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Abstract

The Novikov equation is an integrable generalization of the Degasperis-Procesi
equation. We develop a systematic method for solving the Novikov equation. In
particular, we present a parametric representation for the smooth bright multisoli-
ton solutions on a constant background and investigate their property. We show
that the tau-functions associated with the soliton solutions are related to those
of a model equation for shallow-water waves introduced by Hirota and Satsuma.
We also construct a new type of singular solution by specifying a complex phase
parameter. We demonstrate that both smooth and singular solitons recover the
peaked waves (or peakons) when the background field tends to zero.

1. Introduction

We consider the Novikov equation [1]

$m_{t}+u^{2}m_{x}+3uu_{x}m=0, m=u-u_{xx}, u=u(x, t)$ , (1.1)

subjected to the boundary condition $uarrow u_{0}$ as $xarrow\pm\infty$ . The Novikov equation
is an integrable generalization of the following Degasperis-Procesi ( $DP$ ) equation

$m_{t}+um_{x}+3u_{x}m=0$ . (1.2)

There exists another type of integrable equation with cubic nonlinearity known
as the modified Camassa-Holm ($CH$) equation [2]

$m_{t}+[m(u^{2}-u_{x}^{2})]_{x}=0$ , (1.3)

which is an integrable generalization of the $CH$ equation [3]

$m_{t}+um_{x}+2u_{x}m=0$ . (1.4)
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The purpose of this paper is:
$\bullet$ to develop a systematic method for obtaining the soliton solutions of the Novikov
equation
$\bullet$ to investigate the properties of the smooth and singular soliton solutions.

The details have been published in [4] and hence we summarize the main results.

2. Reciprocal transformation and SWW equation

2. 1. Reciprocal transformation
We introduce the the coordinate transformation $(x, t)arrow(y, \tau)$

$dy=m^{2/3}dx-m^{2/3}u^{2}dt, d\tau=dt$ . (2.1)

It follows from (2.1) that the variable $x=x(y, \tau)$ satisfies a system of linear PDEs

$x_{y}=m^{-2/3}, x_{\tau}=u^{2}$ (2.2)

We apply the transformation (2.1) to the Novikov equation and find that it can
be recast into the form

$m_{\tau}+3m^{5/3}uu_{y}=0$ . (2.3)

On the other hand, $u$ from (1.1) can be rewritten in terms of $m$ as

$u=m+m^{4/3}u_{yy}+ \frac{2}{3}m^{1/3}m_{y}u_{y}$ . (2.4)

If we define the new variables $V$ and $W$ by $V=m^{2/3}$ and $W=um^{1/3}$ , respectively,
then equations (2.3) and (2.4) can be put into the form

$( \frac{1}{V})_{\tau}=(\frac{W^{2}}{V})_{y}$ (2.5)

$W_{y}$営十 $UW+1=0,$ $(2.6a)$

where
$U=- \frac{V_{yy}}{2V}+\frac{V_{y}^{2}}{4V^{2}}-\frac{1}{V^{2}}. (2.6b)$

The integrability of the Novikov equation is evidencede by the existence of the
Lax representation. Actually, it can be written in terms of the variables $y$ and $\tau$

as
$\psi_{yyy}+U\psi_{y}=\lambda^{2}\psi, \psi_{\tau}=\frac{1}{\lambda^{2}}(W\psi_{yy}-W_{y}\psi_{y})-\frac{2}{3\lambda^{2}}\psi$. (2.7)
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Proposition 2.1. The variables $U$ and $W$ satisfies a linear partial differential
equation $(PDE)$

$U_{\tau}+3W_{y}=0$ . (2.8)

If we eliminate the variable $W$ from $(2.6a)$ and (2.8), we obtain a single equation

for $U$ :
$UU_{\tau yy}-U_{y}U_{\tau y}+U^{2}U_{\tau}+3U_{y}=0$ . (2.9)

2.2. $SWW$ equation

We first seek the $N$-soliton solution of equation (2.9) of the form

$U=U_{0}+6(\ln f)_{yy}, f=f(y, \tau)$ . (2.10)

The above dependent variable transformation enables us to recast (2.9) to the

bilinear equation for $f$

$(D_{\tau}D_{y}^{3}-3W_{0}D_{y}^{2}+U_{0}D_{\tau}D_{y})f\cdot f=0,$ $U_{0}=-u_{0}^{-4/3},$ $W_{0}=u_{0}^{4/3}$ (2.11)

