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Hiroshi Yanagihara
Department of Applied Science
Faculty of Engineering, Yamaguchi University
Tokiwadai, Ube 755-8611, Japan

ABSTRACT. For 0 < A < 1 let U()) be the class of analytic
functions in the unit disk D with f(0) = f/(0) — 1 = 0 satisfy-
ing |f'(z)(2/f(2))* —1| < A in D. Then it is known that every
f € U()) is univalent in D. In the present article we shall prove
the sharp estimates |f”(0)| < 2(1+)) and |2|/{(1+|z])(1+)]z])} <
I£(2)! < 12//{(1 = |2])(1 — Ajz])}. As an application we shall also
give the sharp covering theorems.

1. INTRODUCTION

We denote the complex plane by C and the extended complex plane
by C = CU{o0}. Forc€ Candr > 0letD(c,7) = {z € C: |2—¢| <71}
and D = D(0,1). Similarly let A, = C\D(0,r) = {2 € C:r < |2| <
oo} and A = A;.

Let A({D}) denote the space of analytic functions in D and Ao({D}) =
{f € A({D}) : f(0) = f'(0) — 1 = 0}. Here we regard A({D}) as a
topological vector space endowed with the topology of uniform conver-

gence over compact subsets of . A function f is said to be univalent in
a domain D if it is one-to-one in D. Let S denote the class of univalent

functions in Ay({D}).
For 0 < A < 1 let U()) be the class of functions f € A satisfying

() (f—@) ~1

in D. The boundedness of f'(2)(z/f(z))? forces f € U()) that f(2) #0
in D\{0}. Hence f'(2) # 0 holds in I and f is locally univalent in D.
Moreover it is known that f € () is univalent in D, i.e., U(A) C S.

<A

(1.1)




In the present article we shall prove the sharp inequalities

la2(£)] = 27" (0)| < 1+ A,
|| ||
< z)| <
=N 1) = VO = TR A=
for f € U(A). To this end we introduce three classes of meromorphic
functions in A closely related to (). For 0 < A < 1 let M()) be the

class of meromorphic functions g in A which has a Laurent expansion
of a form -

(1.2) g(w)=w+co+%+£—22-+~--, 1< |w|l < oo
and satisfying
lg'(w) — 1] < X,
Now for f € U()\) put
1
T(f)(w) = f(a;l‘)’ w € A.

Then we have

d _fQw) 2\

T L) (w) = WAL = f'(2) (?TZF) , A==

and hence T'f € M(}). Thus T is a transformation which maps U/())
injectively into M(A). The image T'(1/())) is a proper subset of M(\)
and it is easy to see that
Mo(A) = {g € M(N) : g(w) # 0 in A} = TU(N)).
Notice that az(f) = —co(T'(f)) hold for f € U()). Moreover let
M) = {g€ M) : co(g) = 0}.

In the next section we shall show that every g € .X/lv(/\) satisfics g(w) #
0 in A. Thus the relation

TUN)) = M) € TUN)) = Mo(X) € M(N)
holds.

In Section 2 we shall derive an integral representation of g € M(A)
and prove existence of the boundary limit g(n) = limasy—y g(w) for
each 77 € OA. Further we shall precisely study the boundary values of
g € M()) and obtain the sharp estimate |g(n)| < 1+ A for g € M())
and 71 € A, which is equivalent to the sharp upper bound laz(f)| <
1+ Xfor f eU(N).
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In Section 3 for each fixed wy € A\{oo} we shall treat the sharp
estimate on |g(wp)| for g € Mo()). The result has an immediate
counterpart in 2/()) and we shall derive the sharp growth estimate and
the sharp covering theorem for U()).

2. INTEGRAL REPRESENTATION
For g € M(]) let

(2.1) be(w) =%?-(1 - d(w)), wEeA,

(2.2) By(2) =bg(1/2), z€D.

Note that ¢/(w) — 1 = O(w™%) as w — oo and that ¢’(1/2) is analytic
in D. Applying the maximum modulus principle to ¢’(1/2) — 1 we have

A
lg'(w) — 1] < wE 1< |w| < co.

Hence 8, € H(D) and for any w, wp € A\{oo} by integrating ¢'(w) —
1 = —\by(w)w™? we obtain
" by(¢)

w ¢

g(w) — w = g(wo) — wo — A d¢.

Since limyy—00(g(wo) — wo) = co, We have

1/w

g(w)=w+co—,\/w9-“3<(-§ld(=w+co+)\ A B,(¢) d¢.

Converse is also true and we have the following.

Theorem 2.1. For a meromorphic function g in A, g € M(}) if and
only if there exist € H°(D) and c € C such that

1/w

gw)y=w+c+ A : B(¢) d¢.

