in \mathcal{M}_0(\lambda)$.

For $g \in \mathcal{M}(\lambda)$ let E(g) be the omitted set of g, i.e.,

$$E(g) = \widehat{\mathbb{C}} \backslash g(\Delta).$$

For R>1 the image $g(\partial\Delta_R)$ is an analytic Jordan curve and $g(\Delta_R)$ is the domain outside $g(\partial\Delta_R)$. Let D_R be the domain bounded by $g(\partial\Delta_R)$. Then $\{D_R:1< R\}$ is a 1-parameter family of increasing domains in $\mathbb C$ and

$$E(g) = \bigcap_{R>1} D_R.$$

In particular when $0 < \lambda < 1$, by Corollary 2.2 E(g) is a closed Jordan domain bounded by $g(\partial \Delta)$. Notice that for any $g \in \mathcal{M}(\lambda)$ with $0 < \lambda \leq 1$ and $a \in \partial E(g)$ there exists $\eta \in \partial \Delta$ such that $a = g(\eta)$.

Theorem 2.4. Let $g \in \mathcal{M}(\lambda)$ and $g(w) = w + c_0 + \int_0^{1/w} \beta(\zeta) d\zeta$ with $\beta \in H_1^{\infty}(\mathbb{D})$ and $c_0 \in \mathbb{C}$. Then $g \in \mathcal{M}_0(\lambda)$ if and only if

$$(2.4) -c_0 \in E(\widetilde{g}),$$

where

$$\widetilde{g}(w) = w + \int_0^{1/w} \beta(\zeta) d\zeta \in \widetilde{\mathcal{M}}(\lambda).$$

Proof. For $g \in \mathcal{M}(\lambda)$, by definition, $g \in \mathcal{M}_0(\lambda)$ if and only if $g(w) = \tilde{g}(w) + c_0 \neq 0$ for all $w \in \Delta$. This is equivalent to (2.4).

For $g \in \mathcal{M}_0(\lambda)$ the coefficient $c_0 = c_0(g)$ in the expansion (1.2) is called the conformal center of the set E(g). For more details on conformal center we refer to [8].

Notice that $g + c \in \mathcal{M}(\lambda)$ holds for any $g \in \mathcal{M}(\lambda)$ and $c \in \mathbb{C}$. This implies that there are no upper bound on $|c_0(g)|$ for $g \in \mathcal{M}(\lambda)$. However concerning with the class $\mathcal{M}_0(\lambda)$, it is not difficult to get the sharp estimate.

Theorem 2.5. Let $\lambda \in (0,1]$. Then,

- (a) For $g \in \widetilde{\mathcal{M}}(\lambda)$ the sharp estimate $1 \lambda \leq |g(\eta)| \leq 1 + \lambda$ holds on $\partial \Delta$. Furthermore equality $|g(\eta)| = 1 \lambda$ at some $\eta \in \partial \Delta$ if and only if $g(w) \equiv w \lambda \eta^2 / w$, and $|g(\eta)| = 1 + \lambda$ if and only if $g(w) \equiv w + \lambda \eta^2 / w$.
- (b) Inequality $|c_0(g)| \leq 1 + \lambda$ holds for $g \in \mathcal{M}_0(\lambda)$ with equality if and only if

$$g(w) = w\left(1 + \frac{\lambda e^{i\theta}}{w}\right)\left(1 + \frac{e^{i\theta}}{w}\right), \quad w \in \Delta.$$

for some real 0.

(c) Inequality $|a_2(f)| \leq 1 + \lambda$ holds for $f \in \mathcal{U}(\lambda)$ with equality if and only if

$$f(z) = rac{z}{(1 + \lambda e^{i\theta}z)(1 + e^{i\theta}z)}, \quad z \in \mathbb{D}$$

for some real θ .