Here, the bilinear operators $D_{y}$ and $D_{\tau}$ are defined by

$D_{y}^{m}D_{\tau}^{n}f \cdot g=(\frac{\partial}{\partial y}-\frac{\partial}{\partial y’})^{m}(\frac{\partial}{\partial\tau}-\frac{\partial}{\partial\tau’})^{n}f(y, \tau)g(y’, \tau’)|_{y’=y,\tau’=\tau}$

Recall that the bilinear equation (2.11) can be transformed to a model equation
for shallow-water waves (SWW)

$q_{\tau}+3 \kappa^{4}q_{y}-3\kappa^{2}qq_{\tau}+3\kappa^{2}q_{y}\int_{y}^{\infty}q_{\tau}dy-\kappa^{2}q_{\tau yy}=0,$ $q=q(y, \tau)$ , (2.12)

through the dependent variable transformation $q=2(\ln f)_{yy}$ , where the positive
parameter $\kappa$ has been introduced for later convenience by the relation $\kappa=u_{0}^{2/3}$

so that $U_{0}=-\kappa^{-2}$ and $W_{0}=\kappa^{2}$ . Substituting (2.10) into equation (2.8) and
integrating once with respect to $y$ under the boundary condition $Warrow\kappa^{2},$ $|y|arrow\infty,$

we obtain the expression of $W$ in terms of the tau-function $f$

$W=\kappa^{2}-2(\ln f)_{\tau y}$ . (2.13)

Finally, it follows from (2.2) and the definition of $W$ that the variable $x=x(y, \tau)$

obeys the linear PDE
$x_{\tau}=W^{2}x_{y}$ . (2.14)

Thus, the problem under consideration is to solve (2.14) with the known function
$W$ from (2.13).

218



2.3. Bilinear identities for the $tau$-functions
The tau-function $f$ for the $N$-solton solution of the SWW equation is given com-
pactly by

$f= \sum_{\mu=0,1}\exp[\sum_{i=1}^{N}\mu_{i}\xi_{i}+\sum_{1\leq i<j\leq N}\mu_{i}\mu_{j}\gamma_{ij}], (2.15a)$

with
$\xi_{i}=k_{i}[y-\frac{3\kappa^{4}}{1-(\kappa k_{i})^{2}}\tau-y_{i0}], (i=1,2, \ldots, N) , (2.15b)$

$e^{\gamma_{ij}}=\frac{(k_{i}-k_{j})^{2}[(k_{i}^{2}-k_{i}k_{j}+k_{j}^{2})\kappa^{2}-3]}{(k_{i}+k_{j})^{2}[(k_{i}^{2}+k_{i}k_{j}+k_{j}^{2})\kappa^{2}-3]},$ $(i, j=1,2, \ldots, N;i\neq j)$ . $(2.15c)$

Here, $k_{i}$ and $y_{i0}$ are the amplitude and phase parameters of the ith soliton, respec-
tively, and the notation $\sum_{\mu=0,1}$ implies the summation over all possible combina-
tions of $\mu_{1}=0,1,$ $\mu_{2}=0,1,$

$\ldots,$
$\mu_{N}=0,1.$

To proceed, let us introduce some notations. The $N$-soliton solution from (2.15)
is parametrized by the $N$ phase variables $\xi_{i}(i=1,2, \ldots, N)$ and hence we use a
vector notation $f=f(\xi)$ with an $N$-component row vector $\xi=(\xi_{1}, \xi_{2}, \ldots, \xi_{N})$ . Let
$\phi=(\phi_{1}, \phi_{2}, \ldots, \phi_{N})$ be an $N$-component row vector with the elements

$e^{-\phi_{i}}=\sqrt{\frac{(1_{2}^{\underline{\kappa}k}-\lrcorner)(1-\kappa k_{i})}{(1+\underline{\kappa}2k\Delta)(1+\kappa k_{i})}}, (i=1,2, \ldots, N)$ . (2.16)

Define the tau-functions $f_{1},$ $f_{1}’,$ $f_{2}$ and $f_{2}’$ by making use of the above notation

$f_{1}=f(\xi-\phi)$ , $f_{1}’=f(\xi-2\phi)$ , $f_{2}=f(\xi+\phi)$ , $f_{2}’=f(\xi+2\phi)$ . (2.17)