Corollary 2.2. Each g € M()\) is Lipschitz continuous and satisfies
(2.3)

(1~ ) s = < o) = o) < (14 2 ) s =

"~ Jwow ]

for wo, w; € A. Particularly

(i) The limit g(n) = limaswn g(w) exists for every n € OA.
(ii) g is univalent in A. Furthermore if 0 < A < 1, then g s
univalent on A.



Proof. Inequality (2.3) easily follows from Theorem 2.1 and

1w 1 1] w —w
1/wo AlOd < E_El— lwows|

By (2.3) the function g is Lipschitz continuous in A and from this
the boundary limit g(n) = limasw—y, g(w) exists for each n € HA.
Inequality (2.3) also shows that g is univalent in A. Since (2.3) still
holds on A by continuity, g is univalent on A, when 0 < A < 1. O

Each f € U(X) is univalent in D, since T'f is univalent in A by
Corollary 2.2.

Corollary 2.3. For each 0 < A < 1 the inclusion relation M()\) C
Mo(A) holds.

Proof. For g € M(\)(C M())) we have by Theorem 2.1

l/w A
lg(w)| = |w+ A A B d¢| > lw| - ke 0, |w|>1.
Thus g has no zeros in A and hence g € Mp(N). O

For g € M()) let E(g) be the omitted set of g, i.e.,

E(g) = C\g(A).

For R > 1 the image g(0ARg) is an analytic Jordan curve and g(Apg)
is the domain outside g(0Ar). Let Dg be the domain bounded by
g(0AR). Then {Dg : 1 < R} is a 1-parameter family of increasing

domains in C and
E(g)={) D=

R>1
In particular when 0 < A < 1, by Corollary 2.2 E(g) is a closed Jordan
domain bounded by g(dA). Notice that for any ¢ € M()) with 0 <
A <1 and a € OE(g) there exists 7 € A such that a = g(n).

Theorem 2.4. Let g € M()) and g(w) = w+ ¢y + fol/w B(¢) d¢ with

B € H*(D) and ¢y € C. Then g € Moy()) if and only if

(2.4) e € E(@),
where
1/w

Jw)=w+ [ B)d¢ e M.

0
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Proof. For g € M()), by definition, g € My()\) if and only if g(w) =
g(w) + co # 0 for all w € A. This is equivalent to (2.4). O

For g € Mg()) the coefficient ¢ = co(g) in the expansion (1.2)
is called the conformal center of the set E(g). For more details on
conformal center we refer to [8].

Notice that g + ¢ € M(X) holds for any g € M()) and ¢ € C.
This implies that there are no upper bound on |y (g)| for g € M(A).
However concerning with the class Mg()\), it is not difficult to get the
sharp estimate.

Theorem 2.5. Let A € (0,1]. Then,

(a) For g € M()) the sharp estimate 1 — X < |g(n)] < 1+ X holds
on OA. Furthermore equality |g(n)| =1 — X at some n € 0A if
and only if g(w) = w — M2 /w, and |g(n)] = 1+ A if and only
if g(w) = w + An?/w.

(b) Inequality |co(g)| < 1+ X holds for g € Mo()) with equality if
and only if

Aei? et
g(w)——w(1+—-—t-l—)—) (1-1--{0—'), w € A.

for some real 0.
(c) Inequality |az(f)| < 1+ X holds for f € U(X) with equality if
and only if
2
f(2) = (1 + Ae®2)(1 + €2)’

for some real 0.

z€D

Proof. Let g € H()\) and put 8 € H°(D) as in (2.2). Then

1/w

/
(2.5) g(w) =w+ A A B(¢) dc.

For n € OA we consider fol /M B(¢)d¢ as the Lebesgue integral along
a Cl-path connecting 0 to 1/ and contained in D except for the end
point 1/5. Then the integral does not depend on choice of path. Thus
(2.5) still holds for n € 0A and we have

1/n

lg(m| < Inl + A B)d¢| <1+ A 1B ¢ <1+ A,

[0,1/7]




where [0,1/7] is the radial line segment connecting 0 and 1/n. If
lg(mo)] = 1+ X at some 79 € A, then by the maximum modulus
theorem 3 = ¢ for some £ € D and

AR BQOA 2

n UK
Therefore € = 7% and g(w) = w + An?/w. Similarly

1/n

lg(m)] = [nl — A B(¢)d¢

21~A/ B¢ > 1~ A
[0:1/77]

0

with equality if and only if 8 = ¢ € 6D and Xe/n? < 0, i.e., € = —7?
and therefore g(w) = w — An?/w. This completes the proof of (a).