Proof. Let $g \in \widetilde{\mathcal{M}}(\lambda)$ and put $\beta \in H_1^{\infty}(\mathbb{D})$ as in (2.2). Then

(2.5)
$$g(w) = w + \lambda \int_0^{1/w} \beta(\zeta) d\zeta.$$

For $\eta \in \partial \Delta$ we consider $\int_0^{1/\eta} \beta(\zeta) d\zeta$ as the Lebesgue integral along a C^1 -path connecting 0 to $1/\eta$ and contained in $\mathbb D$ except for the end point $1/\eta$. Then the integral does not depend on choice of path. Thus (2.5) still holds for $\eta \in \partial \Delta$ and we have

$$|g(\eta)| \leq |\eta| + \lambda \left| \int_0^{1/\eta} \beta(\zeta) \, d\zeta \right| \leq 1 + \lambda \int_{[0,1/\eta]} |\beta(\zeta)| \, |d\zeta| \leq 1 + \lambda,$$

where $[0,1/\eta]$ is the radial line segment connecting 0 and $1/\eta$. If $|g(\eta_0)| = 1 + \lambda$ at some $\eta_0 \in \partial \Delta$, then by the maximum modulus theorem $\beta = \varepsilon$ for some $\varepsilon \in \partial \mathbb{D}$ and

$$\frac{\lambda \int_0^{1/\eta} \beta(\zeta) \, d\zeta}{\eta} = \frac{\lambda \varepsilon}{\eta^2} > 0.$$

Therefore $\varepsilon = \eta^2$ and $g(w) \equiv w + \lambda \eta^2 / w$. Similarly

$$|g(\eta)| \geq |\eta| - \lambda \left| \int_0^{1/\eta} \beta(\zeta) \, d\zeta \right| \geq 1 - \lambda \int_{[0,1/\eta]} |\beta(\zeta)| \, |d\zeta| \geq 1 - \lambda$$

with equality if and only if $\beta = \varepsilon \in \partial \mathbb{D}$ and $\lambda \varepsilon / \eta^2 < 0$, i.e., $\varepsilon = -\eta^2$ and therefore $g(w) \equiv w - \lambda \eta^2 / w$. This completes the proof of (a).

To show (b) let $g \in \mathcal{M}_0(\lambda)$. Then g can be expressed as $g = \tilde{g} + c_0$ with $\tilde{g} \in \widetilde{\mathcal{M}}(\lambda)$ and $-c_0 \in E(\tilde{g})$. By (a) and $E(\tilde{g}) = \bigcap_{R>1} D(R)$, where D(R) is a domain bounded by the Jordan curve $\tilde{g}(\partial \Delta_R)$. Hence we have $E(\tilde{g}) \subset \overline{\mathbb{D}}(0, 1 + \lambda)$ and $|c_0(g)| \leq 1 + \lambda$.

Suppose now that $|c_0(g)| = 1 + \lambda$. Combining $-c_0(g) \in E(\tilde{g}) \cap \partial \mathbb{D}(0, 1 + \lambda)$ and $E(\tilde{g}) \subset \overline{\mathbb{D}}(0, 1 + \lambda)$, we have $-c_0(g) \in \partial E(\tilde{g})$. By Lipschitz continuity of \tilde{g} there exists $\eta \in \partial \Delta$ with $-c_0(g) = \tilde{g}(\eta)$. Since $|\tilde{g}(\eta)| = |-c_0(g)| = 1 + \lambda$, it follows from (a) that $\tilde{g}(w) = w + \lambda \eta^2/w$ and hence

$$g(w) = \tilde{g}(w) + c_0 = \tilde{g}(w) - \tilde{g}(\eta) = w\left(1 + \frac{\lambda\eta}{w}\right)\left(1 + \frac{\eta}{w}\right).$$

By letting $e^{i\theta} = -\eta$ we obtain (b).

Since $a_2(f) = -c_0(T(f))$ holds for $f \in \mathcal{U}(\lambda)$, (c) follows directly from (b).

3. GROWTH ESTIMATES

Let $0 < \lambda \le 1$ and $1 < |w_0| < \infty$. Combining Theorem 2.1 and Theorem 2.5 (b) it is easily seen that if $g \in \mathcal{M}_0(\lambda)$ then

$$(3.1) |g(w_0)| \le |w_0| + \lambda \int_{[0,1/w_0]} |\beta(\zeta)| |d\zeta| + |c_0|$$

$$\le |w_0| + \frac{\lambda}{|w_0|} + 1 + \lambda = |w_0| \left(1 + \frac{\lambda}{|w_0|}\right) \left(1 + \frac{1}{|w_0|}\right)$$

with equality at $w_0 = Re^{i\theta}$ if and only if $g(w) \equiv w(1 + \lambda e^{i\theta}w^{-1})(1 + e^{i\theta}w^{-1})$. Similarly the lower estimate

$$|g(w_0)|\geq |w_0|-\frac{\lambda}{|w_0|}-(1+\lambda)$$

holds for $g \in \mathcal{M}(\lambda)$. Clearly it is not sharp, since the right hand side is negative for all r sufficiently close to 1.