Proposition 2.2. The $tau$-functions $f,$ $f_{1}’$ and $f_{2}’$ satisfy the bilinear identities

$D_{y}f_{1}’ \cdot f_{2}’+\frac{2}{\kappa}f_{1}’f_{2}’=\frac{2}{\kappa^{3}}(\kappa^{2}f^{2}-D_{\tau}D_{y}f\cdot f)$ , (218)

$D_{\tau}f_{1}’ \cdot f_{2}’+2\kappa^{3}f_{1}’f_{2}’=\frac{2}{\kappa^{3}}(\kappa^{6}f^{2}+D_{\tau}^{2}f\cdot f)$, (219)

$D_{y}^{3}f_{1}’ \cdot f_{2}’+\frac{6}{\kappa}D_{y}^{2}f_{1}’\cdot f_{2}’+\frac{11}{\kappa^{2}}D_{y}f_{1}’\cdot f_{2}’+\frac{6}{\kappa^{3}}(f_{1}’f_{2}’-f^{2})=0$ , (2.20)

$D_{\tau}f_{1}’ \cdot f_{2}’+\kappa D_{\tau}D_{y}f_{1}’\cdot f_{2}’+\frac{\kappa^{2}}{4}D_{\tau}D_{y}^{2}f_{1}’\cdot f_{2}’+\kappa^{3}(f_{1}’f_{2}’-f^{2})+\frac{\kappa^{4}}{2}D_{y}f_{1}’\cdot f_{2}’+\frac{\kappa^{5}}{2}D_{y}^{2}f_{1}’\cdot f_{2}’$

$= \frac{1}{2\kappa}(D_{\tau}^{2}D_{y}^{2}f\cdot f+\kappa^{6}D_{y}^{2}f\cdot f)$ . (2.21)
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3. The $N$-soliton solution

Let us introduce the tau-function $g=g(\xi)$

$g= \sum_{\mu,\nu=01},\exp[\sum_{i=1}^{N}(\mu_{i}+\nu_{i})\xi_{i}+\sum_{i=1}^{N}(2\mu_{t}\nu_{i}-\mu_{i}-\nu_{i})\ln a_{i}$

$+ \frac{1}{2}\sum_{i,j=1}^{N}(\mu_{i}\mu_{j}+\nu_{i}\nu_{j})A_{2i-1,2j-1}+\frac{1}{2}$
$\sum_{i,j=1,(i\neq j)(i\neq j)}^{N}(\mu_{i}\nu_{j}+\mu_{j}\nu_{i})A_{2i-1,2j]}.$

$(3.1a)$

Here

$a_{i}=\sqrt{\frac{1-\frac{\kappa^{2}}{4}\perp k^{2}}{1-\kappa^{2}k_{i}^{2}}}, (i=1,2, \ldots, N) , (3.1b)$

$\exp[A_{2i-1,2j-1}]=\frac{(p_{i}-p_{j})(q_{i}-q_{j})}{(p_{i}+q_{j})(q_{i}+p_{j})},$ $(i,j=1,2, \ldots, N;i\neq j)$ , $(3.1c)$

$\exp[A_{2i-1,2j}]=\frac{(p_{i}-q_{j})(q_{i}-p_{j})}{(p_{i}+q_{j})(q_{i}+q_{j})},$ $(i,j=1,2, \ldots, N;i\neq j)$ , $(3.1d)$

$p_{i}= \frac{k_{i}}{2}[1+\frac{2}{\kappa k_{i}}\sqrt{\frac{1}{3}(1-\frac{1}{4}\kappa^{2}k_{i}^{2})}], (i=1,2, \ldots, N) , (3.1e)$

$q_{i}= \frac{k_{i}}{2}[1-\frac{2}{\kappa k_{i}}\sqrt{\frac{1}{3}(1-\frac{1}{4}\kappa^{2}k_{i}^{2})}], (i=1,2, \ldots, N) , (3.1f)$

and $\xi_{i}(i=1,2, \ldots, N)$ are already given by $(2.15b)$ .
The tau-functions $g_{1}$ and $g_{2}$ are defined by

$g_{1}=g(\xi-\phi) , g_{2}=g(\xi+\phi)$ , (3.2)

where $\phi$ is the $N$-component row vector introduced by (2.16).

