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1 Introduction
$A$ (bounded linear) operator $A$ acting on a Hilbert space $H$ is said to be

positive, denoted by $A\geq 0$ , if $(Av, v)\geq 0$ for all $v\in H$ . The definition of
positivity induces the order $A\geq B$ for self-adjoint operators $A$ and $B$ on $H.$

A real-valued function $f$ on $(0, \infty)$ is operator monotone, if $0\leq f(A)\leq f(B)$

for operators $A$ and $B$ on $H$ such that $0\leq A\leq B$ . As a typical example,
$x\mapsto x^{p}(0\leq p\leq 1)$ is an operator monotone function, which is well-known as
L\"owner-Heinz theorem ($LH$).

T. Furuta ([9], [10]) presented very elementary proofs of operator mono-
tonicity of some functions by using only ($LH$) repeatedly. Motivated his works,
we try to show somewhat elementary proofs of operator monotonicity of certain
functions with the auxiliary facts $(I)-(III)$ stated afterward.

Recently, A. Besenyei and D. Petz [2] showed the following two theorems by
L\"owner’s theory:

Theorem 1.1 (cf. [2], [14], [16]). The function

$s_{p}(x)=( \frac{p(x-1)}{x^{p}-1})^{\ulcorner-\overline{p}}1,$ $p\neq 0,1$ $(s_{0}(x)(= \lim_{parrow 0}s_{p}(x))=\frac{x-1}{\log x},$ $s_{1}(x)= \frac{1}{e}x^{\frac{x}{x-1}})$

is operator monotone if $-2\leq p\leq 2.$

Theorem 1.2 (cf. [2], [4], [6], [7], [8], [11], [12], [14], [16]). The function

$a_{p}(x)=( \frac{1+x^{p}}{2})$

う

, $P\neq 0$ $(a_{0}(x)=x^{1}z)$

is operator monotone if (and only if) $-1\leq p\leq 1.$

Theorem 1.2 is already known well ([4], [6], [7], [8], [11], [12], [16]). We shall
give a simple proof of this theorem by using ($LH$) and some elementary facts.

Now define

$k_{p}(x)= \frac{p-1}{p}\cdot\frac{x^{p}-1}{x^{p-1}-1},$ $p \neq 0,1(k_{0}(x)=\frac{x\log x}{x-1},$ $k_{1}(x)= \frac{x-1}{\log x})$ .

Using an integral representation of $k_{p}(x)$ , F. Hiai and H. Kosaki [12], by
L\"owner’s theory, showed:
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Theorem 1.3 ([8], [12], [9], [4], [6], [14]). $k_{p}(x)$ is operator monotone if $-1\leq$

$p\leq 2.$

In [8] by J.I. Fujii and Y. Seo, this fact had been shown essentially in virtue
of Bendat-Sherman theorem. This fact was also shown in [9] by T. Furuta with
a very elementary method, and in [4] by J.I. Fujii ([6] by J.I. Fujii-M. Fujii)
with the notion of the integral mean of operator monotone functions.

In this note, starting from the proof of Theorem 1.2, we give somewhat
elementary proofs of Theorems 1.1, 1.3 and some other related results. As an
application of Theorem 1.1, we give a proof of Petz-Hasegawa theorem [17], an el-
ementary proof of which was presented by T. Furuta [10]. We show some further
extensions and applications of those results. Making use of L\"owner’s integral
representation of an operator monotone function $f$ on $(0, \infty)$ , we, furthermore,
show alternative proofs of operator monotonicity of the function $x\mapsto(f(x^{p}))^{\frac{1}{p}}$

for $0<p\leq 1$ ([1],[6],[18]) and that of the function $x \mapsto\frac{x-a}{f(x)-f(a)}$ for $a\geq 0$ , that
is, the (modified) Bendat-Sherman theorem ([16], [8], [19]).

We assume that all operator monotone functions $f$ are defined on $(0, \infty)$ and
strictly positive, and $f(0)= \lim_{xarrow 0}f(x)$ if necessary.