In this section we deal with the region of variability $V_{\lambda}(w_0)$ of $g(w_0)$, when g varies on $\mathcal{M}_0(\lambda)$, i.e.,

$$V_{\lambda}(w_0) = \{g(w_0) : g \in \mathcal{M}_0(\lambda)\}.$$

We shall show that $V_{\lambda}(w_0)$ is a closed Jordan domain bounded by a simple closed curve and give a parameterization of the boundary curve. Using these ideas we will obtain the sharp lower estimate on $|g(w_0)|$ when $g \in \mathcal{M}_0(\lambda)$.

First we notice that $V_{\lambda}(w_0)$ is a compact subset of \mathbb{C} . Indeed by (3.1) it is clear that $\mathcal{M}_0(\lambda)$ is a family of analytic functions in $\Delta \setminus \{\infty\}$ which is locally uniformly bounded and hence normal. Moreover if a sequence $\{g_n\}_{n=1}^{\infty}$ in $\mathcal{M}_0(\lambda)$ converge to g locally uniformly in $\Delta \setminus \{\infty\}$, then it is not difficult to see that $g \in \mathcal{M}_0(\lambda)$. Thus $\mathcal{M}_0(\lambda)$ is a compact family with respect to the topology of locally uniform convergence. Since $V_{\lambda}(w_0)$ is the image of $\mathcal{M}_0(\lambda)$ with respect to the continuous mapping $\mathcal{M}_0(\lambda) \ni g \mapsto g(w_0) \in \mathbb{C}$, $V_{\lambda}(w_0)$ is also an compact subset of \mathbb{C} .

Next for $g \in \mathcal{M}_0(\lambda)$ let $g_{\theta}(w) = e^{-i\theta}g(e^{i\theta}w)$. Then $g_{\theta} \in \mathcal{M}_0(\lambda)$ for any $\theta \in \mathbb{R}$. From this it follows that

$$V_{\lambda}(Re^{i\theta}) = e^{i\theta}V_{\lambda}(R)$$

and it suffices to determine $V_{\lambda}(R)$ for $1 < R < \infty$. Similarly for $g \in \mathcal{M}_0(\lambda)$ let $\overline{g}(w) = \overline{g(\overline{w})}$. Then $\overline{g} \in \mathcal{M}_0(\lambda)$ and hence $V_{\lambda}(R)$ is symmetric with respect to \mathbb{R} .

Theorem 3.1. Let $0 < \lambda \le 1$. Then

(i) For
$$g \in \mathcal{M}_0(\lambda)$$

$$|w|\left(1-\frac{\lambda}{|w|}\right)\left(1-\frac{1}{|w|}\right)\leq |g(w)|\leq |w|\left(1+\frac{\lambda}{|w|}\right)\left(1+\frac{1}{|w|}\right),$$

for $1 < |w| < \infty$ with equality $w_0 = R_0 e^{i\theta_0}$ if and only if

$$g(w) = w \left(1 - \frac{\lambda e^{i\theta_0}}{w} \right) \left(1 - \frac{e^{i\theta_0}}{w} \right) \text{ or } g(w) = w \left(1 + \frac{\lambda e^{i\theta_0}}{w} \right) \left(1 + \frac{e^{i\theta_0}}{w} \right),$$
respectively.

(ii) For
$$f \in \mathcal{U}(\lambda)$$

$$\frac{|z|}{(1+|z|)(1+\lambda|z|)} \le |f(z)| \le \frac{|z|}{(1-|z|)(1-\lambda|z|)}, \quad 0 < |z| < 1$$
with equality at $z = r_0 e^{i\theta_0}$ if and only if

$$f(z) = \frac{z}{(1 + \lambda e^{i\theta_0}z)(1 + e^{i\theta_0}z)} \quad or \quad f(z) = \frac{z}{(1 - \lambda e^{i\theta_0}z)(1 - e^{i\theta_0}z)}$$
respectively.