To show (b) let g € Mo(X). Then g can be expressed as g = § + co
with § € M()) and —cy € E(g). By (a) and E(g) = Ng>1D(R), where
D(R) is a domain bounded by the Jordan curve §g(0ApR). Hence we

have E(§) Cc D(0,1+ X) and |co(g)| < 1+ A.

Suppose now that |co(g)] = 1 + A. Combining —co(g) € E(g) N
oD(0,1 + A) and E(§) c D(0,1 + ), we have —cy(g) € OE(g). By
Lipschitz continuity of § there exists n € A with —¢y(g) = §(n). Since
l[g(m)| = | — co(g)] = 1 + A, it follows from (a) that §(w) = w + In?/w
and hence

o) = 3(w) + 0 = 3(w) ~ 30n) = w 1+ 22) (1+ 2).

By letting €'’ = —n we obtain (b).

Since ag(f) = —co(T(f)) holds for f € U(N), (c) follows directly
from (b). O

3. GROWTH ESTIMATES

Let 0 < A <1and 1 < |wp| < co. Combining Theorem 2.1 and
Theorem 2.5 (b) it is easily seen that if g € Mg()\) then

(31)  |g(wo)| <lwol + X f 1B 1dC] + lcol

[0,1/1110]

$|w0|+—’1—+1+,\=|w0| (1+172‘0—I) (1+ L )

|wol Jawol
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with equality at wy = Re* if and only if g(w) = w(1 + Ae¥w™)(1 +
e®w='). Similarly the lower estimate
A
lg(wo)]| 2 |wo| — 7= — (1+ )
|wol
holds for g € M()). Clearly it is not sharp, since the right hand side
is negative for all r sufficiently close to 1.

In this section we deal with the region of variability Vi (wq) of g(wo),
when g varies on Mp()), i.e.,

Va(wo) = {g(wo) : g € Mo(N)}.

We shall show that Vj(wp) is a closed Jordan domain bounded by a
simple closed curve and give a parameterization of the boundary curve.
Using these ideas we will obtain the sharp lower estimate on |g(wo)]
when g € My(A).

First we notice that V3 (wy) is a compact subset of C. Indeed by (3.1)
it is clear that Mo(\) is a family of analytic functions in A\{oco} which
is locally uniformly bounded and hence normal. Moreover if a sequence
{gn}2.; in Mg(X) converge to g locally uniformly in A\{oo}, then it is
not difficult to see that g € Mo(A). Thus My(A) is a compact family
with respect to the topology of locally uniform convergence. Since
Va(wp) is the image of Mg(A) with respect to the continuous mapping
Mo()) 3 g+ g(wo) € C, Vi(wp) is also an compact subset of C.

Next for g € Mo()) let go(w) = e~**g(e**w). Then gg € Mo()) for
any € R. From this it follows that

VA(RCM) = e‘oV,\(R)
and it suffices to determine VA(R) for 1 < R < oco. Similarly for
g € Moy()) let G(w) = g(w). Then § € My()) and hence V)(R) is
symmetric with respect to R.

Theorem 3.1. Let 0 < A < 1. Then
(i) For g € My(N)

() () swon (oo 2) (1)

for 1 < |w| < 0o with equality wy = Roe® if and only if

A% el et g%
g(w)-w(l—— ” ) (1——17)_) org(w)-w(1+ ” ) (1+_u7)’

respectively.
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(ii) For f e U(N)

kd ||

Grrnasam = S a0 <<t
with equality at z = roe’® if and only if
f(z)= __Z . or f(z)= _% .
(1 4+ Aeifoz)(1 + eifoz) (1 = Xeifoz)(1 — eifoz) |

respectively.

Theorem 3.2. Let f € U()\) with0 < A < 1. Then
D (O ! ) c f(D).

2(1+ \)
Furthermore st & f(D) holds if and only if
2

1@ = Trmyarey

Now we define auxiliary functions. For ¢ € D let
Go(w) = w+ 2
w

and

{u+iv: (w/Q+XN))?2+@w/(1-A)2<1}, 0<i<l1
- [”2’ 2], A=1.
Notice that E(G), ) = €*¥/2E} for 0 € R.

Proposition 3.3. Let g € Mo()). If g(R) € OVi(R), then there ezists
g, n with [e| = |n| = 1, such that g = Gi. — G (7).