2 Preliminaries
By Kub$0$-Ando theory [15], an operator mean $\sigma$ is defined as a binary relation

of positive operators, satisfying the following properties in common:

(monotonicity) $A\leq C,$ $B\leq D\Rightarrow A\sigma B\leq C\sigma D,$

(transformer inequality) $C(A\sigma B)C\leq(CAC)\sigma(CBC)$ ,
(normality) $A\sigma A=A,$

(strong operator semi-continuity) $A_{n}\downarrow A,$ $B_{n}\downarrow B\Rightarrow A_{n}\sigma B_{n}\downarrow A\sigma B.$

As the basic operator means, we define: For $A,$ $B\geq 0$

arithmetic mean: $A\nabla B=(A+B)/2,$

harmonic mean: $A$ ! $B=\{(A^{-1}+B^{-1})/2\}^{-1}$ and

geometric mean: $A\# B=A^{\frac{1}{2}}(A^{-1}zBA^{1}-z)^{\frac{1}{2}}A^{\frac{1}{2}}.$

Sometimes for the definition of an operator mean we must assume operators
to be invertible, say, for harmonic or geometric mean. Without any assumption
for invertibility every mean is well-defined as the (strong operator) limits of
$(A+\epsilon I)\sigma(B+\epsilon I)$ as $\epsilon\downarrow 0$ instead of $A\sigma B.$ (I is the identity operator.) For
simplicity of discussions, from now on we assume that all positive operators are
invertible.

Every operator mean $\sigma$ corresponds a unique operator monotone function,
that is, its representing function $f_{\sigma}$ which is defined by $f_{\sigma}(x)=1\sigma x$ . Conversely,
if $f$ is an operator monotone function with $f(1)=1$ , then the definition of the
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operator mean corresponding to $f$ is given by

$A\sigma B=A^{1}\varpi f(A^{-\eta}1BA^{-z}1) A^{ f}1$

for positive invertible operators $A$ and $B.$

For our discussion, we use the following basic facts:
(I) For an operator mean $\sigma$ and for two operator monotone functions $g$ and

$h$ , if we define $g\sigma h$ by

$(g \sigma h)(x)=g(x)f_{\sigma}(\frac{h(x)}{g(x)})$ ,

then $g\sigma h$ is operator monotone.
(II) For a strictly positive function $f$ on $(0, \infty)$ , define $f^{o}(x):=xf(1/x)$

(transpose), $f^{*}(x):=1/f(1/x)$ (adjoint) and $f^{\perp}(x);=x/f(x)$ (dual), then
the four functions $f,$ $f^{o},$ $f^{*},$ $f^{\perp}$ are equivalent to one another with respect to
operator monotonicity $([15], [13])$ .

(III) For $a$ (continuous) path $\sigma_{t}(t\in[0,1])$ of operator means, its integral
mean $\tilde{\sigma}$ is defined [4] ([6]) for positive operators $A$ and $B$ by

$A \tilde{\sigma}B=\int_{0}^{1}A\sigma_{t}Bdt.$

Correspondingly, for a path $f_{t}$ of operator monotone functions, its integral mean
$\tilde{f}$ can be defined by

$\tilde{f}(x)=\int_{0}^{1}f_{t}(x)dt,$

which is an operator monotone function.

3 Main results
To prove Theorem 1.2, we use the following fact: For integers $m,$ $n,$ $q,$ $r$ with

$1\leq m\leq n,$ $n=mq+r,$ $0\leq r\leq m-1$ , and any $i=1,2,$ $\ldots,$ $q,$

(3.1) $(x^{\frac{m}{n}})^{i}(1+x^{\frac{m}{n}})^{\frac{r}{m}}=(1+x^{\frac{m}{n}})^{\frac{r}{m}}\#_{\frac{i}{q}X^{n}}^{L_{-}^{m}}(1+x^{\frac{m}{n}})^{\frac{r}{m}}$

holds. Now we show a proof of Theorem 1.2, borrowing Furuta’s method, or
applying the theorem ($LH$) repeatedly (say, in [9], [10]):

Proof of Theorem 1.2. It suffices to show the proof when $p$ is rational, $p\neq$

