ON SOME INEQUALITIES WITH MATRIX MEANS

DINH TRUNG HOA, DU THI HOA BINH, AND HO MINH TOAN

ABSTRACT. Let $0 < m \leq A, B \leq M$ and σ, τ two arbitrary means between harmonic and arithmetic means. Then for every positive unital linear map Φ,

$\Phi(A\sigma B) \leq K(h)\Phi(A\tau B),$

$\Phi(A\sigma B) \leq K(h)\Phi(A)\tau\Phi(B),$

and

$\Phi(A)\sigma\Phi(B) \leq K(h)\Phi(A\tau B),$

$\Phi(A)\sigma\Phi(B) \leq K(h)\Phi(A)\tau\Phi(B),$

where $K(h) = \frac{(h+1)^2}{4h}$ with $h = \frac{M}{m}$ is the Kantorovich constant.

1. INTRODUCTION

The axiomatic theory for connections and means for pairs of positive matrices have been studied by Kybo and Ando [4]. A binary operation σ define on the set of positive definite matrices is called a connection if

(i) $A \leq C, B \leq D$ implies $A\sigma B \leq B\sigma D$;

(ii) $C(A\sigma B)C \leq (CAC)\sigma(CBC)$;

(iii) $A_n \downarrow A$ and $B_n \downarrow B$ imply $A_n\sigma B_n \downarrow A\sigma B$.

If $I\sigma I = I$, then σ is called a mean.

Many authors study matrix inequalities containing means and linear unital positive maps on matrix algebras. Such inequalities are interesting by themselves and have many applications in quantum information theory.

In [2], Lin proved the following Theorem.

Theorem 1.1 ([2]). Let $0 < m \leq A, B \leq M$. Then for every positive unital linear map Φ,

(1) $\Phi^2(A\nabla B) \leq K^2(h)\Phi^2(A\# B),$

and

(2) $\Phi^2(A\nabla B) \leq K^2(h)(\Phi(A)\#\Phi(B))^2,$

where $K(h) = \frac{(h+1)^2}{4h}$ with $h = \frac{M}{m}$ is the Kantorovich constant.

2000 Mathematics Subject Classification. 26D15.

Key words and phrases. matrix means, inequalities.
It is well-known that the arithmetic mean ∇ is the biggest among symmetric means (see [4]). A natural question is that is the theorem above still true if we replace the biggest means by a smaller one? In this note, we consider such inequalities for two different means with Kantorovich constant. In applications, we give an analogous result of Uchiyama and Yamazaki in [7]. This note is based on preprint [1].

2. MAIN RESULTS

Lemma 2.1. Let $0 < m \leq A, B \leq M$ and σ, τ two arbitrary means between harmonic and arithmetic means. Then for every positive unital linear map Φ,

\[
\Phi(A\sigma B) + Mm\Phi^{-1}(A\tau B) \leq M + m, \tag{3}
\]
and

\[
\Phi(A)\sigma\Phi(B) + Mm\Phi^{-1}(A\tau B) \leq M + m. \tag{4}
\]

Proof. It is easy to see that

\[(M - A)(m - A)A^{-1} \leq 0,
\]
or
\[mMA^{-1} + A \leq M + m.\]

Consequently,
\[\Phi(A) + mM\Phi(A^{-1}) \leq M + m.\]

Similarly,
\[\Phi(B) + mM\Phi(B^{-1}) \leq M + m.\]

Summing up two above inequalities, we get
\[\Phi(A \nabla B) + mM\Phi((A\nabla B)^{-1}) \leq M + m.\]

Besides, from the general theory of matrix means we know that $\nabla \geq \sigma$ and $\tau \geq !$. Hence,
\[
\Phi(A\sigma B) + Mm\Phi^{-1}(A\tau B) \leq \Phi(A\sigma B) + Mm\Phi((A\tau B)^{-1}) \\
\leq \Phi(A \nabla B) + Mm\Phi((A\nabla B)^{-1}) \\
\leq M + m.
\]

By a similar argument, we can get inequality (4) with using the fact that
\[\Phi(A)\sigma\Phi(B) \leq \Phi(A) \nabla \Phi(B) = \Phi(A \nabla B).\]

\[\square\]

The following Proposition is a generalization of Lin’s result mentioned in Introduction.
ON SOME INEQUALITIES WITH MATRIX MEANS

Proposition 2.1. Let $0 < m \leq A, B \leq M$ and σ, τ two arbitrary means between harmonic and arithmetic means. Then for every positive unital linear map Φ,

\begin{align*}
\Phi^2(\sigma A B) &\leq K^2(h)\Phi^2(\tau A B), \\
\Phi^2(\sigma A B) &\leq K^2(h) (\Phi(A)\tau \Phi(B))^2, \\
(\Phi(A)\sigma \Phi(B))^2 &\leq K^2(h)\Phi^2(\tau A B),
\end{align*}

and

\begin{align*}
(\Phi(A)\sigma \Phi(B))^2 &\leq K^2(h)(\Phi(A)\tau \Phi(B))^2,
\end{align*}

where $K(h) = \frac{(h+1)^2}{4h}$ with $h = \frac{M}{m}$ is the Kantorovich constant.

