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ABSTRACT. Let $0<m\leq A,$ $B\leq M$ and $\sigma,$ $\tau$ two arbitrary means
between harmonic and arithmetic means. Then for every positive
unital linear map $\Phi,$

$\Phi(A\sigma B)\leq K(h)\Phi(A\tau B)$ ,
$\Phi(A\sigma B)\leq K(h)(\Phi(A)\tau\Phi(B))$ ,

$\Phi(A)\sigma\Phi(B)\leq K(h)\Phi(A\tau B)$ ,
and

$\Phi(A)\sigma\Phi(B)\leq K(h)\Phi(A)\tau\Phi(B)$ ,

where $K(h)= \frac{(h+1)^{2}}{4h}$ with $h= \frac{M}{m}$ is the Kantorovich constant.

1. INTRODUCTION

The axiomatic theory for connections and means for pairs of positive
matrices have been studied by Kybo and Ando [4]. $A$ binary operation
$\sigma$ define on the set of positive definite matrices is called a conncction
if

(i) $A\leq C,$ $B\leq D$ implies $A\sigma B\leq B\sigma D$ ;
(ii) $C(A\sigma B)C\leq(CAC)\sigma(CBC)$ ;
(iii) $A_{n}\downarrow A$ and $B_{n}\downarrow B$ imply $A_{n}\sigma B_{n}\downarrow A\sigma B.$

If $I\sigma I=I$ , then $\sigma$ is called a mean.
Many authors study matrix inequalities containing means and linear

unital positive maps on matrix algebras. Such inequalities are interest-
ing by themselves and have many applications in quantum information
theory.

In [2], Lin proved the following Theorem.

Theorem 1.1 ([2]). Let $0<m\leq A,$ $B\leq M$ . Then for every positive
unital linear map $\Phi,$

(1) $\Phi^{2}(A\nabla B)\leq K^{2}(h)\Phi^{2}(A\# B)$ ,

and

(2) $\Phi^{2}(A\nabla B)\leq K^{2}(h)(\Phi(A)\#\Phi(B))^{2},$

where $K(h)= \frac{(h+1)^{2}}{4h}$ with $h= \frac{M}{m}$ is the Kantorovich constant.
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It is well-known that the arithmetic mean $\nabla$ is the biggest among
symmetric means (see [4]). $A$ natural question is that is the theorem
above still true if we replace the biggest means by a smaller one? In
this note, we consider such inequalities for two different means with
Kantorovich constant. In applications, we give an analogous result of
Uchiyama and Yamazaki in [7].

This note is based on preprint [1].

2. MAIN RESULTS

Lemma 2.1. Let $0<m\leq A,$ $B\leq M$ and $\sigma,$ $\tau$ two arbitrary means
between harmonic and arithmetic means. Then for evew positive unital
linear map $\Phi,$

(3) $\Phi(A\sigma B)+Mm\Phi^{-1}(A\tau B)\leq M+m,$

and

(4) $\Phi(A)\sigma\Phi(B)+Mm\Phi^{-1}(A\tau B)\leq M+m.$

Proof. It is easy to see that

$(M-A)(m-A)A^{-1}\leq 0,$

or
$mMA^{-1}+A\leq M+m.$

Consequently,
$\Phi(A)+mM\Phi(A^{-1})\leq M+m.$

Similarly,
$\Phi(B)+mM\Phi(B^{-1})\leq M+m.$

Summing up two above inequalities, we get

$\Phi(A_{\nabla}B)+mM\Phi((A!B)^{-1})\leq M+m.$

Besides, from the general theory of matrix means we know that $\nabla\geq\sigma$

and $\tau\geq!$ . Hence,

$\Phi(A\sigma B)+mM\Phi^{-1}(A\tau B)\leq\Phi(A\sigma B)+mM\Phi((A\tau B)^{-1})$

$\leq\Phi(A\nabla B)+mM\Phi((A!B)^{-1})$

$\leq M+m.$

By a similar argument, we can get inequality (4) with using the fact
that

$\Phi(A)\sigma\Phi(B)\leq\Phi(A)_{\nabla}\Phi(B)=\Phi(A_{\nabla}B)$ .
$\square$

The following Proposition is a generalization of Lin’s result men-
tioned in Introduction.
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Proposition 2.1. Let $0<m\leq A,$ $B\leq M$ and $\sigma,$ $\tau$ two arbitrary
means between harmonic and arithmetic means. Then for every positive
unital linear map $\Phi,$

(5) $\Phi^{2}(A\sigma B)\leq K^{2}(h)\Phi^{2}(A\tau B)$ ,

(6) $\Phi^{2}(A\sigma B)\leq K^{2}(h)(\Phi(A)\tau\Phi(B))^{2}$

(7) $(\Phi(A)\sigma\Phi(B))^{2}\leq K^{2}(h)\Phi^{2}(A\tau B)$ ,
and
(8) $(\Phi(A)\sigma\Phi(B))^{2}\leq K^{2}(h)(\Phi(A)\tau\Phi(B))^{2},$

where $K(h)= \frac{(h+1)^{2}}{4h}$ with $h= \frac{M}{m}$ is the Kantorovich constant.