$0,1,$ $-1$ . First we assume that $0<p<1$ , so put $p= \frac{m}{n},$ $m,$ $n$ are integers with
$(m, n)=1,1\leq m<n$ . Then $n=qm+r$ for some $1\leq r\leq m-1$ , and

$a_{p}(x)=( \frac{1+x^{\frac{m}{n}}}{2})^{\frac{n}{m}}=(\frac{1}{2})^{\frac{n}{m}}(1+x^{\frac{m}{n}})^{q}(1+x^{\frac{m}{n}})^{\frac{r}{m}}=(\frac{1}{2})^{\frac{n}{m}}\sum_{i=0}^{q}{}_{q}C_{i}\phi_{i}(x)$ .
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Here $\phi_{i}(x)=x^{\frac{im}{n}}(1+x^{\frac{m}{n}})^{\frac{r}{m}}$ . The notations ${}_{q}C_{i}$ for $i=0,1,$ $\ldots,$ $q$ denote the
binomial coefficients, i.e., ${}_{q}C_{i}= \frac{q!}{i!(q-i)!}.$

First note that $\phi_{0}(x)=(1+x^{\frac{m}{n}})^{\frac{r}{m}}$ is, clearly, operator monotone (by ($LH$)).
Next for the last term $\phi_{q}(x)=x^{L^{\underline{m}}}n(1+x^{\frac{m}{n}})^{\frac{r}{m}}$ , taking its transpose $\phi_{\mathring{q}}(x)$ , we
have

$\phi_{q}^{o-1-L^{\mathfrak{m}}}(x)=x\phi_{q}(x)=x\cdot X^{n^{-}}(1+x^{-\frac{m}{n}})^{f}=(1+x^{\frac{m}{n}})^{\frac{r}{m}}=\phi_{0}(x)$ .

Hence $\phi_{q}^{o}(x)$ , and $\phi_{q}(x)$ are both operator monotone by (II) and ($LH$). Now
recall (3.1) stated before. For the general i-th term of the sum, we see:

$\phi_{i}(x)=\phi_{0}(x)\#_{\frac{i}{q}}\phi_{q}(x)$ .

Hence all of $\phi_{i}(x)$ are operator monotone, so that the $pro$of for $0<p<1$ is
completed.

For $-1<p<0$ , notice that

$a_{p}^{*}(x)=( \frac{1+x^{-p}}{2})^{-\frac{1}{p}}=a_{-p}(x)$ .

Hence we see that $a_{p}^{*}$ , or, equivalently, $a_{p}$ is operator monotone.
A property of an operator monotone function on $(0, \infty)$ is concavity [13] ([15]).

If $p>1$ then we can see $a_{p}"(x)>0$ , so that $a_{p}(x)$ is not concave, which implies
that the function is not operator monotone. If $p<-1$ then since $a_{p}^{*}(x)=a_{-p}(x)$

is not operator monotone, so that $a_{p}(x)$ is not operator monotone. $\square$

As a slight extension of Theorem 1.2, we can easily see the following:

Lemma 3.1 (cf. [16], [14]). Let $f_{1},$
$\ldots,$

$f_{n}$ be operator monotone. Then $( \sum_{i=1}^{n}f_{i}^{p})^{\frac{1}{p}}$

is operator monotone $for-1\leq p\leq 1$ . In particular, $( \sum_{i=1}^{n}(\alpha_{i}+\beta_{i}x)^{p})^{\frac{1}{p}}(\alpha_{i},$
$\beta_{i}\geq$

$0)$ is opemtor monotone.

Theorem 3.2 ([6], [4]). $For-1\leq p\leq 1,0\leq s\leq 1$ , the function
(3.2)

$u_{p,s}(x)= \frac{p}{p+s}.\frac{x^{p+s}-1}{x^{p}-1},$ $p\neq 0,$ $-s(u_{0,s}(x)= \frac{x^{s}-1}{\log x^{s}},$ $u_{-s,s}(x)= \frac{\log x^{-s}}{x^{-s}-1})$

is operator monotone.

Corollary 3.3 (cf. [9]). $For-1\leq p\leq 1$ , the function

$u_{p}(x)= \frac{p(x-1)}{x^{p}-1}, p\neq 0(u_{0}(x)=\frac{x-1}{\log x})$

is operator monotone.