Proof. We prove (2.1). The inequality (2.1) is equivalent to the following

$$
\Phi^{-1}(\tau A B)\Phi^2(\sigma A B)\Phi^{-1}(\tau A B) \leq K^2(h),
$$

or

$$
\|\Phi(\sigma A B)\Phi^{-1}(\tau A B)\| \leq K(h).
$$

On the other hand, it is well known that [5, Theorem 1] for $A, B \geq 0$,

$$
\|AB\| \leq \frac{1}{4}\|A + B\|^2.
$$

So, it is necessary to prove that

$$
\frac{1}{4mM}\|\Phi(\sigma A B) + mM\Phi^{-1}(\tau A B)\|^2 \leq \frac{(M + m)^2}{4Mm},
$$

or,

$$
\|\Phi(\sigma A B) + mM\Phi^{-1}(\tau A B)\| \leq M + m.
$$

The last inequality follows from Lemma 2.1.

Remain inequalities in Proposition can be proved analogously. □

Remark 1. As we mentioned in the proof of Proposition 2.1 that for any positive matrices A, B, $\Phi(\sigma A B) \leq \Phi(\nabla A B)$. From that, it can rise a wrong intuition that the proof of Proposition 2.1 can be obtained easily from Theorem 1.1. Unfortunately, the last inequality could not be squared as it was shown in [2, Proposition 1.2].

Theorem 2.1. Let $0 < m \leq A, B \leq M$ and σ, τ are two arbitrary symmetric means. Then for every positive unital linear map Φ,

$$
\Phi(\sigma A B) \leq K(h)\Phi(\tau A B), \\
\Phi(\sigma A B) \leq K(h) (\Phi(A)\tau \Phi(B)), \\
\Phi(A)\sigma \Phi(B) \leq K(h)\Phi(\tau A B),
$$

and

$$
\Phi(A)\sigma \Phi(B) \leq K(h)(\Phi(A)\tau \Phi(B)),
$$

where $K(h) = \frac{(h+1)^2}{4h}$ with $h = \frac{M}{m}$ is the Kantorovich constant.
Proof. The proof follows from Proposition 2.1 and the fact that the function $f(t) = t^{1/2}$ is operator monotone on $[0, \infty)$.

Corollary 2.1. Let f, g be symmetric operator monotone functions on $[0, \infty)$. Then for any pair $0 < m < M$,

$$
\max\{\frac{f(t)}{g(t)}, \frac{f(t)}{g(t)}\} \leq K(h) = \frac{(m + M)^2}{4mM}, \quad t \in [m, M].
$$

Proof. It is necessary to apply above Theorem for the symmetric matrix means σ and δ corresponding to the functions f and g, and definition of matrix means via its representation functions.

Inequality (9) is interesting by itself, and the authors do not know an elementary proof even in the case when $f(t) = \sqrt{t}$.

As an application, now we give a similar result as in [7]. Uchiyama and Yamazaki showed that for an operator monotone function f on $[0, \infty)$ if $f(\lambda B + I)^{-1}f(\lambda A + I) \leq I$ for all sufficiently small $\lambda > 0$, then $f(\lambda A + I) \leq f(\lambda B + I)$ and $A \leq B$. By applying Theorem 2.1 we get a similar result for any symmetric means.

Corollary 2.2. Let f be operator monotone function on $[0, \infty)$ and σ an arbitrary mean between harmonic and arithmetic ones. If for a given pair of positive invertible matrices A, B,

$$
f(\lambda B + I)^{-1}\sigma f(\lambda A + I) \leq K
$$

for all sufficiently small $\lambda > 0$ (where K is Kantorovich constant), then $f(\lambda A + I) \leq f(\lambda B + I)$ and $A \leq B$.

References

ON SOME INEQUALITIES WITH MATRIX MEANS

DUY TAN UNIVERSITY, K7/25 QUANG TRUNG, DANANG, VIETNAM
E-mail address: trunghoa.math@gmail.com

HA TAY COLLEGE OF PEDAGOGY, HA NOI, VIETNAM
E-mail address: hoabinhcdsp@gmail.com

INSTITUTE OF MATHEMATICS
E-mail address: hmtoan@math.ac.vn