Proof. By Theorem 2.4 g can be decomposed as g = § + ¢y, where
gw) =w+ ,\fl/w Be(¢) d( € M(A) and —cyp € E(§). Again by Theo-
rem 2.4

9(R) = §(R) + co € §(R) — E(§) C VA(R).
Thus —cp cannot be an interior point of E(g), otherwise g(R) is an
interior point of V5(R). Hence —cy € OF(§). By Lipschitz continuity
of § there exists ) € A such that —cy = (7). Therefore

1/R

9(R)=g(R) —g(m)=R—n+ X y Be(¢) dC.
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Notice that R # n, since g(R) # 0. Then we have
VR 1 1

Be(¢) dC| < 7

1/q
with equality if and only if B, = ¢ for some ¢ with |¢] = 1.
Suppose that

1/R —_
o] <[5 -1 - 25|

1/ n

Put

B Rﬂ 1/R ‘ .
=720 [ 80 & ED).

Then

=~ =~ 1 1
GreoR) = Greoln) = R = 1+ Aeo (—1,i - ;))

1/R
=R-n+) By(¢) d¢ = G(R) — §(n) = g(R).

1/n

On the other hand since C:',\,c -~ éx,c(fl) € Mp(X) for ¢ € D, we
have G, .(R) — G(n) € Vi(R) for ¢ € D. The mapping D 3 ¢ —
eN <(R) - eN «(n) € VA(R) is an analytic function of ¢ € D. Since
R # 7, the mapping is not constant and hence it is an open mapping.
Thus g(R) = G, (R) — G.co(n) is an interior point of VA(R), which
contradict the assumption that g(R) € dV5(R). Therefore 5, = ¢ for
some € € 0D and g = é;\,z - 5,\,€(n). O

Proof of Theorem 3.1. Since (ii) follows directly from (i), it suffices to
show (i). From compactness of Mg()) it follows that there exist g1, g2 €
Mo (A) such that

(B = min [g(R)| md |o(R) = mex lo(R)|

Then clearly ga(R) € 8V)(R). Also g1(R) € 0Vi(R) follows from the
fact that O ¢ V3(R). Thus by Proposition 3.3 there exist ¢;, 7; with

lej| = |nj| = 1 such that g; = G,\,SJ Gxe,(ﬂg) for j =1,2. Since

_ _ AE;
9j(R) = G ¢;(R) — Grg;(nj) = (R — ) ( B E;;) ’
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we have
l91(R)| = min_|g(R)| <Gx1(R) — Gx1(1)

gEMop(A)
A
=(R-1) (1 - -é)

AEl

< ;(R— ) (1 - Eﬁ;) = |g1(R)].

Thus 7, = €; = 1 and hence
~ ~ A
gl(w) = G,\:l(QU) - G)“l(].) =w+ -1;)- - (1 + /\)
We have shown that for g € M()\)

(R-1 (1-3) <lo(0)

with equality if and only if g(w) = w + Aw™! — (1 + )). Applying this
to gs(w) = e~ *g(e®w) we have for w = Re* and g € My(\)
A A
— ——— ) = —_ —_— < =
(ul-1) (1= 2 ) = R (1= 3) < l96(R)] = g
with equality gs(w) = w + dw™! — (14 X), i.e.,
Aetd e

i0
_ 20, ~1 _ 0 22 ) (1-=).
g(w) = w+ Ae*w 1+ MNe w(l - ) ( 'w)

In the same manner we can treat the rest of the proof of (i). O

Proof of Theorem 3.2. For f € U()) the relation D(0, (2(1 + A))™1) C
f(D) directly follows from 3.1 (ii).

Suppose that e {2(1+1)}~! ¢ f(D). Then 2(1 + X)e~* € E(g) =
E(g) + co(g), where g = Tf = § + co(g) with § € M(}). Since
2(1 + Ae ™ — ¢o(9) € E(G) < D(0,1+ )) and |co(g)] < 1+ X by
Theorem 2.5, we have

1+A<2(14)2) —eo(9)] <120 + Ve~ — co(g)| < 1+ M.
Thus co(g) = (1+A)e **. By Theorem 2.5 (b) g(w) = w(1+Ae®w1)(1+
ePw1) = w+(1+N)e?+Ae*®w™! for some @ € R. Therefore ¥ = ¢~
and g(w) = w(l + Ae"*Pw=1)(1 + e~*%~1). This implies

z
f(z) = (14 Aem#02)(1 + e~b0z)
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Proposition 3.3 implies that 09V, (R) is contained in
= (p_ _2Y . el =
iR ={(R-n (1-3): 14 = b =1].

N
N

il

< S N
AN S
N
S
\!

FIGURE 1. V35(2) and V(1.1)

One can prove 9V (R) consists of two Jordan curves J.(R) and J;(R)
which are starlike with respect to R and J;(R) is contained inside of
J.(R), and that V,(R) is a closed Jordan domain surrounded by J(R).
For details see forthcoming paper [11].
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