Applying Theorem 3.2, we show:
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Proof of Theorem 1.3. For $0\leq p\leq 2$ , replace $p$ by $p-1$ in (3.2) of Theorem
3.2 and further put $s=1$ . Then we obtain $g_{p}(x)$ , so that $g_{p}(x)$ is operator
monotone. For-l $\leq p<0$ , put $p=-q$ , then $0<q\leq 1$ , and

$g_{p}(x)= \frac{-q-1}{-q}\cdot\frac{x^{-q}-1}{x^{-q-1}-1}=\frac{q+1}{q}\cdot\frac{x(x^{q}-1)}{x^{q+1}-1}.$

Hence
$g_{p}^{\perp}(x)= \frac{x}{g_{p}(x)}=\frac{q}{q+1}\cdot\frac{x^{q+1}-1}{x^{q}-1}.$

By the previous paragraph (the proof for $0\leq p\leq 2$), we then see that $g_{p}^{\perp}(x)$ ,
and hence $g_{p}(x)$ are operator monotone. $\square$

Using the above lemma, we also show:

Proof of Theorem 1.1. We may consider the case for $p\neq 1$ . We can represent
$f_{p}(x)$ as follows by using the integral:

$f_{p}(x)=[ \int_{0}^{1}(1-t+tx)^{p-1}dt]^{\frac{1}{p-1}}$

First, we consider the case for $0\leq p\leq 2$ , or $-1\leq q:=p-1\leq 1,$ $(q\neq 0)$ . Let

$I(x)= \int_{0}^{1}(1-t+tx)^{p-1}dt=\int_{0}^{1}(1-t+tx)^{q}dt.$

Then as its approximate sum, we have

$\Sigma_{n}(x) :=\sum_{i=1}^{n}(1-t_{i}+t_{i}x)^{q}\triangle t_{i}$

$(0=t_{0}<t_{1}< \ldots<t_{n-1}<t_{n}=1, \Delta t_{i}=t_{i}-t_{i-1}<\frac{2}{n})$ .

$\mathbb{R}om$ Lemma 3.1, $\{\Sigma_{n}(x)\}^{\frac{1}{q}}$ is operator monotone. Therefore $f_{p}(x)=I(x)^{\frac{1}{q}},$

as the limit of $\{\Sigma_{n}(x)\}^{\frac{1}{q}}$ , is operator monotone.
Second, for-2 $\leq p\leq 0$ , we put $q=-p$, so that $0\leq q\leq 2$ . (We may assume

that $p\neq-1(q\neq 1).)$ Then note that $( \frac{q(x-1)}{x^{g}-1})^{\frac{1}{1-q}}$ is operator monotone from
the previous argument. We now consider the following two cases:

(i) The case $0<q<1(-1<p<0)$ : We have

$f_{p}(x)=f_{-q}(x)=( \frac{-q(x-1)}{x^{-q}-1})^{\frac{1}{1+q}}=(\frac{q(x-1)x^{q}}{x^{q}-1})^{\frac{1}{1+q}}=(\frac{q(x-1)}{x^{q}-1})^{\frac{1}{1-q}}\#_{\#_{q}^{2X^{2}}}^{1}.$

Hence $f_{p}(x)$ is operator monotone.
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(ii) The case $1<q\leq 2(-2\leq p<-1)$ : We may show that the adjoint
$f_{p}^{*}(x)=f_{p}(x^{-1})^{-1}$ of $f_{p}(x)$ is operator monotone. We see:

$f_{p}^{*}(x)=f_{-q}^{*}(x)=( \frac{-q(x^{-1}-1)}{x^{q}-1})^{-\frac{1}{1+q}}=(\frac{q(x-1)}{(x^{q}-1)x})^{-\frac{1}{1+q}}=(\frac{q(x-1)}{x^{q}-1})^{\frac{1}{1-q}}\neq_{\frac{2}{1+q}X^{5}}^{1}.$

Hence $f_{p}^{*}(x)$ is operator monotone. The proof is completed. $\square$

As an application of Theorem 1.1, we show an alternative proof of the fol-
lowing result due to D. Petz and H. Hasegawa [17] ([10]):

Theorem 3.4. $For-1\leq p\leq 2$

$h_{p}(x)=p(1-p) \cdot\frac{(x-1)^{2}}{(x^{p}-1)(x^{1-p}-1)},$ $p \neq 0,1(h_{0}(x)=h_{1}(x)=\frac{x-1}{\log x})$

is operator monotone.