Theorem 3.1. The Novikov equation (1.1) admits the parametric representation

for the $N$-soliton solution

$u^{2}=u^{2}(y, \tau)=\kappa^{3}+\frac{1}{2}\frac{\partial}{\partial\tau}\ln\frac{g_{1}}{g_{2}}, (3.3a)$

$x=x(y, \tau)=\frac{y}{\kappa}+\kappa^{3}\tau+\frac{1}{2}\ln\frac{g_{1}}{g_{2}}+d, (3.3b)$

where the $tau$-functions $g_{1}$ and $g_{2}$ are given by (3.1) and (3.2) and $d$ is an arbitrary
constant.

Remark 3.1. The tau-function $g$ has already appeared in constructing the $N$-

soliton solution of the $DP$ equation.
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Proposition 3.1. The following relation holds among the $tau$-functions $g,$ $f_{1}$ and
$f_{2}$

$g=f_{1}f_{2}+\kappa D_{y}f_{1}\cdot f_{2}$ , (3.4)
where $f_{1}$ and $f_{2}$ are defined by (2.17).

Proposition 3.2. The $tau$-functions $f,$ $g_{1}$ and $g_{2}$ satisfy the relations

$(D_{y}+ \frac{2}{\kappa})g_{1}\cdot g_{2}=\frac{2}{\kappa}f^{4}, (3.5a)$

$(D_{\tau}+2 \kappa^{3})g_{1}\cdot g_{2}=\frac{2}{\kappa}(\kappa^{2}f^{2}-D_{\tau}D_{y}f\cdot f)^{2} (3.5b)$

4. Properties of soliton solutions
4.1. One-soliton solution
4.1.1. Smooth soliton
The tau-functions corresponding to the one-soliton solution are given by

$g_{1}=1+ \frac{4(1-\alpha)}{2+\alpha}e^{\xi}+\frac{2-\alpha}{2+\alpha}\frac{1-\alpha}{1+\alpha}e^{2\xi}, (4.1a)$

$g_{2}=1+ \frac{4(1+\alpha)}{2-\alpha}e^{\xi}+\frac{2+\alpha}{2-\alpha}1-\alpha^{e^{2\xi}}1+\alpha, (4.1b)$

with
$\xi=k(y-\tilde{c}\tau-y_{0}) , \tilde{c}=\frac{3\kappa^{4}}{1-\alpha^{2}}, (4.1c)$

where we have put $\xi=\xi_{1},$ $k=k_{1},$ $\alpha=\kappa k_{1}$ and $y_{0}=y_{10}$ for simplicity. We assume
$k>0$ hereafter and the condition $0<\alpha<1$ is imposed to assure the smoothness
of the solution.

The parametric representation of the smooth one-soliton solution follows from
(3.3) and (4.1). It can be written in the form

$u^{2}=\kappa^{3\prime}+\underline{12k\alpha\tilde{c}}$ cosh $\xi+\frac{1}{2}\frac{2+\alpha^{2}}{1-\alpha^{2}}$

$4- \alpha_{\cosh 2\xi}^{2}+\frac{8(2+\alpha^{2})}{4-\alpha^{2}}\cosh\xi+\frac{3(4-\alpha^{2}+3\alpha^{4})}{(1-\alpha^{2})(4-\alpha^{2})}$

$2 \kappa^{3}(\cosh\xi+\frac{1+2\alpha^{2}}{1-\alpha^{2}})^{2}$

$=\overline{\cosh 2\xi+\frac{8(2+\alpha^{2})}{4-\alpha^{2}}\cosh\xi+\frac{3(4-\alpha^{2}+3\alpha^{4})}{(1-\alpha^{2})(4-\alpha^{2})}}$

, (4.2a)

$X \equiv x-ct-x_{0}=\frac{\xi}{\alpha}+\frac{1}{2}\ln(\frac{\tanh^{2}\frac{\xi}{2}-\frac{2}{\alpha}\tanh_{2}^{\xi}+\frac{4-\alpha^{2}}{3\alpha^{2}}}{\tanh_{2}^{2\xi}+\frac{2}{\alpha}\tanh\frac{\xi}{2}+\frac{4-\alpha^{2}}{3\alpha^{2}}}) , (4.2b)$

where
$c= \frac{\tilde{c}}{\kappa}+\kappa^{3}=\frac{\kappa^{3}(4-\alpha^{2})}{1-\alpha^{2}}, (4.2c)$
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X