Theorem 3.2. Let $f \in \mathcal{U}(\lambda)$ with $0 < \lambda \le 1$. Then

$$\mathbb{D}\left(0, \frac{1}{2(1+\lambda)}\right) \subset f(\mathbb{D}).$$

Furthermore $\frac{e^{i\theta_0}}{2(1+\lambda)} \not\in f(\mathbb{D})$ holds if and only if

$$f(z) = \frac{z}{(1 + \lambda c^{-i\theta_0}z)(1 + e^{-i\theta_0}z)}.$$

Now we define auxiliary functions. For $\varepsilon \in \overline{\mathbb{D}}$ let

$$\widetilde{G}_{\lambda,\varepsilon}(w) = w + \frac{\lambda \varepsilon}{w}$$

and

$$E_{\lambda} = \left\{ egin{array}{ll} \{u+iv: (u/(1+\lambda))^2 + (v/(1-\lambda))^2 \leq 1\}, & 0 < \lambda < 1 \ [-2,2], & \lambda = 1. \end{array}
ight.$$

Notice that $E(\widetilde{G}_{\lambda,e^{i\theta}}) = e^{i\theta/2}E_{\lambda}$ for $\theta \in \mathbb{R}$.

Proposition 3.3. Let $g \in \mathcal{M}_0(\lambda)$. If $g(R) \in \partial V_{\lambda}(R)$, then there exists ε , η with $|\varepsilon| = |\eta| = 1$, such that $g = \widetilde{G}_{\lambda,\varepsilon} - \widetilde{G}_{\lambda,\varepsilon}(\eta)$.

Proof. By Theorem 2.4 g can be decomposed as $g = \tilde{g} + c_0$, where $\tilde{g}(w) = w + \lambda \int_0^{1/w} \beta_g(\zeta) d\zeta \in \widetilde{M}(\lambda)$ and $-c_0 \in E(\tilde{g})$. Again by Theorem 2.4

$$g(R) = \tilde{g}(R) + c_0 \in \tilde{g}(R) - E(\tilde{g}) \subset V_{\lambda}(R).$$

Thus $-c_0$ cannot be an interior point of $E(\tilde{g})$, otherwise g(R) is an interior point of $V_{\lambda}(R)$. Hence $-c_0 \in \partial E(\tilde{g})$. By Lipschitz continuity of \tilde{g} there exists $\eta \in \partial \Delta$ such that $-c_0 = \tilde{g}(\eta)$. Therefore

$$g(R) = \tilde{g}(R) - \tilde{g}(\eta) = R - \eta + \lambda \int_{1/\eta}^{1/R} \beta_g(\zeta) d\zeta.$$

Notice that $R \neq \eta$, since $g(R) \neq 0$. Then we have

$$\left| \int_{1/\eta}^{1/R} \beta_g(\zeta) \, d\zeta \right| \le \left| \frac{1}{R} - \frac{1}{\eta} \right|$$

with equality if and only if $\beta_g = \varepsilon$ for some ε with $|\varepsilon| = 1$.

Suppose that

$$\left| \int_{1/\eta}^{1/R} \beta_g(\zeta) \, d\zeta \right| < \left| \frac{1}{R} - \frac{1}{\eta} \right| = \left| \frac{\eta - R}{R\eta} \right|.$$

Put

$$\varepsilon_0 = \frac{R\eta}{\eta - R} \int_{1/\eta}^{1/R} \beta_g(\zeta) \, d\zeta \, (\in \mathbb{D}) \,.$$

Then

$$egin{aligned} \widetilde{G}_{\lambda,arepsilon_0}(R) - \widetilde{G}_{\lambda,arepsilon_0}(\eta) &= R - \eta + \lambda arepsilon_0 \left(rac{1}{R} - rac{1}{\eta}
ight) \ &= R - \eta + \lambda \int_{1/\eta}^{1/R} eta_g(\zeta) \, d\zeta = \, \widetilde{g}(R) - \widetilde{g}(\eta) = g(R). \end{aligned}$$