Proof. It is sufficient to consider the case for $p\neq 0,$ $\pm 1,2$ . First notice that

$h_{p}(x)=( \frac{p(x-1)}{x^{p}-1})^{\frac{1}{1-p}}\#_{p}(\frac{(1-p)(x-1)}{x^{1-p}-1})^{\frac{1}{p}}$

(Here $\#_{p}$ also expresses an extended weighted mean if $p>1$ or $p<0.$ ) By The-

orem 1.1, both $( \frac{p(x-1)}{x^{p}-1})^{\frac{1}{1-p}}$ and $( \frac{(1-p)(x-1)-}{xp-1})^{\frac{1}{p}}$ are operator monotone. Hence
if $0<p<1$ , then we, at once, see that $h_{p}(x)$ is operator monotone. Next if
$1<p<2$ , then putting $p=q+1(0<q<1)$ , we have

$h_{p}(x)=h_{q+1}(x)=(-q)(q+1) \cdot\frac{(x-1)^{2}}{(x^{q+1}-1)(x^{-q}-1)}=\frac{q(q+1)x^{q}(x-1)^{2}}{(x^{q+1}-1)(x^{q}-1)}.$

Now since $0<q<1$ , we see that $( \frac{q(x-1)}{x^{q}-1})^{\frac{1}{1-q}}$ is operator monotone by Theorem
1.1. Further, since $1<q+1<2$ , we see that

$( \eta(x):=)(\frac{(q+1)(x-1)}{x^{q+1}-1})^{\frac{1}{1-(q+1)}}=(\frac{(q+1)(x-1)}{x^{q+1}-1})^{-\frac{1}{q}}$

is operator monotone by Theorem 1.1, so that its dual $( \eta^{\perp}(x)=)x\cdot(\frac{(q+1)(x-1)}{x^{q+1}-1})^{\frac{1}{q}}$

is operator monotone. Hence

$( \frac{q(x-1)}{x^{q}-1})^{I^{\frac{1}{-q}}}\#_{q}x\cdot(\frac{(q+1)(x-1)}{x^{q+1}-1})^{\frac{1}{q}}=h_{p}(x)$

is operator monotone. Finally, if-l $<p<0$ , then putting $p=-q(0<q<1)$ ,
we have

$h_{p}(x)= \frac{(-q)(q+1)(x-1)^{2}}{(x^{-q}-1)(x^{1+q}-1)}=\frac{q(q+1)x^{q}(x-1)^{2}}{(x^{q+1}-1)(x^{q}-1)}.$

Hence $h_{p}(x)$ has the same expression as in case $1<p<2$ , so that it is operator
monotone. $\square$
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Remark 3.5. For the (extended) weighted geometric mean, the identity

$A\#_{\alpha}(A\#\beta B)=A\#_{\alpha\beta}B (\alpha, \beta : real)$

holds for positive operators $A$ and B. Using this formula, we can get a slight
extension of Theorem 3.4: Let $0\leq\alpha\leq 1$ . Then

$( \frac{p(x-1)}{x^{p}-1})^{\frac{1}{1-p}}\neq_{\alpha p}(\frac{(1-p)(x-1)}{x^{1-p}-1})^{\frac{1}{p}}$

$=( \frac{p(x-1)}{x^{p}-1})^{\frac{1}{1-p}}\#_{\alpha}((\frac{p(x-1)}{x^{p}-1})^{\ulcorner-\overline{p}}\#_{p}1(\frac{(1-p)(x-1)}{x^{1-p}-1})^{\frac{1}{p}})$

is operator monotone.
(If $0<p<1$ , then it is clear that

$( \frac{p(x-1)}{x^{p}-1})^{\frac{1}{1-p}}\#_{\alpha}(\frac{(1-p)(x-1)}{x^{1-p}-1})^{\frac{1}{p}}$

is also operator monotone.)