Figure 1. The profile of smooth solitons with $\kappa=1.$ $\alpha=0.7$ (dashed curve),
$\alpha=0.85$ (dotted curve), $\alpha=0.95$ (solid curve).

is the velocity of the soliton in the $(x, t)$ coordinate system and $x_{0}=y_{0}/\kappa.$

Figure 1 depicts the profile of smooth solitons against the stationary coordinate
$X$ for three distinct values of $\alpha$ with $\kappa=1$ . The one-soliton solution represents

a bright soliton on a constant background $u=\kappa^{3/2}$ whose center position $x_{c}$ is

located at $x_{c}=ct+x_{0}$ . The amplitude of the soliton with respect to the background
field, which we denote by $A$ , is found to be as

$A= \kappa^{3/2}(\frac{2+\alpha^{2}}{\sqrt{(1-\alpha^{2})(4-\alpha^{2})}}-1)$ (4.3)

Eliminating the parameter $\alpha$ from (4.2c) and (4.3), we obtain the amplitude-

velocity relation

$c= \frac{1}{2}[(A+\kappa^{3/2})^{2}+4\kappa^{3}+(A+\kappa^{3/2})\sqrt{(A+\kappa^{3/2})^{2}+8\kappa^{3}}]$ (4.4)

4.1.2. Singular soliton

The singular soliton is obtained from the smooth soliton (4.2) if one replaces the

phase variable $x_{0}$ and $y_{0}$ by $x_{0}+\pi i/\alpha$ and $y_{0}+\pi i/k$ , respectively. In this setting,

$\cosh\xiarrow-\cosh\xi$ and $\tanh(\xi/2)arrow\coth(\xi/2)$ , giving rise to the parametric

representation of $u^{2}$

$2 \kappa^{3}(-\cosh\xi+\frac{1+2\alpha^{2}}{1-\alpha^{2}})^{2}$

$u^{2}=\overline{\cosh 2\xi-\frac{8(2+\alpha^{2})}{4-\alpha^{2}}\cosh\xi+\frac{3(4-\alpha^{2}+3\alpha^{4})}{(1-\alpha^{2})(4-\alpha^{2})}}, (4.5a)$
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X

Figure 2. The profile of singular solitons with $\kappa=1.$ $\alpha=0.1$ (dashed curve),
$\alpha=0.85$ (dotted curve), $\alpha=0.95$ (solid curve).

$X \equiv x-ct-x_{0}=\frac{\xi}{\alpha}+\frac{1}{2}\ln(\frac{\coth_{2}^{2\xi}-\frac{2}{\alpha}\coth_{2}^{\xi}+\frac{4-\alpha^{2}}{3\alpha^{2}}}{\coth_{2}^{2\xi}+\frac{2}{\alpha}\coth_{2}^{\xi}+\frac{4-\alpha^{2}}{3\alpha^{2}}}) (4.5b)$

Figure 2 shows the typical profile of singular solitons for three distinct values
of $\alpha$ with $\kappa=1$ . We can observe that the singularities appear both at the crest
$X=0$ and at $X=\pm X_{0}$ , where $X_{0}$ is a positive constant.

4.1.3. Peakon

It has been shown that the Novikov equation admits no smooth solutions which
vanish at infinity. Under the same boundary condition, however it exhibits a
peaked wave (or peakon) solution of the form

$u=\sqrt{c}e^{-|x-ct-xo|}$ . (4.6)

We can show analytically that the smooth soliton recovers the peakon in the
limit of $\kappaarrow 0$ with the velocity $c$ of the soliton being fixed, which we term the
peakon limit. Here, we provide a numerical evidence for the validity of the limiting
procedure. The passage to the peakon solution is illustrated in figure 3 for four
distinct values of $\kappa$ . We can observe that the profile drawn by the thin solid curve
fits very well with the peakon solution (4.6) with $c=1$ . Figure 4 show the limiting
process of the singular soliton as well. Obviously, the singular soliton recovers the
peakon in the peakon limit.

4.2. Two-soliton solution

The tau-functions $g_{1}$ and $g_{2}$ for the two-soliton solution are given by

$g_{1}=1+2b_{1}e^{\xi_{1}}+2b_{2}e^{\xi_{2}}+(a_{1}b_{1})^{2}e^{2\xi_{1}}+(a_{2}b_{2})^{2}e^{2\xi_{2}}+2vb_{1}b_{2}e^{\xi_{1}+\xi_{2}}+2\delta b_{2}(a_{1}b_{1})^{2}b_{2}e^{2\xi_{1}+\xi_{2}}$
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X

Figure 3. The peakon limit of the smooth soliton with $c=1.$ $\kappa=0.3$ (dashed
curve), $\kappa=0.2$ (dotted curve), $\kappa=0.1$ (bold solid curve), $\kappa=0.01$ (thin solid
curve).