Proof. We prove (2.1). The inequality (2.1) is equivalent to the follow-
ing

$\Phi^{-1}(A\tau B)\Phi^{2}(A\sigma B)\Phi^{-1}(A\tau B)\leq K^{2}(h)$ ,
or

$||\Phi(A\sigma B)\Phi^{-1}(A\tau B)||\leq K(h)$ .
On the other hand, it is well known that [5, Theorem 1] for $A,$ $B\geq 0,$

$||AB|| \leq\frac{1}{4}||A+B||^{2}$

So, it is necessary to prove that

$\frac{1}{4mM}||\Phi(A\sigma B)+mM\Phi^{-1}(A\tau B)||^{2}\leq\frac{(M+m)^{2}}{4Mm},$

or,
$||\Phi(A\sigma B)+mM\Phi^{-1}(A\tau B)||\leq M+m.$

The last inequality follows from Lemma 2.1.
Remain inequalities in Proposition can be proved analogously. $\square$

Remark 1. As we mentioned in the proof of Proposition 2.1 that for
any positive matrices $A,$ $B,$ $\Phi(A\sigma B)\leq\Phi(A\nabla B)$ . From that, it can
rise a wrong intuition that the proof of Proposition 2.1 can be obtained
easily from Theorem 1.1. Unfortunately, the last inequality could not
be squared as it was shown in [2, Proposition 1.2].

Theorem 2.1. Let $0<m\leq A,$ $B\leq M$ and $\sigma,$ $\tau$ are two arbitrary
symmetric means. Then for every positive unital linear map $\Phi,$

$\Phi(A\sigma B)\leq K(h)\Phi(A\tau B)$ ,
$\Phi(A\sigma B)\leq K(h)(\Phi(A)\tau\Phi(B))$ ,

$\Phi(A)\sigma\Phi(B)\leq K(h)\Phi(A\tau B)$ ,
and

$\Phi(A)\sigma\Phi(B)\leq K(h)\Phi(A)\tau\Phi(B)$ ,

where $K(h)= \frac{(h+1)^{2}}{4h}$ with $h= \frac{M}{m}$ is the Kantorovich constant.
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Proof. The proof follows from Proposition 2.1 and the fact that the
function $f(t)=t^{1/2}$ is operator monotone on $[0, \infty)$ . $\square$

Corrolary 2.1. Let $f,$ $g$ be symmetric operator monotone functions on
$[0, \infty)$ . Then for any pair $0<m<M,$

(9) $\max\{\frac{f(t)}{g(t)}, \frac{f(t)}{g(t)}\}\leq K(h)=\frac{(m+M)^{2}}{4mM}, t\in[m, M].$

Proof. It is necessary to apply above Theorem for the symmetric matrix
means $\sigma$ and $\delta$ corresponding to the functions $f$ and $g$ , and definition
of matrix means via it representation functions. $\square$

Inequality (9) is interesting by itself, and the authors do not know
an elementary proof even in the case when $f(t)=\sqrt{t}.$

As an application, now we give a similar result as in [7]. Uchiyama
and Yamazaki showed that for an operator monotone function $f$ on
$[0, \infty)$ if $f(\lambda B+I)^{-1}\# f(\lambda A+I)\leq I$ for all sufficiently small $\lambda>0,$

then $f(\lambda A+I)\leq f(\lambda B+I)$ and $A\leq B$ . By applying Theorem 2.1 we
get a similar result for any symmetric means.

Corrolary 2.2. Let $f$ be operator monotone function on $[0, \infty)$ and
$\sigma$ an arbitrary mean between harmonic and arithmetic ones. If for a
given pair of positive invertible matrices $A,$ $B,$

$f(\lambda B+I)^{-1}\sigma f(\lambda A+I)\leq K$

for all sufficiently small $\lambda>0$ (where $K$ is Kantorovich constant), then
$f(\lambda A+I)\leq f(\lambda B+I)$ and $A\leq B.$
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