4 Extensions and applications of Theorems
Let $\sigma_{a_{p}},$ $\sigma_{s_{p}}$ and $\sigma_{k_{p}}$ be the operator means corresponding to the operator

monotone functions $a_{p},$ $s_{p}$ and $k_{p}$ . Then, as state before, for (strictly positive)

operator monotone functions $f$ and $g$ $($defined $on (0, \infty)$ ), $f\sigma_{a_{p}}g=(L^{p}2+L^{p})^{\frac{1}{p}}$ is
operator monot$0$ne for-l $\leq p\leq 1$ . Similarly we can obtain the following facts,
which extend Theorems 1.1 and 1.3:

Theorem 4.1 (An extension of Theorem 1.1).

$f \sigma_{s_{p}}g=(\frac{p(f-g)}{f^{p}-g^{p}})^{\frac{1}{1-p}} p\neq 0,1,$

is operator monotone if $-2\leq p\leq 2.$

Proof. By theorem 1.1, we recall that $s_{p}(x)=( \frac{p(x-1)}{x^{p}-1})^{\frac{1}{1-p}}$ is operator monotone
for $-2\leq p\leq 2$ . For (strictly positive) operator monotone functions $f$ and $g,$

defined on $(0, \infty)$ , we obtain

$f \sigma_{s_{p}}g=f\cdot(1\sigma_{s_{p}}\frac{g}{f})=f\cdot(\frac{p(\not\in-1)}{(\frac{g}{f})^{p}-1})^{\frac{-1}{p}}=(\frac{p(f-g)}{f^{p}-g^{p}})^{\frac{1}{1-p}}$

$\square$
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Similarly, we can show:

Theorem 4.2 (cf. [8], [12], [9], [4], [6], [14]). For operator monotone functions
$f,$ $g(f\neq g)$ , the function

$f \sigma_{k_{p}}g=\frac{p-1}{p}\cdot\frac{f^{p}-g^{p}}{f^{p-1}-g^{p-1}},$ $p\neq 0,1,$ $(f \sigma_{k_{0}}g=\frac{f(\log f-\log g)}{f-g}, f\sigma k_{1}g=\frac{f-g}{\logf-\log g})$

is operator monotone if $-1\leq p\leq 2.$

Recall that the following fact (Theorem 3.2) was shown, as an extension of
Theorem 1.3: For $-1\leq p\leq 1,0\leq s\leq 1$ , the function

$u_{p,s}(x)= \frac{p}{p+s}\cdot\frac{x^{p+S}-1}{x^{p}-1},$ $p\neq 0,$ $-s(u_{0,s}(x)= \frac{x^{s}-1}{\log x^{s}},$ $u_{-s,s}(x)= \frac{\log x^{-s}}{x^{-s}-1})$

is operator monotone.
For the operator mean corresponding to the function $u_{p,s}$ , we can obtain the

following theorem which is an extension of Theorem 4.2 (and also Theorem 3.2):

Theorem 4.3. For operator monotone functions $f,$ $g(f\neq g)$ , and $for-1\leq$
$p\leq 1,0\leq s\leq 1$ , the function

(4.1) $f \sigma_{u_{p,s}}g=\frac{p}{p+s}\cdot\frac{f^{p+S}-g^{p+S}}{f^{p}-g^{p}},$ $p\neq 0,$ $-s$

$(f \sigma_{u_{0,s}}g=\frac{f^{s}-g^{S}}{\log f^{S}-\log g^{S}}, f\sigma_{u_{-s,\epsilon}}g=\frac{f^{-s}-g^{-s}}{\log f^{-S}-\log g-s})$ is operator monotone.

Example 4.4 (cf. [19, Example 2.4]). $For-1\leq p\leq 1,0\leq q-p\leq 1,$ $p\neq$

$0,$ $q\neq 0$ (and for $a\geq 0$),

$\frac{p}{q}.$
$\frac{x^{q}-a^{q}}{x^{p}-a^{p}}$ is operator monotone.