$+2\delta b_{1}(a_{2}b_{2})^{2}e^{\xi_{1}+2\xi_{2}}+\delta^{2}(a_{1}a_{2}b_{1}b_{2})^{2}e^{2\xi_{1}+2\xi_{2}}, (4.7a)$

$g_{2}=1+ \frac{2}{a_{1}^{2}b_{1}}e^{\xi_{1}}+\frac{2}{a_{2}^{2}b_{2}}e^{\xi_{2}}+\frac{1}{(a_{1}b_{1})^{2}}e^{2\xi_{1}}+\frac{1}{(a_{2}b_{2})^{2}}e^{2\xi_{2}}+\frac{2\nu}{(a_{1}a_{2})^{2}b_{1}b_{2}}e^{\xi_{1}+\xi_{2}}$

$+ \frac{2\delta}{(a_{1}a_{2})^{2}b_{1}^{2}b_{2}}e^{2\xi_{1}+\xi_{2}}+\frac{2\delta}{(a_{1}a_{2})^{2}b_{1}b_{2}^{2}}e^{\xi_{1}+2\xi_{2}}+\frac{\delta^{2}}{(a_{1}a_{2}b_{1}b_{2})^{2}}e^{2\xi_{1}+2\xi_{2}},$ $(4.7b)$

where
$\xi_{i}=k_{i}(y-\tilde{c}_{i}\tau-y_{i0}) , \tilde{c}_{i}=\frac{3\kappa^{4}}{1-(\kappa k_{i})^{2}}, (i=1,2) , (4.7c)$

$a_{i}= \sqrt{\frac{1-\frac{(\kappa k.)^{2}}{4}}{1-(\kappa k_{i})^{2}}}, b_{i}=\frac{1-\kappa k_{i}}{1+-\kappa_{2}arrow k}, (i=1,2) , (4.7d)$

$\delta=\frac{(k_{1}-k_{2})^{2}[(k_{1}^{2}-k_{1}k_{2}+k_{2}^{2})\kappa^{2}-3]}{(k_{1}+k_{2})^{2}[(k_{1}^{2}+k_{1}k_{2}+k_{2}^{2})\kappa^{2}-3]},$ $v= \frac{(2k_{1}^{4}-k_{1}^{2}k_{2}^{2}+2k_{2}^{4})\kappa^{2}-6(k_{1}^{2}+k_{2}^{2})}{(k_{1}+k_{2})^{2}[(k_{1}^{2}+k_{1}k_{2}+k_{2}^{2})\kappa^{2}-3]}.$

$(4.7e)$

Figure 5 depicts the time evolution of the two-soliton solution as well as its
limiting profile in the peakon limit. The asymptotic analysis shows that the phase
shifts of solitons are given by

$\triangle_{1}=-\frac{1}{\kappa k_{1}}\ln[\frac{(k_{1}-k_{2})^{2}\{(k_{1}^{2}-k_{1}k_{2}+k_{2}^{2})\kappa^{2}-3\}}{(k_{1}+k_{2})^{2}\{[(k_{1}^{2}+k_{1}k_{2}+k_{2}^{2})\kappa^{2}-3\}}]-\ln[\frac{(1+\kappa_{2}arrow k)(1+\kappa k_{2})}{(1-\frac{\kappa k}{2}Z)(1-\kappa k_{2})}],$

$(4.8a)$

$\Delta_{2}=\frac{1}{\kappa k_{2}}\ln[\frac{(k_{1}-k_{2})^{2}\{(k_{1}^{2}-k_{1}k_{2}+k_{2}^{2})\kappa^{2}-3\}}{(k_{1}+k_{2})^{2}\{[(k_{1}^{2}+k_{1}k_{2}+k_{2}^{2})\kappa^{2}-3\}}]+\ln[\frac{(1+\kappa_{2}arrow k)(1+\kappa k_{1})}{(1-\frac{\kappa k}{2})(1-\kappa k1)}]$

$(4.8b)$
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Figure 4. The peakon limit of the singular soliton with $c=1.$ $\kappa=0.3$ (dashed
curve), $\kappa=0.2$ (dotted curve), $\kappa=0.1$ (bold solid curve), $\kappa=0.01$ (thin solid
curve).