On the other hand since $\widetilde{G}_{\lambda,c} - \widetilde{G}_{\lambda,c}(\eta) \in \mathcal{M}_0(\lambda)$ for $c \in \overline{\mathbb{D}}$, we have $\widetilde{G}_{\lambda,c}(R) - \widetilde{G}_{\lambda,c}(\eta) \in V_{\lambda}(R)$ for $c \in \mathbb{D}$. The mapping $\mathbb{D} \ni c \mapsto \widetilde{G}_{\lambda,c}(R) - \widetilde{G}_{\lambda,c}(\eta) \in V_{\lambda}(R)$ is an analytic function of $c \in \mathbb{D}$. Since $R \neq \eta$, the mapping is not constant and hence it is an open mapping. Thus $g(R) = \widetilde{G}_{\lambda,\varepsilon_0}(R) - \widetilde{G}_{\lambda,\varepsilon_0}(\eta)$ is an interior point of $V_{\lambda}(R)$, which contradict the assumption that $g(R) \in \partial V_{\lambda}(R)$. Therefore $\beta_g = \varepsilon$ for some $\varepsilon \in \partial \mathbb{D}$ and $g = \widetilde{G}_{\lambda,\varepsilon} - \widetilde{G}_{\lambda,\varepsilon}(\eta)$.

Proof of Theorem 3.1. Since (ii) follows directly from (i), it suffices to show (i). From compactness of $\mathcal{M}_0(\lambda)$ it follows that there exist $g_1, g_2 \in \mathcal{M}_0(\lambda)$ such that

$$|g_1(R)| = \min_{g \in \mathcal{M}_0(\lambda)} |g(R)|$$
 and $|g_2(R)| = \max_{g \in \mathcal{M}_0(\lambda)} |g(R)|$.

Then clearly $g_2(R) \in \partial V_{\lambda}(R)$. Also $g_1(R) \in \partial V_{\lambda}(R)$ follows from the fact that $0 \notin V_{\lambda}(R)$. Thus by Proposition 3.3 there exist ε_j , η_j with $|\varepsilon_j| = |\eta_j| = 1$ such that $g_j = \widetilde{G}_{\lambda,\varepsilon_j} - \widetilde{G}_{\lambda,\varepsilon_j}(\eta_j)$ for j = 1, 2. Since

$$g_j(R) = \widetilde{G}_{\lambda, \varepsilon_j}(R) - \widetilde{G}_{\lambda, \varepsilon_j}(\eta_j) = (R - \eta_j) \left(1 - \frac{\lambda \varepsilon_j}{R \eta_j}\right),$$

we have

$$\begin{aligned} |g_1(R)| &= \min_{g \in \mathcal{M}_0(\lambda)} |g(R)| \le \widetilde{G}_{\lambda,1}(R) - \widetilde{G}_{\lambda,1}(1) \\ &= (R-1) \left(1 - \frac{\lambda}{R} \right) \\ &\le \left| (R - \eta_1) \left(1 - \frac{\lambda \varepsilon_1}{R \eta_1} \right) \right| = |g_1(R)|. \end{aligned}$$

Thus $\eta_1 = \varepsilon_1 = 1$ and hence

$$g_1(w) \equiv \widetilde{G}_{\lambda,1}(w) - \widetilde{G}_{\lambda,1}(1) = w + rac{\lambda}{w} - (1+\lambda).$$

We have shown that for $g \in \mathcal{M}(\lambda)$

$$(R-1)\left(1-rac{\lambda}{R}
ight) \leq |g(R_1)|$$

with equality if and only if $g(w) = w + \lambda w^{-1} - (1 + \lambda)$. Applying this to $g_{\theta}(w) = e^{-i\theta}g(e^{i\theta}w)$ we have for $w = Re^{i\theta}$ and $g \in \mathcal{M}_0(\lambda)$

$$(|w|-1)\left(1-\frac{\lambda}{|w|}\right)=(R-1)\left(1-\frac{\lambda}{R}\right)\leq |g_{\theta}(R)|=|g(w)|$$

with equality $g_{\theta}(w) = w + \lambda w^{-1} - (1 + \lambda)$, i.e.,

$$g(w) = w + \lambda e^{2i\theta} w^{-1} - (1+\lambda)e^{i\theta} = w \left(1 - \frac{\lambda e^{i\theta}}{w}\right) \left(1 - \frac{e^{i\theta}}{w}\right).$$

In the same manner we can treat the rest of the proof of (i). \Box

Proof of Theorem 3.2. For $f \in \mathcal{U}(\lambda)$ the relation $\mathbb{D}(0, (2(1+\lambda))^{-1}) \subset f(\mathbb{D})$ directly follows from 3.1 (ii).