We can obtain this fact, by putting $f=x,$ $g=a$ , and $q=p+s$ in (4.1).
As an application of Theorem 1.1, we showed an alternative proof of the

following result (Theorem 3.4) due to D. Petz and H. Hasegawa before ([17],
[9] $)$ : For-l $\leq p\leq 2$

$h_{p}(x)= \frac{p(1-p)(x-1)^{2}}{(x^{p}-1)(x^{1-p}-1)}, p\neq 0,1(h_{0}(x)=h_{1}(x)=\frac{x-1}{\log x})$

is operator monotone.

As an extension of this fact and an application of Theorem 3.2, though the
range of $p$ is reduced, we have:

Theorem 4.5. If $f,$ $g,$ $k,$ $l(f\neq g, k\neq l)$ are operator monotone functions, then
for $0<p<1,$

$\frac{(f-g)(k-l)}{(f^{p}-g^{p})(k^{1-p}-l^{1-p})}$ is operator monotone.
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Proof. Since $f\sigma_{s_{p}}g$ and $k\sigma_{s_{1-p}}l$ are operator monotone, we see $\frac{1}{p(1-p)}\cdot(f\sigma_{s_{p}}g)\#_{p}(k\sigma_{s_{1-p}}l)=$

$\frac{(j-g)(k-l)}{(f^{p}-g^{p})(k^{1-p}-l^{1-p})}$ is operator monotone. $\square$

Example 4.6 (cf. [19, Theorem 2.7]). Putting $f=k=x$ and $g=a,$ $l=$

$b(a, b\geq 0)$ , we see that $\frac{(x-a)(x-b)}{(x^{p}-a^{p})(x^{1-p}-b^{1-p})}$ is operator monotone.

Further, we have:

Theorem 4.7. $For-1\leq p\leq 2,$ $a,$ $b\geq 0$

(4.2) $h_{p}(a, b;x)= \frac{p(1-p)(x-a)(x-b)}{(x^{p}-op)(x^{1-p}-b^{1-p})}$ is operator monotone.

Proof. We may prove the theorem for $p\neq 0,$ $\pm 1,2$ and $a,$ $b>0$ . For the case
$0<p<1$ , then (4.2) is clear. There remain the two cases:

(i) If $1<p<2$ , then we put $p=q+1$ , so that $0<q<1$ . We have:

$h_{p}(a, b;x)=h_{q+1}(a, b;x)=(-q)(q+1) \cdot\frac{(x-a)(x-b)}{(x^{q+1}-a^{q+1})(x^{-q}-b^{-q})}$

$= \frac{q(q+1)b^{q}x^{q}(x-a)(x-b)}{(x^{q+1}-a^{q+1})(x^{q}-b^{q})}.$

Now since $0<q<1$ , we see that $( \frac{q(x-b)}{x^{q}-bq})^{\frac{1}{1-q}}$ is operator monotone by Theorem
1.1. Further, since $1<q+1<2$ , we see that

$( \eta(a, b;x):=)(\frac{(q+1)(x-a)}{x^{q+1}-a^{q+1}})^{\frac{1}{1-(q+1)}}=(\frac{(q+1)(x-a)}{x^{q+1}-a^{q+1}})^{-\frac{1}{q}}$

is operator monotone by Theorem 1.1, so that its dual
$( \eta^{\perp}(a, b;x)=)x\cdot(\frac{(q+1)(x-a)}{x^{q+1}-a^{q+1}})^{\frac{1}{q}}$ is operator monotone. Hence

$\{(\frac{q(x-b)}{x^{q}-b^{q}})^{\frac{1}{1-q}}\#_{q}x\cdot(\frac{(q+1)(x-a)}{x^{q+1}-a^{q+1}})^{\frac{1}{q}}\}\cross b^{q}=h_{p}(a, b;x)$

is operator monotone.
(ii) If-l $<p<0$ , then putting $p=-q$, we can similarly prove (4.2). $\square$

The following theorem was shown first by T. Ando [1], next by Y. Nakamura
[16], and recently by J.I. Fujii-M. Fbjii [5], by T. Sano-S. Tachibana [18]:

Theorem 4.8. For an operator monotone function $f$ , the function $x\mapsto(f(x^{p}))^{\frac{1}{p}}$

for $0<p\leq 1$ is operator monotone.
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Applying L\"owner’s integral representation of an operator monotone function
$f$ :

$f(x)= \alpha+\beta x+\int_{0}^{\infty}\frac{x}{x+\lambda}d\mu(\lambda)$

with nonnegative $\alpha,$
$\beta$ and a positive measure $\mu$ on $(0, \infty)$ , we show an alternative

proof to the above theorem. (We show that the theorem is valid for a wider
interval - $1\leq p\leq 1,$ $p\neq 0.)$

Proof. $\mathbb{R}om$ the integral representation of $f(x)$ , we have:

$(f(x^{p}))^{\frac{1}{p}}=( \alpha+\beta x^{p}+\int_{0}^{\infty}\frac{x^{p}}{x^{p}+\lambda}d\mu(\lambda))^{\frac{1}{p}}(-1\leq p\leq 1, p\neq 0)$ .

Note that the integral $\int_{0}^{\infty}\frac{x}{x+\lambda}d\mu(\lambda)$ is approximated by $J_{\epsilon,E}(x):= \int_{\epsilon}^{E}\frac{x}{x+\lambda}d\mu(\lambda)$

for $0<\epsilon<E<\infty$ , so that $\int_{0}^{\infty}\frac{x^{p}}{x^{p}+\lambda}d\mu(\lambda)$ by $J_{\epsilon,E}(x^{p}):= \int_{\epsilon}^{E}\frac{x^{p}}{x^{p}+\lambda}d\mu(\lambda)$ . Let

$\Sigma_{\epsilon,E}(x^{p}):=\Sigma_{i=1}^{n}\frac{x^{p}}{x^{p}+\lambda_{i}}m_{i} (\epsilon=\lambda_{0}<\lambda_{1}<\ldots<\lambda_{n}=E)$

with $m_{i}=\mu((\lambda_{i-1}, \lambda_{i}])$ be an approximate sum of $J_{\epsilon,E}(x^{p})$ . Then we have to
show that

$\phi_{n}(x):=(\alpha+\beta x^{p}+\Sigma_{\epsilon,E}(x^{p}))^{\frac{1}{p}}$

is operator monotone. Now if we put $f_{-1}=\alpha^{\frac{1}{p}},$ $f_{0}=\beta^{\frac{1}{p}}x$ and $f_{i}=\neg(x^{p}+\lambda_{t})^{\overline{p}}xm^{\frac{1}{ip}}$

for $i=1,$ $\ldots,$
$n$ , then all $f_{i}(-1\leq i\leq n)$ are operator monotone and $\phi_{n}(x)=$

$( \sum_{i=-1}^{n}f_{i}^{p})^{\frac{1}{p}}$ , so that from Lemma 3.1, we see that $\phi_{n}(x)$ is operator monotone.
$\square$

Assuming L\"owner’s integral representation of the operator monotone func-
tion again, similarly as above, by using the approximate sum $\Sigma_{\epsilon,E}(x)$ of the
integral $J_{\epsilon,E}(x)$ , we can show the following (modified) Bendat-Sherman theo-
rem (cf. [16], [8], [19]):

Theorem 4.9. If $f$ is $a$ (non-constant) operator monotone function, then
$F(x);= \frac{x-a}{f(x)-f(a)}$ for $a\geq 0$ is operator monotone.

Proof If we put $\psi_{n}(x);=\alpha+\beta x+\Sigma_{\epsilon,E}(x)$ instead of $f(x)$ in the proof of
Theorem 4.8, then we have

$F_{n}(x):= \frac{x-a}{\psi_{n}(x)-\psi_{n}(a)}=(\beta+\sum_{i=1}^{n}\frac{\lambda_{i}m_{i}}{(a+\lambda_{i})(x+\lambda_{i})})^{-1}$

This function is operator monotone since $F_{n}^{\perp}(x)= \beta x+\sum_{i=1}^{n}\frac{\lambda_{i}m_{i}x}{(a+\lambda_{i})(x+\lambda_{i})}$ is
operator monotone. Hence the limit $F(x)$ of $F_{n}(x)$ is operator monotone. $\square$
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