It is interesting that the above formulas coincide formally with those of the
two-soliton solution of the $DP$ equation. In the latter case, the parameter $\kappa^{3}$ is
the coefficient of the linear dispersive term $u_{x}$ . We can see that there exists a
critical curve along which $\triangle_{1}=\Delta_{2}$ and beyond which $\triangle_{1}<\triangle_{2}$ , implying that
the phase shift of the small soliton is greater than that of the large soliton. Such
a phenomenon has never been observed in the interaction process of solitons for
the Korteweg-de Vries and SWW equations.

In the peakon limit, formulas (4.8a) and (4.9b) reduce respectively to

$\triangle_{1}=\ln[\frac{c_{1}(c_{1}+c_{2})}{(c_{1}-c_{2})^{2}}], (4.9a)$

$\triangle_{2}=\ln[\frac{(c_{1}-c_{2})^{2}}{c_{2}(c_{1}+c_{2})}] (4.9b)$

This result reproduces the formulas for the phase shift of the two-pekaon solu-
tion of the Novikov equation. We recall that they coincide formally with the the
corresponding formulas for the two-peakon solution of the $DP$ equation.

4.3. $N$ -soliton $\mathcal{S}olution$

The asymptotic analysis of the $N$-soliton solution reveals that the phase shift of
the ithe soliton is given by

$\triangle_{i}=\frac{1}{\kappa k_{i}}\sum_{j=1}^{i-1}\ln[\frac{(k_{i}-k_{j})^{2}\{(k_{i}^{2}-k_{i}k_{j}+k_{j}^{2})\kappa^{2}-3\}}{(k_{i}+k_{j})^{2}\{[(k_{i}^{2}+k_{i}k_{j}+k_{j}^{2})\kappa^{2}-3\}}]$
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Figure 5. The profile of the smooth two-soliton solution $(\kappa=0.5$ , bold solid

curve) and its peakon limit $(\kappa=0.01, thin$ solid curve) with $c_{1}=2,$ $c_{2}=1$ and
$y_{10}=y_{20}=0.$

$- \frac{1}{\kappa k_{i}}\sum_{j=i+1}^{N}\ln[\frac{(k_{i}-k_{j})^{2}\{(k_{i}^{2}-k_{i}k_{j}+k_{j}^{2})\kappa^{2}-3\}}{(k_{i}+k_{j})^{2}\{(k_{i}^{2}+k_{i}k_{j}+k_{j}^{2})\kappa^{2}-3\}}]+\sum_{j=1}^{i-1}\ln[\frac{(1+\underline{\kappa}2k\lrcorner)(1+\kappa k_{i})}{(1^{\kappa_{2}}-arrow^{k})(1-\kappa k_{i})}]$

$- \sum_{j=i+1}^{N}\ln[\frac{(1+\kappa_{2}arrow^{k})(1+\kappa k_{i})}{(1-\kappa_{2}arrow^{k})(1-\kappa k_{i})}], (i=1,2, \ldots, N)$. (4.10)

The peakon limit of (4.10) can be carried out straightforwardly to give the
formulas

$\Delta_{i}=\sum_{j=1}^{i-1}\ln[\frac{(c_{\dot{\eta}}-c_{j})^{2}}{c_{i}(c_{\dot{\eta}}+c_{j})}]-\sum_{j=i+1}^{N}\ln[\frac{(c_{i}-c_{j})^{2}}{c_{i}(c_{i}+c_{j})}],$ $(i=1,2, \ldots, N)$ , (4.11)

which reproduce the corresponding formulae for the $N$-peakon solution of the

Novikov equation and they coincide formally with those of the $DP$ equation.

5. Summary

$\bullet$ We have constructed the smooth and singular multisoliton solutions of the

Novikov equation.
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$\bullet$ The structure of the tau-functions associated with the $N$-soliton solution is
essentially the same as that of a model equation for shallow-water waves introduced
Hirota and Satsuma.
$\bullet$ The peakon limit of both smooth and singular solitons recovers the peakon when
the background field tends to zero.
$\bullet$ The formula for the phase shift coincides formally with that of the $N$-sohton
solution of the $DP$ equation.
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