Suppose that $e^{i\theta_0}\{2(1+\lambda)\}^{-1} \not\in f(\mathbb{D})$. Then $2(1+\lambda)e^{-i\theta_0} \in E(g) = E(\tilde{g}) + c_0(g)$, where $g = Tf = \tilde{g} + c_0(g)$ with $\tilde{g} \in \widetilde{\mathcal{M}}(\lambda)$. Since $2(1+\lambda)e^{-i\theta_0} - c_0(g) \in E(\tilde{g}) \subset \overline{\mathbb{D}}(0,1+\lambda)$ and $|c_0(g)| \leq 1+\lambda$ by Theorem 2.5, we have

$$1 + \lambda \le 2(1 + \lambda) - |c_0(g)| \le |2(1 + \lambda)e^{-i\theta_0} - c_0(g)| \le 1 + \lambda.$$

Thus $c_0(g) = (1+\lambda)e^{-i\theta_0}$. By Theorem 2.5 (b) $g(w) = w(1+\lambda e^{i\theta}w^{-1})(1+e^{i\theta}w^{-1}) = w+(1+\lambda)e^{i\theta}+\lambda e^{2i\theta}w^{-1}$ for some $\theta \in \mathbb{R}$. Therefore $e^{i\theta}=e^{-i\theta_0}$ and $g(w)=w(1+\lambda e^{-i\theta_0}w^{-1})(1+e^{-i\theta_0}w^{-1})$. This implies

$$f(z) = \frac{z}{(1 + \lambda e^{-i\theta_0}z)(1 + e^{-i\theta_0}z)}.$$

Proposition 3.3 implies that $\partial \partial V_{\lambda}(R)$ is contained in

$$V_{\lambda}^{*}(R) = \left\{ (R - \eta) \left(1 - \frac{\lambda \varepsilon}{R \eta} \right) : |\varepsilon| = |\eta| = 1 \right\}.$$

FIGURE 1. $V_{0.5}^*(2)$ and $V_{0.9}^*(1.1)$

One can prove $\partial V_{\lambda}^{*}(R)$ consists of two Jordan curves $J_{e}(R)$ and $J_{i}(R)$ which are starlike with respect to R and $J_{i}(R)$ is contained inside of $J_{e}(R)$, and that $V_{\lambda}(R)$ is a closed Jordan domain surrounded by $J_{e}(R)$. For details see forthcoming paper [11].

REFERENCES

- 1. L.A. Aksent'ev, Sufficient condition for univalent of regular functions (Russian), *Izv. Vys*s. *Učebn. Zaved. Matematika* 1958(4),3-7.
- F.G. Avhadiev and L.A. Aksent'ev, Fundamental results on sufficient condition for the univalence of analytic functions (Russian), Uspehi Mat. Nauk 30(184)(1975), 3-60, English Translation in Russian Math. Surveys 30(1975), 1-64.
- 3. P. Duren, Univalent Functions, Grundlehren Math. Wiss. 259, Springer, New York 1983.
- 4. R. Fourner and S. Ponnusamy, A class of locally univalent functions defined by a differential inequality, *Complex Var. Elliptic Equ.* **52**(1)(2007), 1–8.
- 5. M. Obradović and S. Ponnusamy, New criteria and distortion theorems for univalent functions, *Complex Variables Theory Appl.* 44(2001), 173-191.

- 6. M. Obradović and S. Ponnusamy, Univalence and starlikeness of certain integral transforms defined by convolution of analytic functions, *J. Math. Anal. Appl.* **336**(2007), 758–767.
- 7. M. Obradović and S. Ponnusamy, Partial sums and the radius problem for some class of conformal mappings, *Siberian Mathematical Journal* **52**(2)(2011), 291–302.
- 8. Ch. Pommerenke, *Univalent functions*, Vandenhoeck and Ruprecht, Göttingen, 1975.
- 9. S. Ponnusamy and P. Vasundhra, Criteria for univalence, starlikeness and convexity, Ann. Polon. Math. 85(2)(2005), 121-133.
- 10. S. Ozaki and M. Nunokawa, The Schwarzian derivative and univalent functions, *Proc. Amer. Math. Soc.* **33** (1972), 392-394.
- 11. A. Vasudevarao and H. Yanagihara, On the growth of analytic functions in class $\mathcal{U}(\lambda)$, in preparation.